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ABSTRACT
It is a common belief that certifying compilation, which typ-
ically verifies the well-typedness of compiler output, can be
an effective mechanism for compiler debugging, in addition
to ensuring basic safety properties. Bytecode verification is
a fairly simple example of this approach and derives its sim-
plicity in part by compiling to carefully crafted high-level
bytecodes. In this paper, we seek to push this method to
native assembly code, while maintaining much of the sim-
plicity of bytecode verification. Furthermore, we wish to
provide experimental confirmation that such a tool can be
accessible and effective for compiler debugging. To achieve
these goals, we present a type-based data-flow analysis or
abstract interpretation for assembly code compiled from a
Java-like language, and evaluate its bug-finding efficacy on
a large set of student compilers.

Categories and Subject Descriptors: D.2.4 [Software
Engineering]: Software/Program Verification; F.3.1 [Logics
and Meanings of Programs]: Specifying and Verifying and
Reasoning about Programs

General Terms: Languages, Verification

Keywords: abstract interpretation, assembly code, byte-
code verification, certified compilation, dependent types

1. INTRODUCTION
It is a widely held belief that automatic verification of

low-level code can greatly aid the debugging of compilers
by checking the compiler output. This belief has led to re-
search, such as translation validation [PSS98, Nec00, RM99],
which aims to verify complete correctness of a compiler (i.e.,

∗
This research was supported in part by NSF Grants CCR-0326577,

CCR-0081588, CCR-0085949, CCR-00225610, and CCR-0234689;
NASA Grant NNA04CI57A; a Sloan Fellowship; an NSF Graduate
Fellowship; an NDSEG Fellowship; and California Microelectronics
Fellowships. The information presented here does not necessarily re-
flect the position or the policy of the Government and no official
endorsement should be inferred.

c©ACM, 2005. This is the authors’ version of the work. It is posted here
by permission of ACM for your personal use. Not for redistribution.
TLDI’05, January 10, 2005, Long Beach, California, USA.

that the output of a compiler is semantically equivalent to
the source program). We are concerned in this paper with
the simpler technique of certifying compilation, in which the
output of a compiler is checked for some internal consis-
tency conditions, typically well-typedness in a certain type
system. In particular, bytecode verification [LY97, GS01,
Ler03] checks that the output of bytecode compilers is well
typed. For this to be possible with a relatively simple algo-
rithm, the bytecode language was carefully designed to carry
additional information necessary for checking purposes and
to include some high-level operations that encapsulate com-
plex sub-operations, such as method dispatch or downcast-
ing in the class hierarchy.

It is reasonable to expect that some bugs in a bytecode
compiler can be detected by verifying the compiler output.
In this paper, we go a step forward and extend the bytecode
verification strategy to assembly language programs, while
maintaining a close relationship with existing bytecode ver-
ification algorithms and preserving the features that make
bytecode verification simple. The main motivation for going
to the level of the assembly language is to reap the benefits
of these techniques for debugging native-code compilers, not
just bytecode compilers. A native-code compiler is more
complex and thus, there is more room for mistakes. Ad-
ditionally, in a mobile-code environment, type checking at
the assembly language level results in eliminating the JIT
compiler from the safety-critical code base. However, what
distinguishes our approach from other certifying compilation
projects is that we hope to obtain a verification algorithm
that can be explained, even to undergraduate students, as
a simple extension of bytecode verification, using concepts
such as data-flow analysis and relatively simple types. In
fact, undergraduate students in the compiler class at UC
Berkeley have been the customers for this work, both in the
classroom and also in the laboratory where they have used
such verification techniques to improve the quality of their
compilers.

The main contributions of this paper are as follows:

1. We describe the construction of a verifier, called Cool-
aid, using type-based abstract interpretation or data-
flow analysis for assembly code compiled from a Java-
like source language. Such a verifier does not require
annotations for program points inside a procedure,
which reduces the constraints on the compiler. We
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found that the main extension that is needed over byte-
code verifiers is a richer type system involving a limited
use of dependent types for the purpose of maintaining
relationships between data values.

2. We provide experimental confirmation on a set of over
150 compilers produced by undergraduates that type
checking at the assembly level is an effective way to
identify compiler bugs. The compilers that were devel-
oped using type-checking tools show visible improve-
ment in quality. We argue that tools that are easy
to understand can help introduce a new generation of
students to the idea that language-based techniques
are not only for optimization, but also for improving
software quality and safety.

In Section 2, we provide an overview of Coolaid, our as-
sembly-level verifier for the Java-like classroom language
Cool. Sections 3 to 5 describe the formal details of how
the verifier works. In Section 6, we describe our experience
using Coolaid in the compiler class, and in Section 7, we
discuss related work.

2. OVERVIEW
Coolaid is an assembly-level abstract-interpretation-based

verifier designed for a type-safe object-oriented program-
ming language called Cool (Classroom Object-Oriented Lan-
guage [Aik96])—more precisely, for the assembly code pro-
duced by a broad class of Cool compilers. The most no-
table features of Cool are a single-inheritance class hierar-
chy, a strong type system with subtyping, dynamic dispatch,
a type-case construct, exceptions, and self-type polymor-
phism [BCM+ 93]. For our purposes, it can be viewed as
a realistic subset of Java or C# extended with self-type
polymorphism. Cool is the source language used in some
undergraduate compilers courses at UC Berkeley and sev-
eral other universities; this instantly provides a rich source
of (buggy) compilers for experiments. We emphasize that
Coolaid could not alter the design of the compilers, as it was
not created until long after Cool had been in use.

There are two main difficulties with type-checking assem-
bly code versus source code:

1. Flow sensitivity is required since registers are re-used
with unrelated type at different points in the program;
also, memory locations on the stack may be used in-
stead of registers as a result of spill or to meet the
calling convention.

2. High-level operations are compiled into several instruc-
tions with critical dependencies between them that
must be checked. Furthermore, they may become in-
terleaved with other operations, particularly after op-
timization.

The first problem is also present in bytecode verification
and is addressed by using data-flow analysis/abstract in-
terpretation to get a flow-sensitive type-checking algorithm
that assigns types to registers (and the operand stack) at
each program-point [Ler03, LY97]. However, the second is
avoided with high-level bytecodes (e.g, invokevirtual for
method dispatch in the JVML).

Coolaid, like bytecode verifiers, verifies by performing a
data-flow analysis over an abstract interpretation. Abstract

RBV(p) =

(
Init if p is the start of the methodF
{〈S, R〉p | InstrBV(p′) : RBV(p′) →BV 〈S, R〉p}

otherwise

Figure 1: Computing by abstract interpretation
the abstract state RBV(p) at program point p .
InstrBV(p) is the instruction at p ; t denotes the join
over the lattice; Init is the initial abstract state given
by the declared types of the method arguments.

interpretation [CC77] successively computes over-approxi-
mations of sets of reachable program states. These over-
approximations or abstract states are represented as ele-
ments of some lattice, called an abstract domain.

Consider first how this would be done in a bytecode veri-
fier for Cool. The abstract domain is the Cartesian product
lattice (one for each register) of the lattice of types; that
is, the abstract state is a mapping from registers to types.
The ordering is given by the subtyping relation, which is ex-
tended pointwise to the register state. The types are given
almost completely by the class hierarchy, except with an ad-
ditional type null to represent the singleton type of the null

reference, > to represent unknown or uninitialized values,
and (for convenience) ⊥ to represent the absence of any
value. As usual, the subtyping relation <: follows the class
inheritance hierarchy with a few additional rules for null ,
> , and ⊥ (i.e., is the reflexive-transitive closure of the “ex-
tends” relation and the additional rules). More precisely, let
the class table T map class names to their declarations; then
the subtyping relation (which is implicitly parameterized by
T ) is defined judgmentally as follows:

τ0 <: τ1

T (C0) = class C0 extends C1 { . . . }

C0 <: C1 null <: C

τ <: > ⊥ <: τ τ <: τ

τ0 <: τ ′ τ ′ <: τ1

τ0 <: τ1

Note that since Cool is single-inheritance (and without inter-
faces), the above structure is a join semi-lattice (i.e., every
finite set of elements has a least upper bound).

We can now describe the bytecode verifier as a transition
relation between abstract states. Let 〈S, R〉p denote the
abstract state at program point p where S and R are the
types of the operand stack and registers, respectively. We
write bc : 〈S, R〉p →BV 〈S′, R′〉p′ for the abstract transition
relation for a bytecode bc ; we elide the program points for
the usual transition from p to p+1. For example, we show
below the rule for invokevirtual :

τ <: C τ ′0 <: τ0 · · · τ ′n−1 <: τn−1

invokevirtual C.m(τ0, τ1, . . . , τn−1) : τn

: 〈τ ′n−1 :: · · · :: τ ′1 :: τ ′0 :: τ :: S, R〉 →BV 〈τn :: S, R〉

where C.m(τ0, τ1, . . . , τn−1) : τn indicates a method m of
class C with argument types τ0, τ1, . . . , τn−1 and return
type τn . The first premise checks that the type of the
receiver object at this point is a subtype of its (source-
level) static type, while the other premises check confor-
mance of the arguments. Note that the abstract transition
for invokevirtual does not branch to the method as in
the concrete semantics, but rather proceeds after the return
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class Seq {
Seq next() { . . . }

}

class SubSeq extends Seq { }

class Main {
void scan(SubSeq s) {

Seq x = s;
do {

x = x.next();
} while (x != null);

}
}

void scan(SubSeq);
Code:

0: aload 1 // load s from r1

3: invokevirtual #2 // Seq.next()
// (call x.next())

10: ifnonnull 3 // x != null

13: return

1 Main.scan:
.
.
.

2 rx := ry

3 Loop:
4 branch (= rx 0) Ldispatch abort

5 rt := mem[(add rx 8)]
6 rt := mem[(add rt 12)]
7 rarg0 := rx

8 rra := &Lret
9 jump [rt]

10 Lret:
11 branch (= rrv 0) Ldone
12 rx := rrv

13 jump Loop

(a) Cool (b) JVML (c) SAL

Figure 2: An example program shown at the source, bytecode, and assembly levels.

with an assumption about return type (just like in type-
checking).

The verification itself proceeds by symbolically executing
the bytecode of each method using the abstract interpreta-
tion transition →BV . An abstract state is kept for each pro-
gram point, initially ⊥ everywhere except at the start of the
method, where the locations corresponding to the method
arguments are typed according to the method’s typing dec-
laration. At each step, the state at the following program
point is weakened according to the result of the transition. If
no transition is possible (e.g., because a method call would
be ill-typed), the verification fails. At return points, no
transition is made, but the current state is checked to be
well-typed with respect to the declared return type; other-
wise, the verification fails.

To handle program points with multiple predecessors in
the control-flow graph—join points—we use the join oper-
ation of the abstract domain. (Since there are no infinite
ascending chains in this lattice, a widen operator is not re-
quired at cut points for termination.) Thus, the abstract
states are computed as the least fixed point of equations in
Figure 1. The verification succeeds if the least fixed point
is computed without the verification failing due to a lack of
any transition or due to an ill-typed return.

For example, consider the Cool program (written in Java
syntax) given in Figure 2(a), along with the compilation of
Main.scan to bytecode (JVML) in (b). We show below a
computation of the abstract state at line 3.

First Iteration Second Iteration

RBV(3) 〈SubSeq :: S, R〉 〈Seq :: S, R〉

The first time RBV(3) is computed, τ is SubSeq and then
the invokevirtual is okay because SubSeq <: Seq . How-
ever, this requires that RBV(3) is weakened again because
of the loop before we reach a fixed point.

We now extend these ideas to do verification on the as-
sembly level. Coolaid works with a generic untyped assem-
bly language called SAL; we hope SAL is intuitive and
to streamline the presentation, we postpone formally pre-
senting it until Section 5. However, note that in examples,
we often use register names that are indicative of the source
variables to which they correspond (e.g., rx ) or the function
they serve (e.g., rra ) though they correspond to one of the
n machine registers. In Section 3, we describe the appropri-
ate lattice of abstract states, and in Section 4, we describe
the abstract transition relation → . We close this section

with an example illustrating the difficulty of assembly-level
verification.

Consider again the example program given in Figure 2
where the compilation of Main.scan to assembly code (SAL)
is shown in (c). Note that the invokevirtual bytecode in
line 3 of (b) corresponds to lines 4–10 of (c); invokevirtual
is expanded into (1) a null-check on the receiver object, (2)
finding the method through the dispatch table, (3) saving
the return address, and (4) finally an indirect jump. The
simple rule for invokevirtual is largely due to the con-
venience of rolling all of these operations into one atomic
bytecode. For example, references of type C mean either
null or a valid reference to an object of class C . Since dy-
namic dispatch requires the receiver object to be non-null, it
is convenient to make this check part of the invokevirtual

bytecode. In the assembly code, these operations are sepa-
rated, which then require the typing of intermediate results
(e.g., dispatch tables) and tracking critical dependencies. To
fully illustrate this issue, let both rchild and rparent have sta-
tic type Seq in our verification, but suppose rchild actually
has dynamic type SubSeq and rparent has dynamic type Seq

during an execution. Now consider the following code:

1 branch (= rchild 0) Ldispatch abort

2 rt := mem[(add rchild 8)]
3 rt := mem[(add rt 12)]
4 rarg0 := rparent

5 rra := &Lret
6 jump [rt]
7 L ret :

An initial implementation following bytecode verification
might assign the type rt : meth(Seq, 12) saying rt is method
at offset 12 of class Seq (since it was found through rchild ,
which has type Seq). On line 6, we can then recognize that
rt is a method and check that rarg0 : Seq , which succeeds
since rparent : Seq . However, this is unsound because at
run-time, we obtain the method from SubSeq but pass as
the receiver object an object with dynamic type Seq , which
may lack expected SubSeq features.1

One way to resolve this unsoundness is to make sure that
the receiver object passed to the method is the same object
on which we looked up the dispatch table. We will now
describe a type system to handle these difficulties.

1This was first observed as an unsoundness in the Touch-
stone certifying compiler for Java [CLN+ 00] by Christopher
League [LST03].
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3. ABSTRACT STATE
At the assembly level, high-level bytecodes are replaced

by series of instructions, primarily involving address com-
putation, that may be re-ordered and optimized. We have
found it useful to not always create new types for interme-
diate values, but to keep certain intermediate expressions
in symbolic form. Rather than assigning types to registers,
we assign types to symbolic values. Thus, our abstract state
consists of a mapping Σ from registers to expressions (in-
volving symbolic values) and a mapping Γ from symbolic
values to types.

abstract state 〈Σ # Γ〉
value state Σ ::= r0 = e0, r1 = e1, . . . , rn−1 = en−1

type state Γ ::= · | Γ, α : τ

symbolic values α, β

We assume some total ordering on symbolic values, say from
least recently to most recently introduced.

3.1 Values
The language of expressions has the following form:

expressions e ::= n | α | &L | e0 + e1 | e0 − e1 | e0 · e1 | · · ·

These are the expressions ae of the assembly language (for
which see Section 5), except replacing registers with sym-
bolic values. Note &L refers to the code or data address
corresponding to label L .

We define a normalization of expressions to values. For
Coolaid, we are only concerned about address computation
and a few additional constraints to express comparison re-
sults for non-null checks and type-case.2 Thus, the values
are as follows:

values v ::= n0 ·&L + n1 · α + n2 | α R n
relations R ::= =|6=|<|≤|>|≥

Note that the form of the address computation allows index-
ing into a statically allocated table with a constant multiple
and offset of a symbolic value (e.g., a class tag) or indexing
into a table given by a symbolic value (e.g., a dispatch table)
by a constant offset. No other address forms are necessary
in Coolaid.

The symbolic values represent existentially quantified val-
ues, for which the inner structure is unknown or no longer
relevant. Coolaid will often choose to freshen registers, for-
getting how its value was obtained by replacing it with a
fresh symbolic value, which is assigned an appropriate type.
In particular, during normalization we might choose to for-
get values (replacing subexpressions with fresh symbolic val-
ues) while retaining types (by assigning appropriate types
to the new symbolic values). Thus, we use a type-directed
judgment Γ ` e ⇓ v . Γ′ for the normalization of expression
e to value v , yielding a possibly extended Γ for new sym-
bolic values. In most cases, the new symbolic value can be
implicitly typed as > (i.e., unknown contents); for example,
should a program multiply two pointer types, Coolaid deter-
mines that it is not worth retaining any information either
about the structure of the value or its type. Coolaid also
has a distinguished type of initialized machine words (as de-
scribed in Section 3.2), and in this case, although the fact
that the value is a product can be forgotten, we still wish to

2As typical for assembly language, we have expression oper-
ators corresponding to arithmetic comparisons =, < , etc.

treat the new value as an initialized machine word. Simpli-
fying arithmetic on words is in fact the only interesting case
when Γ is extended. For example,

Γ ` e0 ⇓ α0 . Γ′ Γ′(α0) = word
Γ′ ` e1 ⇓ α1 . Γ′′ Γ′′(α1) = word (β fresh)

Γ ` e0 · e1 ⇓ β . Γ′′[β 7→ word]

where we write Γ[α 7→ τ ] for the updated map that is the
same as Γ except α maps to τ . It is fairly straightforward
to define the normalization.

One of the more important uses of the value state is to
convey that two registers are equal, which can be represented
by mapping them to the same value. This is necessary, for
instance, to handle a common compilation strategy where a
value in a stack slot is loaded into a register to perform some
comparison that more accurately determines its type; Cool-
aid must realize that not only the scratch register used for
comparison but also the original stack slot has the updated
type. We write that 〈Σ # Γ〉 |= r0 = r1 to mean that the
abstract state 〈Σ # Γ〉 implies that registers r0 and r1 are
equal, and define this as follows:

〈Σ # Γ〉 |= r0 = r1 if and only if

Γ ` Σ(r0) ⇓ v . Γ′ and Γ ` Σ(r1) ⇓ v . Γ′′

which simply says that r0 = r1 precisely when their contents
normalize to the same value.

3.2 Types
We use a (simple) dependent type system extending the

non-dependent types used in bytecode verification. While
we could merge the reasoning about values described in the
previous section into the type system (for example, intro-
ducing singleton types for integer constants), we have found
it more convenient to separate out the arithmetic and keep
the type system simpler.

Primitive Types. Though not strictly necessary to prove
memory safety, we distinguish two types of primitive values:
one for completely unknown contents (e.g., possibly unini-
tialized data) and one for an initialized machine word of
an arbitrary value. One could further distinguish word into
words used as machine integers versus booleans and perhaps
catch more bugs.

types τ ::= > unknown contents
| word machine word
| ⊥ absence of a value
| . . .

Reference Types. To safely index into an object via an
object reference, we must ensure the reference is non-null.
Furthermore, sometimes we have and make use of knowledge
of the exact dynamic type. Thus, we refine references types
to include the type of possibly-null references bounded above
(C ), the type of non-null references nonnull C bounded
above, the type of possibly-null references bounded above
and below (exactly C ), the type of non-null references bound-
ed above and below (nonnull exactly C ), and the type of
null (null).3 For self-type polymorphism, we also consider
object references where the class is known to be the same

3Putting aside historical reasons, one might prefer to write
C for non-null references and maybenull C for possibly-null
references, viewing non-null references as the core notion.
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as another symbolic value (classof(α)). Finally, we have
pointers to other types, which arise, for example, from ac-
cessing object fields or indexing into a compiler-generated
table (e.g., dispatch tables). Though not expressed in the
abstract syntax, Coolaid only uses single-level pointers (i.e.,
C ptr but not C ptr ptr ).

types τ ::= . . .
| [nonnull] b object reference of class given

by bound b [possibly null if not
nonnull]

| null the null reference
| τ ptr pointer to a τ
| . . .

bounds b ::= C bounded above by C
| exactly C bounded above and below by C
| classof(α) same class as α

classes C

Dispatch Table and Method Types. For method dis-
patches, we have types for the dispatch table of an object
(disp(α)) and a method obtained from such a dispatch table
(meth(α, n)). A similar pair is defined for the dispatch table
and methods of a specific class (sdisp(C) and smeth(C, n)).
We also define a type for initialization methods ( init(α) and
sinit(C)).

types τ ::= . . .
| disp(α) dispatch table of α
| meth(α, n) method of α at offset n
| sdisp(C) dispatch table of class C
| smeth(C, n) method of class C at offset n
| init(α) initialization method of α
| sinit(C) initialization method of class C
| . . .

Tag Type. To handle a type-case (or a down cast), we need
a type for the class tag of an object. The class tag is the
run-time representation of the dynamic type of the object.
In addition to the object value whose tag this is, we keep a
set of the possible integers that the tag could be.

types τ ::= . . .
| tag(α, N) tag of α with possible tags N

tag sets N

Subtyping. As with bytecode verification, the ordering on
the abstract domain elements is largely defined in terms of
subtyping. Though we have extended the language of types
a fair amount, the lattice of types remains quite simple—flat
except for reference types. Since our types now depend on
symbolic values, we extend the subtyping judgment slightly
to include the context mapping symbolic values to types—
Γ ` τ0 <: τ1 . The basic subtyping rules from before carry
over (extended with Γ). Then, we add the expected rela-
tions between exactly , nonnull and possibly-null references.

Γ ` nonnull C <: C Γ ` exactly C <: C

Γ ` nonnull exactly C <: nonnull C

Γ ` nonnull exactly C <: exactly C

Non-null references are also ordered following the class hi-
erarchy.

Γ ` C0 <: C1

Γ ` nonnull C0 <: nonnull C1

Finally, some slightly subtle handling is required for a
precise use of classof . If α has type C , we would like to be
able to use values of type classof(α) as being of type C .

Γ ` Γ(α) <: q′ C

Γ ` q classof(α) <: q C

Γ ` Γ(α) <: q′ exactly C

Γ ` q classof(α) <: q exactly C

In these rules q and q′ might either, both, or neither be
nonnull . Observe that the structure of abstract states allows
instances of classof where nothing is provable from these
rules; for example, we might have α : classof(β) and β :
classof(α) ; however, we can prevent this by restricting the
type of a symbolic value to not depend on “newer” symbolic
values (following the ordering on symbolic values). Note
that the structure of abstract transitions does not allow such
states to be created by observing this restriction.

3.3 Join
It remains to define the join operation on abstract states.

Intuitively, the core of the join operation is still determined
by subtyping; however, some extra work must be done to
join values and dependent types.

We consider values (i.e., v ) as a (fancy) labeling of equiv-
alence classes of registers, so the lattice of value states is the
lattice of finite conjunctions of equality constraints among
registers. The join algorithm is then essentially a special
case of the algorithm for the general theory of uninterpreted
functions given by Gulwani et al. [GTN04] and by Chang
and Leino [CL05].

First, we evaluate each expression of the states to join so
that we are only working with values. Let A0 = 〈Σ0 # Γ0〉
and A1 = 〈Σ1 # Γ1〉 denote these states, and let A = 〈Σ # Γ〉
be the result the join. The resulting value state Σ will map
all registers to values. Let us momentarily denote a value in
the joined state as the corresponding pair of values in the
states to be joined. Then we can define the resulting value
state as follows:

Σ(r) = 〈Σ0(r), Σ1(r)〉

Finally, we translate pairs of values 〈v0, v1〉 to single values
and yield the new type state Γ; if the structures of v0 and v1

do not match, then they are abstracted as a fresh symbolic
value. More precisely, let p·q be the translation of the pair
of values to a single value:

p〈α0, α1〉q
def
= β

where β fresh and Γ(β) = 〈Γ0, Γ0(α0)〉 t<: 〈Γ1, Γ1(α1)〉

p〈n0 ·&L + n1 · α0 + n2, n0 ·&L + n1 · α1 + n2〉q
def
=

n0 ·&L + n1 · p〈α0, α1〉q + n2

p〈α0 R n, α1 R n〉q def
= p〈α0, α1〉q R n

p〈v0, v1〉q
def
= β where β fresh and Γ(β) = > (otherwise)

Note that each distinct pair of symbolic values maps to a
fresh symbolic value. We write t<: for the join in the types
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lattice. Although the subtyping lattice is flat at dependent
types, we use the same join operation at values to update
the dependencies. For example, disp(α) and disp(β) would
be joined to disp(p〈α, β〉q) . More precisely, let σ0 and σ1

denote substitutions from the symbolic values in A to A0

and A1 , respectively, given by the above translation. Then,

〈Γ0, τ0〉 t<: 〈Γ1, τ1〉
def
= the least τ such that

Γ0 ` τ0 <: σ0(τ) and Γ1 ` τ1 <: σ1(τ)

Observe that Coolaid takes a rather simple approach to
joining values. In particular, registers are often freshened to
be pure symbolic values at join points. As a trivial example,
Coolaid is able to verify a program that takes a pointer, adds
one, and then subtracts one; but if a join point intervenes,
the fact that the register contains a value that is just one
more than a pointer type may be forgotten (unless that reg-
ister in the other state also contains one more than the same
pointer type). This simplification did not seem to cause dif-
ficulties in practice, with the many student compilers of our
experiments.

Since there are a finite number of registers, there is a
bounded number of equivalence classes. The join only in-
creases the number of equivalence classes. Since there are
no infinite ascending chains in the types lattice, the abstract
interpretation will terminate (without requiring a widen op-
eration at cut points).

4. VERIFICATION
As in Section 2, we describe the verification procedure by

the abstract transition relation

I : 〈Σ # Γ〉p → 〈Σ′ # Γ′〉p′ .

As before, this determines a verification procedure by the
fixed-point calculation over the equations analogous to those
of Figure 1. In this section, we define some interesting cases
of the abstract transition relation by following the verifica-
tion of an example. All the abstract transition and typing
rules are collected together in Appendix A.

We first consider in detail the assembly code in Figure 2(c),
which performs a dynamic dispatch in a loop. Suppose the
abstract state before line 2 is as follows:

〈ry = α1
y, rself = α1

self #
α1

y : SubSeq, α1
self : nonnull Main〉 (1)

and all other registers map to distinct symbolic values that
have type > . (Where appropriate, we use subscripts on
symbolic values to indicate the register in which they are
stored and superscripts on symbolic values to differentiate
them.) For the rest of this example, we usually write just
what changes. Since instruction 2 is a register to register
move, we simply make rx map to the same value as ry .
This changes the abstract state to

〈rx = α1
y, ry = α1

y, . . . # . . .〉

In general, for an arithmetic operation, we simply update
the register with the given expression (with no changes to
the type state):

r := ae : 〈Σ # Γ〉 → 〈Σ[r 7→ Σ(ae)] # Γ〉
assign

where we treat Σ as a substitution (i.e., Σ(ae) is the ex-
pression where registers are replaced by their mapping in
Σ).

Line 3 does not affect the state, as labels are treated as
no-ops.

L : : 〈Σ # Γ〉 → 〈Σ # Γ〉
label

We recognize line 4 as a null-check so that the abstract
state in the false branch is

〈. . . # α1
y : nonnull SubSeq〉

Note that we automatically have that both the contents of
rx and ry are non-null since we know that they are aliases
(for they map to the same symbolic value). In general, the
post states of a null-check are given as follows:

Γ ` Σ(ae) ⇓ α R 0 . Γ′ Γ′(α) = b R∈ {=, 6=}

τ =

(
nonnull b if ¬(α R 0) ≡ α 6= 0

null otherwise

branch ae L : 〈Σ # Γ〉 → 〈Σ # Γ′[α 7→ τ ]〉
nullcheckF

The true case is similar.
We recognize that line 5 loads the dispatch table of object

α1
y , and the abstract state afterwards is

〈rt = α5
t , . . . # α5

t : disp(α1
y), . . .〉

The basic invariant for memory accesses we maintain through-
out is that an address is safe to access if and only if it is a
ptr type, and thus the rule for reads is as follows:

Γ ` Σ(ae) : τ ptr . Γ′ (α fresh)

r := mem[ae] : 〈Σ # Γ〉 → 〈Σ[r 7→ α] # Γ′[α 7→ τ ]〉
read

The above rule introduces the following typing judgment:

Γ ` e : τ . Γ′

which says in context Γ, e has type τ , yielding a possibly
extended Γ for new symbolic values Γ′ . The typing rule
that determines that line 5 looks up a dispatch table is

Γ ` e ⇓ α + 8 . Γ′ Γ′ ` α : nonnull C . Γ′′

Γ ` e : disp(α) ptr . Γ′′

We determine that offset 8 of an object is a pointer to the
dispatch table because knowledge of the Cool object layout
is built-in.

Line 6 then looks up the appropriate method in the dis-
patch table, so the post state is

〈rt = α6
t , . . . # α6

t : meth(α1
y, 12), . . .〉

This is again a memory read, so the transition rule read ap-
plies, but the method type is determined with the following
typing rule:

Γ ` e ⇓ β + n . Γ′ Γ′′ ` α : nonnull C . Γ′′′

Γ′ ` β : disp(α) . Γ′′ (C has a method at offset n)

Γ ` e : meth(α, n) ptr . Γ′′′

We get a method if we index into the dispatch table, pro-
vided a method at that offset is defined (according to the
implicitly parameterized class table T ).

The next two lines (7 and 8) set the first argument register
(which is used to pass the receiver object) and the return
address. The abstract state after line 8 is as follows (given
by assign):

〈rarg0 = α1
y, rra = &Lret, . . . # . . .〉
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Finally, in line 9, the method call takes place. This indi-
rect jump is determined to be a method call since rt contains
a value of method type. The post state after the call must
drop any information about the state prior to the call, for
the callee may modify the registers arbitrarily. This is ex-
pressed by giving fresh symbolic values to all registers. The
information we have about the post state is that the return
value has the type specified by the method signature. Thus,
the abstract state after the call is

〈rrv = α9
rv # α9

rv : Seq〉

and the method dispatch transition rule is as follows:

Γ ` Σ(ae) : meth(α, n) . Γ′

Σ(rarg0 ) = α Γ′ ` α : nonnull C . Γ′′ (∗)
T (C) = class C . . . { . . . τrv m(τ1, . . . , τk) . . . }
Γ′′ ` Σ(rarg1 ) : τ1 . Γ′′

1 · · · Γ′′
k−1 ` Σ(rargk ) : τk . Γ′′

k

(Σ′, β fresh)
(m is the method at offset n of class C)

jump [ae] : 〈Σ # Γ〉 → 〈Σ′[rrv 7→ β] # Γ′′
k [β 7→ τrv ]〉

meth

This rule is slightly simplified in that it ignores callee-save
registers; however, we can easily accommodate callee-save
registers by preserving the register state for those registers
(i.e., Σ(rcs) = Σ′(rcs) for each callee-save register rcs ).
Also, this rule is slightly more conservative than necessary
within our type system. The premise marked with (∗) re-
quires that the receiver object be the same as the object
from which we looked up the dispatch table. We could in-
stead require only that it can be shown to have the same
dynamic type as α (i.e., checking that Σ(rarg0 ) has type
nonnull classof(α)), but this restriction is probably helpful
for finding bugs. Note if the declared return type of the
method is the self-type, then we take τrv to be classof(α1

self )
(i.e., to have same dynamic type as self).

Lines 10–12 are a label, null-check, and register to register
move, as we have seen before, so the abstract state before
line 13 is

〈rx = α9
rv , . . . # α9

rv : nonnull Seq, . . .〉

The jump instruction at line 13 loops back with the abstract
transition given by

(L is not a code label for a method)

jump L : 〈Σ # Γ〉 → 〈Σ # Γ〉L
jump

that does not modify the abstract state but makes it a pre-
decessor of L . This weakens Pre(3) , and thus this loop
body will be scanned again before reaching a fixed point.
This transition applies only to jumps within the method,
rather than calls to other functions.

Static Dispatch. All method/function calls are treated
similarly in that they check that arguments conform to the
appropriate types, havoc the abstract state (except for callee-
save registers), assume the return value has the specified re-
turn type, and proceed to the next instruction. They differ
in how the function (or class of possible functions) to be
called is determined.

Static dispatch determines the method to call based on a
type specified statically, so the compiler can simply emit a
direct jump to the code label for the method. However, in
many of the Cool compilers with which we experimented,
we observed that static dispatch was with indirect jumps
based on indexing into the dispatch table for the particular

class or even first obtaining the dispatch table by indexing
through a statically allocated, constant “prototype object”
(perhaps to re-use code in the compiler). We treat all these
cases uniformly by assigning types of methods and dispatch
tables smeth(C, n) and sdisp(C) to the appropriate labels
at initialization time. The rules to look up methods and
dispatch tables for static dispatch are analogous to the ones
for dynamic dispatch (see Appendix A).

Type-Case. Coolaid’s handling of the type-case (or down
casts) is probably the language feature most tailored to a
particular compilation strategy. In fact, this is the most
prominent example of a potential Coolaid incompleteness:
a memory-safe compilation that fails to verify with Coolaid
(see Section 6.1). The way that Coolaid handles type-case is
based on the compilation strategy that emits comparisons
between the class tag and integer constants to determine the
dynamic type of an object. Following this strategy, Coolaid
updates the tag(α, N) type by filtering the set of possible
tags N on branches and then updates α to the type that
is the least upper bound of the remaining tags. If the set
becomes empty, then we have determined an unreachable
branch, so Coolaid will not follow such a branch.

5. DETAILS
In this section, we discuss three details of our approach

to assembly-level verification required for a complete pre-
sentation. First, the assembly language itself. Coolaid is
implemented on top of the Open Verifier framework for
foundational verifiers [CCNS05, Sch04], which provides an
infrastructure for abstract interpretation on assembly code
(among other things)4. This framework works on a generic
untyped assembly language called SAL by first translating
from MIPS or Intel x86 assembly. The abstract syntax of
SAL is as follows:

instructions I ::= L : label
| r := ae assignment
| r := mem[ae] memory read
| mem[ae0] := ae1 memory write
| jump L jump to a label
| jump [ae] indirect jump
| branch ae L branch if non-zero

labels L

registers r ::= r0 | · · · | rn−1

asm exprs ae ::= n | r | &L | (op ae0 ae1)

integers n

operators op ::= add | sub | sll | = | <> | < | · · ·

SAL has a very basic set of instructions, a set of regis-
ters, and a minimal set of expressions. Macro instructions in
MIPS or x86 are translated into a sequence of SAL instruc-
tions; for example the jump-and-link instruction in MIPS is
translated as follows:

MIPS SAL

jal fun rra := &retaddr0

jump fun

retaddr0 :

Second, because the abstract interpretation lattice is de-
fined with respect to a particular class hierarchy, Coolaid

4“Foundationalizing” Coolaid is discussed elsewhere [Sch04].
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needs access to that information for the program being veri-
fied. In all, we will need the parent class of each user-defined
class; the types of the fields of each class; and the input and
output types of each method—all other needed facts must
already be encoded in the data block of the compiled code
in order to meet the conventions of Cool’s run-time system.
We access the missing data through annotations encoded as
comments in the assembly code to be verified. (In reference
to our experiments, note that we did not need to change any
of the student compilers to obtain the required data, which
can be trivially reconstructed from the source code.)

Finally, one key element of verification at the assembly
code level is the run-time stack. The verifier must maintain
an abstract state not only for registers but also for stack
slots, and memory operations must be recognized as either
stack accesses or heap accesses. Formally, the lattice of the
abstract interpretation must be extended to handle stack
frames and calling conventions. Values may be typed as
stack pointers, or as the saved values of callee-save regis-
ters or the return address—the return instruction, which is
just an indirect jump in SAL, must verifiably jump to the
correct return address. We must even keep track of the low-
est accessed stack address in order to ensure that no stack
overflows can occur or that operating system-based detec-
tion mechanisms cannot be subverted (e.g., skipping over the
guard page—an unmapped page of memory that separates
the stack region from the heap). Fortunately, the Open Ver-
ifier framework allows Coolaid to work cooperatively with a
separate, modular verifier to handle these issues, which we
will not discuss further in this paper.5

6. EDUCATIONAL EXPERIENCE
Coolaid includes an interactive GUI that allows the user

to step through the verification process, while seeing the in-
ferred abstract value and type for each state element. Step-
ping back in the verification is also possible and is useful to
investigate how an unexpected abstract value originated.

We used Coolaid in the undergraduate compiler course at
UC Berkeley in the Spring 2004 semester. Our experiments
had two main purposes. First, we wanted to test, in a con-
trolled setting, the hypothesis that such a tool is a useful
compiler-debugging aid. Second, we wanted to give the stu-
dents hands-on experience with how data-flow algorithms
can be used not just for compiler optimizations, but also for
checking software properties. Before starting to use Coolaid,
the students attended a lecture presenting how global data-
flow analysis can be adapted to the purpose of type-checking
low-level languages, starting with a JVML-like language and
ending with assembly language.

Each semester about 150 students take the compiler class.
Over the course of a semester, the students work in pairs to
build a complete Cool compiler emitting MIPS assembly lan-
guage. The students are supposed to construct test cases for
their compilers and to run the tests using the SPIM [Lar94]
simulator. An automated version of this testing procedure,
with 49 tests, is used to compute a large fraction of their
project grade.

In the Spring 2004 semester, the students were given ac-
cess to Coolaid. They still had to write their Cool test cases,

5The verifier for handling the run-time stack is interesting
in itself, and we intend to publish details separately; in the
context of foundational verification, it is discussed briefly in
Schneck [Sch04]

Figure 3: Performance of student compilers with
and without Coolaid. The compilers are binned based
on letter grades (for the automated testing compo-
nent).

but the validation of a test could also be done by Coolaid,
not simply by matching SPIM output with the expected out-
put. We made a convincing case to the students that Coolaid
not only can expose compilation bugs that simple execution
with SPIM might not cover, but can also pinpoint the offend-
ing instruction, as opposed to simply producing the wrong
SPIM output.

In order to make interesting comparisons, we have applied
Coolaid retro-actively to the projects built in the 2002 and
2003 instances of the course when students did not have
Coolaid available. Each class was asked to complete the
same project in the same amount of time.

6.1 Results
First, we ran each compiler on the 49 tests used for grad-

ing. The number of compilers varied from year to year as
follows:

2002: 87 compilers, 4263 compiled test cases
2003: 80 compilers, 3920 compiled test cases
2004: 72 compilers, 3528 compiled test cases

Figure 3 shows a histogram of how many compilers passed
how many tests, with the numbers adjusted proportionally
to the difference in the number of compilers each year. This
data indicates that students who had access to Coolaid pro-
duced better compilers. In particular, the mean score of
each team (out of 49) increased from 33 (67%) in 2002 or 34
(69%) in 2003 to 39 (79%) in 2004. This would be a mea-
sure of software quality when compilation results are run
and checked against expected output (the traditional com-
piler testing method). Grade-wise, this is almost a letter
grade improvement in their raw score.

Next, we compared the traditional way of testing com-
pilers with using Coolaid to validate the compilation result.
Each compiler result falls into one of the following categories:

The code produces correct output and also passes Cool-
aid (i.e., the compilation is correct as far as we can
determine).

The code produces incorrect output and also fails Cool-
aid (i.e., the error is visible in the test run). This
category also includes cases where the compiler crashes
during code generation.

The code produces correct output but fails Coolaid.
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test passed, type safe (observably correct) test passed, type safe but Coolaid failed (incompleteness)
test passed, type error (hidden type error) test failed, type error (visible type error)

test failed, type safe (semantic error)

correct compilation incorrect compilation
scored as correct scored as incorrect

Figure 4: Behavior of test programs compiled by students and run through both the standard execution-
based testing procedure and Coolaid. Horizontal lines indicate failing the standard testing procedure, while
vertical lines (dotted or dashed) indicate failing Coolaid (and thus the grid pattern indicates failing both).

Typically, this indicates a compilation error resulting
in ill-typed code that is not exercised sufficiently by
its particular hard-wired input ( ). However, this
case can also indicate a Coolaid incompleteness: a valid
compilation strategy that Coolaid is unable to verify
( ). In order to correctly classify compilation results
in this case, we have inspected them manually.

Examples of incompletenesses included using odd call-
ing conventions (such as requiring the frame pointer
be callee-save only for initialization methods) and im-
plementing case statements by a lookup table rather
than a nested-if structure. Coolaid could be changed to
handle such strategies, but it is impossible to predict
all possible strategies in advance.

The code produces incorrect output but passes Cool-
aid.

This indicates a semantic error: type-safe code that
does not correspond to the semantics of the Cool source.
An example of such an error would be swapping the or-
der of operands in a subtraction. In principle, it could
also indicate a Coolaid unsoundness: an unsafe com-
pilation strategy that Coolaid incorrectly verifies. In
fact, one surprising unsoundness was discovered and
fixed while checking the student compilers: Coolaid
was allowing too broad an interface to a particular run-
time function. This could be prevented by wrapping
Coolaid into a foundational verifier producing proofs of
safety, which is work in progress as part of the Open
Verifier project [CCNS05, Sch04].

The breakdown of behaviors for the code produced by the
student compilers is shown in Figure 4. Observe that the
percentage of compilations in each category are roughly the
same in 2002 and 2003 when students did not have Coolaid
despite the variance in the student population.

Several conclusions can be drawn from this data, at least
as it concerns compilers in early development stages. To
make our calculations clear, we will include parenthetical
references to the patterns used in Figure 4.

The majority of compiler bugs lead to type errors. When
the students did not have Coolaid (2002 and 2003 combined),
91% of all the failed test cases were also ill-typed; when
students did have Coolaid (2004), the percentage was still
70% ( / ). Moreover, there are a significant number
of compilation errors that are hard to catch with traditional
testing. In 2002 and 2003, 16% of the tests had errors and
were ill-typed, but they passed traditional validation. In
2004, that number decreased to 4%, presumably because
students had access to Coolaid ( /total).

Students using Coolaid create compilers that produce more
type-safe programs. The percentage of compiled test cases
with type errors decreased from 44% to 19% ( /total).
Even if we only count test cases that also produced incorrect
output, there is still a decrease from 29% to 15% ( /total).

On the negative side, type-checking might impose un-
necessary constraints on the code generation. In 2002 and
2003, 6% of the test cases are valid, but do not type-check
( /total). We note that in most cases the problem involves
calling conventions in such a way that either the compiler
or Coolaid could be trivially modified to avoid the problem;
still, about 3% of the compiled test cases exhibit some ap-
parently non-trivial incompleteness. This number decreased
to less than 1% in 2004, presumably because students pre-
ferred to adapt their compilation scheme to Coolaid, in order
to silence these false alarms. This may indicate that the tool
is limiting student ingenuity. We hope to ameliorate this
problem by incorporating into Coolaid the ability to handle
unusual strategies used in past years. We are also exploring
the possibility of having a general type of lookup tables, a
feature in many unhandled compilation strategies. However,
until undergraduate compilers students are ready to design
certifying compilers, there is no completely general solution.

Overall, there was a slight increase (from 3% to 6% of
all test cases) in programs that were type-safe but had se-
mantic errors ( /total). There is a potential concern here;
what if students using Coolaid to debug do not perform suf-
ficient testing for the semantic bugs that Coolaid does not
catch? Although in all cases it seems likely that students
do not sufficiently test their compilers, we do not believe
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Figure 5: Student feedback from the 2004 class
about the usefulness of Coolaid. 0 means “counter-
productive” and 6 means “can’t imagine develop-
ing/debugging a compiler without it.”

that Coolaid particularly exacerbates this problem. Instead,
we suspect that often purely semantic bugs are masked by
additional type errors for the students without Coolaid. In
any case, this increase seems rather small compared to the
overall benefits of reducing type errors.

Student Feedback. As a final data point, the students in
2004 were asked to submit feedback about Coolaid, includ-
ing a numeric rating of its usefulness. 52 of the 72 teams
returned feedback; the results are in Figure 5.

Common negative comments tended to involve either de-
tails about the user interface, or the fact that Coolaid would
not catch semantic errors that were not type errors. A fa-
vorite positive comment:

“I would be totally lost without Coolaid. I learn
best when I am using it hands-on . . . . I was able
to really understand stack conventions and opti-
mizations and to appreciate them.”

7. RELATED WORK
Proof-carrying code [Nec97] and typed-assembly languages

[MWCG99] also check memory safety of programs at the
machine code level. Both traditional and more recent ap-
proaches [AF00, HST+ 02, Cra03] focus more on generality
than accessibility; their technical developments are quite in-
volved. A wider audience can use Coolaid or Coolaid-like
verifiers for compiler debugging or reinforcing compiler con-
cepts.

Note that while the type system is more complex than for
bytecode verification, it is fairly simple compared to tradi-
tional encodings of object-oriented languages into functional
typed-assembly languages. This simplification is obtained
by specializing to the Cool object layout and other conven-
tions. While this sacrifices some bit of generality, it appears
more feasible in the context of retrofitting existing compil-
ers. Furthermore, we assert that encoding object-oriented
languages in functional TALs may be unnatural, much like
the compilation of functional languages to object-oriented
intermediate languages, like the JVML; others seem to con-
cur [CT05]. We might hope to recover some generality, yet
maintain some simplicity, by moving towards an “object-
oriented TAL”. A design decision in [LST02] to change the
compilation scheme of the type-case rather than introduce a
new tag type (which they found possible but difficult in their
system) provides some additional evidence for the usefulness
of such a system.

Prior work has used several strategies to serve the func-
tion that our dependent types do. TALs have traditionally
modeled a limited class of relationships between values us-
ing parametric polymorphism. Singleton types provide an-
other mechanism, and the design of TALs with more compli-
cated dependent type systems has been investigated [XH01].
League et al. [LST02, LST03] use existential types. A key
difference of our work compared to the work mentioned
above using typed-assembly or typed-intermediate languages
is that we elide many more typing annotations using verifi-
cation-time inference.

8. CONCLUSION
We describe in this paper how to extend data-flow based

type checking of intermediate languages to work at the level
of assembly language, while maintaining the ability to work
without annotations inside a procedure body. The addi-
tional cost is that the checker must maintain a lattice of
dependent types, which are designed to match a particular
representation of run-time data structures. While this in-
creases the complexity of the algorithm, it has the advantage
that it enables the use of type-checking technology for de-
bugging native-code compilers, not just those that produce
bytecode. Furthermore, the ability to infer types reduces
greatly the demands on the compiler to generate annotation,
thus enabling the technique for more compilers. In fact, we
were able to use the technique on existing compilers without
any modifications.

We consider our experiments in the context of an under-
graduate compiler class to be very successful. We found that
data-flow based verification fits very well with other concepts
typically covered in a compiler class (e.g., types, data-flow
analysis). At the same time, it introduces students to the
idea that language-based tools can be effective for improving
software quality and safety. Furthermore, packaging these
ideas into a tool whose interface resembles a debugger allows
students to experiment hands-on with important concepts,
such as data-flow analysis and types.

While our results are fairly convincing for the case of
early-development compilers, it is not clear at all how they
apply to mature compilers. We expect that a smaller ra-
tio of compiler bugs result in errors that could be caught by
type checking. Nevertheless, the arguments would be strong
to include type checking in the standard regression testing
procedure, if only for its ability to pinpoint otherwise often
hard to find type-safety errors very precisely.

There were certain cases when Coolaid could not keep up
with correct compilation strategies or optimizations. While
this is not a big issue for bytecode compilers, because the
bytecode language can express very few optimizations, it
becomes a serious issue for native code compilers where rep-
resentation choices have a big effect on the code generation
strategy. In the context of the Open Verifier project, we are
working on ways that would allow a compiler developer to
specify, at a high-level, alternative compilation strategies,
along with proofs of soundness with respect to the existing
compilation strategies [CCNS05].
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APPENDIX

A. ABSTRACT TRANSITION AND TYPING
In this section, we collect the rules that define the type-

based abstract interpreter. Most of the rules are described
through example in Section 4.

In Figure 6, we define the abstract transition judgment
I : 〈Σ # Γ〉p → 〈Σ′ # Γ′〉p′ . To treat method calls uniformly
and concisely, the abstract transition rules that apply to in-
direct jumps also apply to direct jumps, viewing jump L
as jump [&L] . Moreover, we assume that an initialization
phase populates the initial Γ with types for the code label of
each method (i.e, with smeth(C, n)), the code label of each
initialization method (i.e., with sinit(C)), and the data label
for statically allocated objects (i.e, with nonnull exactly C ).
The refinetagF and refinetagT rules use the auxiliary func-
tion taglub(N) , which yields the class that is the least upper
bound in the class hierarchy given a set of class tags N .

The typing judgment Γ ` e : τ . Γ′ is defined in Figure 7.
Most types are assigned to symbolic values (and carried in
Γ), so the additional types that are derived by the typing
judgment are for assigning types to normalized addresses.
The function tagof (C) gives the tag for class C .
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I : 〈Σ # Γ〉p → 〈Σ′ # Γ′〉p′

L : : 〈Σ # Γ〉 → 〈Σ # Γ〉
label

(L is not a code label for a method)

jump L : 〈Σ # Γ〉 → 〈Σ # Γ〉L
jump

r := ae : 〈Σ # Γ〉 → 〈Σ[r 7→ Σ(ae)] # Γ〉
assign

Γ ` Σ(ae) : τ ptr . Γ′ (α fresh)

r := mem[ae] : 〈Σ # Γ〉 → 〈Σ[r 7→ α] # Γ′[α 7→ τ ]〉
read

Γ ` Σ(ae0) : τ ptr . Γ′ Γ′ ` Σ(ae1) : τ . Γ′′

mem[ae0] := ae1 : 〈Σ # Γ〉 → 〈Σ # Γ′′〉
write

Γ ` Σ(ae) : meth(α, n) . Γ′

Σ(rarg0 ) = α Γ′ ` α : nonnull C . Γ′′

T (C) = class C . . . { . . . τrv m(τ1, . . . , τk) . . . }
Γ′′ ` Σ(rarg1 ) : τ1 . Γ′′1 · · · Γ′′k−1 ` Σ(rargk ) : τk . Γ′′k
(Σ′, β fresh)
(m is the method at offset n of class C)

jump [ae] : 〈Σ # Γ〉 → 〈Σ′[rrv 7→ β] # Γ′′k [β 7→ τrv ]〉
meth

Γ ` Σ(ae) : smeth(C, n) . Γ′

Γ′ ` Σ(rarg0 ) : nonnull C . Γ′′

T (C) = class C . . . { . . . τrv m(τ1, . . . , τk) . . . }
Γ′′ ` Σ(rarg1 ) : τ1 . Γ′′1 · · · Γ′′ ` Σ(rargk ) : τk . Γ′′k
(Σ′, β fresh)
(m is the method at offset n of class C)

jump [ae] : 〈Σ # Γ〉 → 〈Σ′[rrv 7→ β] # Γ′′k [β 7→ τrv ]〉
smeth

Γ ` Σ(ae) : init(α) . Γ′

Σ(rarg0 ) = β Γ′ ` β : nonnull classof(α) . Γ′′

(Σ′ fresh)

jump [ae] : 〈Σ # Γ〉 → 〈Σ′[rarg0 7→ β] # Γ′′〉
init

Γ ` Σ(ae) : sinit(C) . Γ′

Σ(rarg0 ) = β Γ′ ` β : nonnull C . Γ′′

(Σ′ fresh)

jump [ae] : 〈Σ # Γ〉 → 〈Σ′[rarg0 7→ β] # Γ′′〉
sinit

Γ ` Σ(ae) ⇓ α R 0 . Γ′ Γ′(α) = b R∈ {=, 6=}

τ =

(
nonnull b if ¬(α R 0) ≡ α 6= 0

null otherwise

branch ae L : 〈Σ # Γ〉 → 〈Σ # Γ′[α 7→ τ ]〉
nullcheckF

Γ ` Σ(ae) ⇓ α R 0 . Γ′ Γ′(α) = b R∈ {=, 6=}

τ =

(
nonnull b if α R 0 ≡ α 6= 0

null otherwise

branch ae L : 〈Σ # Γ〉 → 〈Σ # Γ′[α 7→ τ ]〉L
nullcheckT

Γ ` Σ(ae) ⇓ α R k . Γ′ Γ′(α) = tag(β, N) Γ′(β) = nonnull C N ′ = {n ∈ N | ¬(n R k)} 6= ∅ R∈ {=, 6=, <,≤, >,≥}

branch ae L : 〈Σ # Γ〉 → 〈Σ # Γ′[α 7→ tag(β, N ′)][β 7→ nonnull taglub(N ′)]〉
refinetagF

Γ ` Σ(ae) ⇓ α R k . Γ′ Γ′(α) = tag(β, N) Γ′(β) = nonnull C N ′ = {n ∈ N | n R k} 6= ∅ R ∈ {=, 6=, <,≤, >,≥}

branch ae L : 〈Σ # Γ〉 → 〈Σ # Γ′[α 7→ tag(β, N ′)][β 7→ nonnull taglub(N ′)]〉L
refinetagT

(not a null-check nor a type refinement)

branch ae L : 〈Σ # Γ〉 → 〈Σ # Γ〉
branchF

(not a null-check nor a type refinement)

branch ae L : 〈Σ # Γ〉 → 〈Σ # Γ〉L
branchT

Figure 6: Abstract transition rules.

Γ ` e : τ . Γ′

Γ ` e ⇓ α . Γ′ Γ′(α) = τ

Γ ` e : τ . Γ′
Γ ` e : τ ′ . Γ′ Γ′ ` τ ′ <: τ

Γ ` e : τ . Γ′

Γ ` e ⇓ α + n . Γ′ Γ′ ` α : nonnull C . Γ′′ T (C) = class C . . . { . . . τ f . . . } (f is the field at offset n of class C)

Γ ` e : τ ptr . Γ′

Γ ` e ⇓ α + 8 . Γ′ Γ′ ` α : nonnull C . Γ′′

Γ ` e : disp(α) ptr . Γ′′

Γ ` e ⇓ β + n . Γ′ Γ′′ ` α : nonnull C . Γ′′′

Γ′ ` β : disp(α) . Γ′′ (C has a method at offset n)

Γ ` e : meth(α, n) ptr . Γ′′′

Γ ` e ⇓ α + 8 . Γ′ Γ′ ` α : nonnull exactly C . Γ′′

Γ ` e : sdisp(C) ptr . Γ′′

Γ ` e ⇓ β + n . Γ′

Γ′ ` β : sdisp(C) . Γ′′ (C has a method at offset n)

Γ ` e : smeth(C, n) ptr . Γ′′

Γ ` e ⇓ &init table + 4 · β + 4 . Γ′ Γ′ ` β : tag(α, N) . Γ′′

Γ ` e : init(α) ptr . Γ′′

Γ ` e ⇓ α . Γ′ Γ′(α) = nonnull C

Γ ` e : tag(α, {n | n = tagof (C′) ∧ Γ′ ` C′ <: C}) ptr . Γ′

Γ ` e ⇓ α . Γ′ Γ′(α) = nonnull exactly C

Γ ` e : tag(α, {tagof (C)}) ptr . Γ′

Γ ` e ⇓ α . Γ′ Γ′(α) = nonnull classof(β) Γ ` β : tag(γ, N) ptr . Γ′

Γ ` e : tag(γ, N) ptr . Γ′

Figure 7: Typing rules.
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