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Abstract. When constructing complex program analyses, it is often use-
ful to reason about not just individual values, but collections of values.
Symbolic set abstractions provide building blocks that can be used to
partition elements, relate partitions to other partitions, and determine the
provenance of multiple values, all without knowing any concrete values. To
address the simultaneous challenges of scalability and precision, we formal-
ize and implement an interface for symbolic set abstractions and construct
multiple abstract domains relying on both specialized data structures and
off-the-shelf theorem provers. We develop techniques for lifting existing
domains to improve performance and precision. We evaluate these domains
on real-world data structure analysis problems.

1 Introduction

The verification of program properties that involve data structures is a challenging
problem [2, 9, 10, 12, 13, 16, 19]. One key reason for this is that if a data structure
is unbounded, there is a potentially unbounded number of constraints on its el-
ements. Since these constraints often affect important properties such as memory
safety [16], functional correctness [19], or basic program behavior [9], it is vital to
develop techniques for efficiently reasoning about relationships between unbounded
numbers of elements.

This paper focuses on the use of set constraints to reason about unbounded
collections of elements. Set constraints can be used to dynamically partition data
structures, correlate collections of elements with one another, or determine analysis
case splits. They are useful for representing data and pointer relationships in
structures such as maps, graphs, lists, sets, and arrays. They can be combined
with other techniques such as separation logic [9, 16] and numerical analyses [8]
to enhance those analyses.

For example, consider the program in Figure 1 that copies one map on top of
another. Within the loop, there is a complex relationship between the sets of keys
of src and dst. At the specified point, the keys of src can be partitioned into
three parts. The keys already visited X, by the loop, the element currently being
visited {x} by the loop , and the keys not visited X,, by the loop. The keys of dst
can be partitioned into those keys(dst)g originally in dst that have not been
overwritten, and those X, that have been overwritten or added from src. This
set reasoning allows precise symbolic tracking of the provenance of map partitions.

This paper focuses on abstractions for states described by the logic for symbolic
sets. The logic consists of a Boolean algebra over the set variables with singleton



def extend(dst, src):
for x in src:
(3Xov,Xn. keys(src) =X, W{x} WX, Akeys(dst)=(keys(dst)o\ Xv)WXy)
dst[x] = src[x]

Fig. 1. Set constraints can relate portions of data structures

sets. We find that this subset is sufficiently large to be useful and we believe that it
serves as a good starting point for extensions to the logic, such as reasoning about
explicit set contents or more precise cardinality.

However, despite the fact that we are not reasoning about the values contained
in sets or complex cardinalities, Boolean algebras, by themselves, are challeng-
ing for invariant generation. Naive approaches such as saturation and pattern
matching rarely work without complex heuristics [10, 19]. It is unavoidable that
the worst-case time for precise invariant generation will be exponential because of
the Boolean algebra. However, it is desirable that invariant generation should be
efficient in the common cases, and unlike systems that involve complex heuristics,
lose precision only in understandable and predictable ways.

In this paper we aim to design scalable, precise, and predictable abstractions
for symbolic sets by combining new abstract domains with performance/precision-
enhancing functors that lift existing set abstractions to new set abstractions.
Specifically, we make the following contributions:

— We define a common interface for symbolic set abstractions that is designed
to meet the needs of static analyzers (Section 3).

— Using specialized data structures, we construct a battery of symbolic set ab-
stract domains and performance-/precision-enhancing functors designed to
target real-world data structure verification problems (Section 4).

— We adapt an off-the-shelf satisfiability-modulo-theories solver to the set ab-
straction interface (Section 5).

— We compare abstractions for symbolic sets, finding that, while specialized ab-
stractions are preferable, binary decision diagrams lifted with dynamic packing
is a good compromise in scalability, performance, and predictability (Section 6).

2 Overview

In this section, we present two static analyses that make use of set reasoning
in order to compute high-level semantic properties of programs. These analyses
rely on abstract interpretation [6] and on an abstraction of program states that
describes data structures and their contents. An abstract domain defines a set of
predicates that an analysis may use, as well as operators to over-approximate the
effect of program behaviors on these predicates, and their implementation.

Inference of properties of open objects. Dynamic programming languages such
as JavaScript feature open objects that support dynamic addition and deletion
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Fig. 2. Open objects and their abstraction

of attributes and iteration over them. The analysis presented in [9] verifies open-
object-/map-manipulating programs such as the one in Figure 1, by inferring
relations between the sets of attributes of distinct objects. Since objects may have
an unbounded number of attributes, the analysis must abstract the attributes
and their contents. Figure 2 represents a simplified state at the indicated point in
Figure 1 after two iterations (thus two fields were copied). We focus on the set of
attributes of each object and ignore their contents (which could be described using
similar techniques). To precisely abstract the relations between the attributes of
both objects (e.g. copied attributes are common to both objects), we partition
the attributes into a series of attribute sets and express relations among these sets.
The purpose of the set abstract domain is to represent such set relations. Figure 2b
depicts such an abstract state, where X,,,X,.,X, stand for sets of attributes, which
are made explicit in Figure 2a, the concrete state.

Moreover, to infer these invariants, the analysis needs to reason about both ob-
ject structures and attribute sets. Initially it assumes no set relations, and the fields
of each object should be associated to an arbitrary set of attributes. When the analy-
sis enters the body of the loop, it needs to single out attribute x, i.e. to replace set X,
by X, W{x},which produces the equalities of Figure 2. When it exits the loop, the
analysis should generalize both the object and set constraints abstractions, which
requires eliminating the singleton {x} from the equations (it is visible only in the
loop body) and synthesizing a new, more general collection of constraints. To allow
these steps, the set abstraction should provide basic operations over set predicates,
including (1) the addition of a set constraint, (2) the proving of a set constraint, (3)
the removal of a set variable, and (4) the generalization of two set abstract states.

Shape analysis in presence of unstructured sharing. The shape analysis for data-
structures with unbounded sharing presented in [16] relies on separation logic [20] to
describe memory states and on inductive definitions to summarize unbounded struc-
tures such as lists. Unstructured sharing is very challenging as it cannot be described
using conventional inductive definitions. Figure 3a displays the representation of a
three nodes graph using an adjacency list data-structure. To summarize such a struc-
ture using inductive predicates in separation logic, [16] augments the list inductive
predicates with set information, which express where edges may point to. Figure 3b
shows this representation in a form where the first node is kept materialized. It as-
serts that the edges of that node and other nodes point to the address of a valid node,
namely an element of {ng} WE. The analysis of [16] introduces a summary predicate
graph(np, ') where ng is the address of the first node and A/ the set of all node ad-
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Fig. 3. Summarization of an adjacency list-based graph representation

dresses. This predicate is defined by induction over the “backbone” of the structure,
and fully takes into account the property that all edges point to a valid node address
in V. Henceforth, abstract states comprise both a memory part (which consists
of a formula in separation logic with inductive predicates) and a set abstraction.
To compute such summaries, the analysis needs to perform similar operations
as the analysis for open objects, in order to add set constraints to the set abstract
state, prove set constraints, remove set variables, and generalize abstract states.

3 Logic and Set Abstraction

We now define the elements and operators of a set abstract domain that meets the
needs of all the analyses shown in Section 2.

Concrete states. In this paper, we use symbols W, X, Y and Z as set variables and
let Xs represent the set of all such variables. We are interested in purely symbolic
set relations, and do not make any assumption on the type of the set elements (in
practice these are pointers or scalars). We let V denote the set of all these elements.
A concrete state is a function o : Xg — P (V). We write S for the set of such elements.

Symbolic sets. Before we set up the signature of abstract domains, we fix a language
of set predicates, that will be used as a basis for abstract elements, and for the
communication with the set abstract domain.

Definition 1 (Symbolic Sets). Symbolic sets are defined by the grammar:
L(eC)u=LAL|ECE||X|=1|T|L FE:=0|X|E°|EUE|EWYE

The meaning of these constraints is straightforward, but we give a formal definition
in Figure 4 for clarity. A model of a set expression F is a concrete state o and a set
of concrete values c. A model of a logical expression L is a concrete state . The
concretizationisy(L)={ o | o = L } and we use (L) for abstract states with the same
concretization. We shall also use the following derived logical forms for simplicity:

def

E\NEy= (E1°UEy%)° Ei=Ey=F,CE,AEsCF; E\Ey = E NES°



ocEDiff c=0 ocEX iff c=0(X) oc=E°iffocEE and VveV.vecsvgd
o,cEE1UE; iff o,c1 EEq and o,c2 = E2 and VveV.vEcEvECI VU Ees

o,cEE1WE; iff o,c1 = Fr and 0,c2 = F2 and Vv eV.vEcsvEci VuEes and ciNey =0
ocELiANLyiff o|=L; and 0 |= L2 ocE=|E|=1if o,c=F and FveV.c={v}
ocE=EFE1CE;iff o,ci1 EF1 and o,c2 EFs and YoeV.vEcit wvEce ocE=T oL

Fig. 4. Symbolic set constraint language

Set abstraction. A set abstract domain is defined by a set of abstract elements D
which describe the family of logical properties it can express and a concretization
function ~:D¥ — P (S) that maps each element of D into the set of concrete states
that satisfy it. Abstract elements are characterized by (1) the symbolic sets they
describe and (2) their machine representation. The latter is usually very different
from the formulas, and will be discussed in Section 4.

Ezample 1 ((Non-)Emptiness set domain). A very basic example of such a domain
is the (non-)emptiness domain that comprises the following elements:
— 1, which denotes the unsatisfiable abstract constraint (i.e., v(_L)=0));
— the functions from X into {[=0],[#0],T}, which map each set variable into
its emptiness value.
For instance, {X — T;Y — [=0]} stands for (Y C(}) and concretizes into v(Y C ).

Operations over Set Abstractions. We now formalize the main operations and
logical elements needed so that we can use a set abstract Df domain for either of
the static analyses shown in Section 2.

— Basic logical elements. Static analyses typically start with an unconstrained
state. This is indicated by a Tp: € D element with full concretization, i.e.,
7(Tp:) = S. Similarly, the abstract element |p: € Df should describe the un-
satisfiable abstract constraint (i.e., y(Lps)=0). In Example 1, Lps is L and Tps
is A(z € Xs) - T. Moreover, a static analysis often has to determine if an abstract
state describes unsatisfiable constraints. Thus, D should provide an operator
isbotp: : D¥ — {true,false} such that isbotp: (%) =true=~(co*) =0.

— Forgetting a set variable. Static analysis tools drop set variables that become
redundant. In the open object example of Section 2, this occurs when the singleton
symbol is eliminated at the end of the loop. To do this, we require the set abstract
domain D* to provide an operator forgetp; : Df x X — D¥ that discards a symbol
from the abstract state.

— Assuming set constraints. As noted in Section 2, an important set reasoning
step restricts an abstract state with set constraints, thus set domain D! should
provide an operator assumep: : D! x C — D, which conservatively represents a
constraint into an abstract state, i.e. ensures that, for all o L, v(c*)N~y(L) C
v(assumep; (0#,L)). Note that this operator also makes use of the symbolic set lan-
guage of Definition 1 in order to describe constraints communicated to the domain.



— Verifying set constraints. Similarly, set reasoning should allow wverifying
set constraints, thus the set domain D* should provide an operator provep; :
D! x C — {true,false}, which conservatively attempts to verify that a symbolic
set constraint holds under some abstract states, i.e. ensures that, for all of, L,
provep; (of,L) =true implies that y(o¥) C~y(L).

— Generalizing set abstractions. The analysis of loops is commonly based on
the computation of abstract post-fixpoints [6], thus D¥ should provide sound over-
approximation of the union of sets concrete states. In the logical point of view,
this amounts to computing a common weakening for two abstract constraints.
This is performed by an operator joinp; : D¥ x D — D¥ such that, for all 0'8,0’2,
*y(ag)Uy(a?) Cy(joinp; (Ug,ag)). Widening operator widenp: should satisfy the
same property and ensure termination of any sequence of abstract iterates.

— Deciding entailment over set abstractions. Finally, the operator is_lep; :
D! x Df — {true,false} conservatively decides implication among abstract set
constraints (by ensuring that is_lep: (of,0% ) =true=~(c?) C~(c?)), and allows
verifying the convergence of abstract iterates.

4 Constructed Set Abstractions

An abstract domain is defined by a class of set constraints, their machine represen-
tation, and the abstract operations following the signatures given in Section 3. In
this section, we introduce three basic set abstract domains (respectively based on
linear constraints, QUIC graphs, and BDDs) and two set abstract domain functors,
that lift a set domain into another, more expressive or efficient one.

4.1 Linear Set Constraints

Abstract elements and their concretization. Our first set abstract domain relies
on linear set equality constraints, of the form (X ={yo,...,yx } W ZoW...1d Z;)). The
advantage of such constraints is to provide a rather straightforward normalization
of the representation of constraints. Note they also include emptiness constraints.
Our implementation of abstract domain D? describes three kinds of constraints:
— acyclic linear constraints of the form (X =YoW...WY, W ZoW... W Z)), where
Yo,...,Yy are singletons (containing yo,...,yx respectively). In the implementa-
tion, each variable may appear at most once as the left-hand side of such a
constraint, to enable normalization;
— inclusion constraints of the form (¥ C X|);
— equality constraints of the form (¥ = X)).
Thus, an element of D? is either L or a conjunction of such constraints. The asso-
ciated concretization 7, : D? —P(S) is of the same form as that of the symbolic sets
language of Definition 1 (thus, we do not formalize it in full details). The machine
representation utilizes persistent dictionaries, that stand for functions over a finite
domain. This reduces basic queries for facts (such as, “does abstract state o* entail
that X CYWZ ?7) to dictionary searches.



Abstract operators. The core algorithm of D? normalizes abstract values by ex-
panding nested linear constraints. For instance, (Xo= X1 W X2 A X1 = X3 X)) is
rewritten into (Xo= X2 W X3W X3A X1 = X3W X)) at the machine representation
level. This process terminates as constraints represented in Dg do not contain cycles.
It is performed incrementally by all abstract operations.

Abstract operations isbotp:,assumep;,provep; are all made very fast by this
normalization. Operation forgetn; simply drops all constraints that involve a
given set variable. Finally, joinp; and widenp: need to generalize constraints.

Example 2. Let us assume that O’g (resp., Ug) stands for the set of constraints
(Xo=X1WX2AX3=0) (resp., (Xo=X1WX2WX3)). Then joinpy (Jgpf) returns
an element that represents the constraint (Xo= X1 W Xo W X3).

MemCAD [16] relies on D? to represent set constraints since it mainly needs to

express constraints over set partitions. On the other hand, D? is not adapted to
the precise description of non disjoint unions.

4.2 QUIC graphs

A QUIC graph [10] is a directed hypergraph data structure used to represent
relational set constraints. Each edge in the hypergraph corresponds to a subset
constraint and each hypergraph is a conjunction of subset constraints where each
constraint is of the form (X;N...NX,, CY;U...UY,,). Each variable can also be con-
strained to be a singleton, with constraints such as (| X | =1]). The concretization -, :
Dg —P(S) is of the same form as that of the symbolic sets language of Definition 1.
QUIC graphs are designed for efficiently performing two operations: (1) forget:,
which matches edges containing the symbol to be forgotten with each other to
produce new edges without that symbol; and (2) content reasoning, which is not
a design goal for symbolic sets. The joinp; and widenps operations are primar-
ily based on saturation heuristics. They keep common conjunctions from both
arguments. To aid this process, they use a form of saturation that produces new
conjuncts based on pattern matches. A sufficiently large set of patterns must be
provided to attain precision, but additional patterns increase the cost of joins.

Ezample 3 (QUIC graph join). Consider the following join operation:
cl=(WCXAXCZ) ol =(WCYAYCZ) joinp; (0f,0%)

There is an obvious result: (W C Z)). Whether or not QUIC graphs derive this
result or (T) is determined by the pattern matches that are installed. If the pattern
that takes (X CY AY C Z) and generates (X C Z) is used, the pattern will be
applied to both sides and then common conjuncts kept, getting the desired result.
Without that pattern or a similar substitute, QUIC graphs derive (T).

4.3 BDD-based Set Constraints

Binary decision diagrams (BDDs) [21] are a canonical representation of Boolean
algebraic functions. There are three basic syntactic elements of a BDD. The TRUE



and FALSE elements represent the obvious constants, but ITE(X, B;, B.) is an
if-then-else structure. If the variable X is true, the result of evaluating B; is
returned, otherwise the result of evaluating B, is returned.

B::=TRUE | FALSE | ITE(X,B;,B.)

What makes BDDs canonical is that we only consider reduced, ordered BDDs,
where it is assumed that there is a total order < on the variables. An ITE(X,B;,B.)
can only be constructed if X < X’ for all variables X’ in B; or B,. Additionally,
structural sharing is mandated, so the reuse of the same syntax is referentially
identical to any other use of that syntax.

The encoding of constraints maps operators from their constraint form (as in
Definition 1) to their Boolean algebraic form: UV, N5 A, ¢— -, Cro—, =45
All but singleton set constraints are directly and exactly represented by the BDD.
Singleton constraints are not currently used by the BDD-based abstraction.

Domain operations are straightforward: joinp: and widenp; are implemented
with the V operation, which is precise and does not need any rules or heuristics;
forgetp: takes advantage of reasonably efficient quantifier elimination provided
by BDDs and uses existential quantifier elimination to drop variables. Queries such
as is_leps are easily implemented using validity checking functionality provided
by BDDs. Critically, because BDDs are a canonical form, many operations such
as forgetp; and assumep: become much more efficient, whereas the operation
isbotp: becomes an O(1) check.

Ezample J (BDD-based join). Consider the same inputs as Example 3. Encoding
them to BDDs (and using some Boolean-algebraic notation as shorthand) yields
the following results:

ot =(W CY AY C X) =ITE(W,X AY,ITE(X,TRUE,Y))
ot = (W CZANZC X)=ITE(W,X AZITE(X, TRUE,~Z))
joing; (0,0%) =ITE(W,X AITE(Y,TRUE, Z),
ITE(X,TrRUE,ITE(Y,-Z,TRUE)))
The result of this join is equivalent to the set constraints (W C X)), (W CY UZ),

and (YNZ C X)), which includes not only the obvious result of (W C X)), but also
other, possibly useful results. It is a precise join.

We implement the BDD abstraction on top of the CU decision diagrams pack-
age [22], which is high performance and offers the ability to extract prime implicants
(as in [5]). The prime implicants of the negation of the Boolean function are easily
converted to conjuncts of the form used by QUIC graphs.

4.4 The Equalities Domain Functor: Compact Equality Constraints

When analyzing real programs, in addition to complex set constraints, there are
often many very simple equality constraints of the form (X =Y. These can be



a problem in several ways. For example, equalities are normalized and handled
precisely in BDDs, but they can grow the size of the representation significantly.
This results in significantly increased memory usage and decreased efficiency since
many BDD operations rebuild the BDD. In QUIC graphs, equalities grow the size
of the graph, and place significantly more load on the pattern matching system,
potentially causing an explosion in the number of constraints. This is because QUIC
graphs can represent each variant of an expression rewritten using all available
equalities. In linear set abstractions, there are similar potential problems.

As a result, abstractions like QUIC graphs and the linear set abstraction have
special handling for equality. This improves performance and precision at the cost
of complexity. Instead, much of this complexity can be moved outside the abstrac-
tion and handled by lifting the abstraction to one that keeps track of equalities
separately from other kinds of constraints.

The equality functor serves as an intermediary between the domain interface and
the abstract domain that is being lifted. It intercepts equality constraints and han-
dles them externally, preventing them from being seen by the underlying abstract do-
main. This saves the domain from the cost and complexity of handling the equalities.

The equality functor defines a set of equivalence classes Q). The set of equivalence
classes is a map Xg — Xg that maps each variable to the chosen representative for
the equivalence class. The functor then lifts an abstract state D into a tuple (D¥,Q).
In the lifting, D! is restricted to only have symbols that are representatives for the
equivalence class. Therefore, when an equality is added that merges two equivalence
classes, the resulting representative replaces the two previous representatives in DE.

The concretization ensures that all symbols in the same equivalence class map
to the same concrete set:

1(Q.DF))={ 0 | s €7 (D) AVX,Y €X2.Q(X)=Q(Y) = a(X)=0(Y) }

Domain operations joing:, widenp:, and is_lep: unify their corresponding @s,
pushing any non-common equalities into the underlying domain. This ensures that
the underlying domain determines the precision, but it is not required to handle
most of the load of the equalities. The assumep; operation rewrites the constraint,
extracting the equalities and rewriting remaining variables to their representatives
before passing the constraint to the underlying domain.

Ezample 5 (Equality functor join). Consider the following two abstract states,
where the underlying domain is just shown as symbolic set constraints:

oh=(W—=W,X=W)Y =W],(WCZ)) o' =([X—XY = X],(WCXAXCZ))

In the join, the equivalence classes are unified, producing the resulting Q: [X —
X,Y — X]. The equality (W = X)) from o} is not represented in the unification, so
it is added back to the underlying domain in O'g. The result is therefore

(X = X.Y' = X]joinp: (W=XAW C Z),(WC XAX CZ)))



4.5 The Packing Domain Functor: Sparse Constraints

Most relational domains have a complexity that is related to the number of vari-
ables constrained by the abstract state. For example, BDDs, in the worst case,
are exponential in the number of variables. However, in many programs, there are
relatively small clusters of variables that are related. Therefore it is possible to
increase the efficiency of an analysis by representing each cluster of variables by
a separate abstract state [1].

If each of m clusters of n variables is represented by a separate abstract state,
rather than operations having a complexity of, for example, O(2™"), they can
have complexity O(m-2"). To do this, all variables are initially assumed to be in
their own cluster. Clusters are merged whenever variables from each cluster occur
in the same constraint. In this way the clusters are dynamically determined, which
is required when an abstract domain is used as a library and thus a pre-analysis
cannot be performed.

An abstract state in the packing functor consists of one of three values: T, L,
or a map M : #; — Df that maps cluster ids in # s to abstract states from the
domain being lifted. The T and L values concretize as they do in Figure 4. The
map concretizes as follows:

y(M)={o | Vo* € Range(M).c €v(c%)}

Ezample 6 (Constraining a packed abstract state). Consider the following abstract
state represented by the logic from Definition 1, lifted into two packs with ids 0
and 1: o} = [0 (Xo € X1)); 1— (Y C Y3)]. The operation assumep: (cf,Y; CY3)
operates only on pack id 1. It does not have to involve any computation on pack 0.
The resulting pack 1 is: 1+ assumep; ((Yp CY7),Y1 CYs).

5 Solver-based Abstractions

Because one of the core components of set abstraction is the Boolean algebra, it is
possible to construct abstract domains from off-the-shelf satisfiability solvers. The
construction relies upon the fact that the standard Boolean algebra is a finite height
lattice ordered by implication. This means that no specific invariant generation
procedure is required.

The syntax of the abstraction is the standard Boolean algebra with existential
quantification. There are two reasons this is a good logic to use. First, it is a fairly
well-supported logic for which there are efficient solvers. Second, it remains finite
height and thus needs no specialized invariant generation procedure as would
be required with a set logic such as BAPA [14]. Since cardinality is not a key
requirement for symbolic sets, the analysis can often be sufficient without it.

Domain operations are translated into Boolean algebra formulas: joinp; (0% ,ag)
translates into (rtli \/ag; assumep; (0, L) translates into of Aconv(L), assuming
that conv(L) converts the constraint L into its Boolean algebra equivalent as in
Section 4.3; forgetp; (0%, X) translates into 3X.o%. These are accumulated across
the whole analysis and thus may grow arbitrarily deep. It is possible that on-the-fly



simplification could be used, but we elect to use whatever internal functionality
is provided by the solver (in this case Z3 [11]).

Query operations are translated into solver queries. The implication test
is_lep: (0! ,0%) translates to VALID(c? — o). This is implemented incrementally
by conditionally adding constraints for each query and checking satisfiability under

assumptions. The isbotp: (of) query translates into VALID(—o?).

Ezample 7 (Solver-based abstraction operations). Domain operations accumulate
constraints, so simplification is performed by the solver when a query happens. In
the following sequence, there are no queries, so constraints only accumulate.

ag:T =TRUE
0! —assumep: (65, X CY Y C2) =TRUEAX Y AY = Z
ol =forgetp; (0},Y) =3JY.TRUEAX Y AY = Z

If the query provep: (Ug,X C Z) is performed, the following check is made:
VALID((FY. TRUEAX - Y AY — Z) — (X — Z)). This holds trivially.

6 Evaluation

In this section, we evaluate the set abstractions. We aim to answer the following
questions about set abstractions. Can set abstractions be sufficiently precise to
be useful? Can precision be made available while providing scalability? What
trade-offs are necessary to achieve scalability? To evaluate these questions we
implemented all of the aforementioned abstractions as an OCaml library and then
evaluated the abstractions using three different sets of problems: (1) traces of set
domain operations as used in Memcad to perform shape analysis in the presence
of unstructured sharing (from [16]), totaling 4521 domain operations; (2) traces of
set domain operations as used in JSAna to verify functions in selected JavaScript
libraries (from [7, 9]), totaling 23086 domain operations; and (3) the expressible
subset of tests of the Python set data structure (as used for QUIC graphs [10]),
totaling 207 lines of code. Results are shown in Table 1.

Because the definition of necessary precision depends on the use of a domain,
we measure precision by comparing against a standard for precision. For Memcad,
the linear set abstraction (lin) was designed to be as precise as is needed for the
Memcad benchmarks. This means that any abstraction that achieves the same
number of proofs without timeout is sufficiently precise. It is important to note that
many of these proofs are not intended to succeed. They are used as queries internally
with the analysis, so it is not possible to achieve 100%. From the results, we see that
all of the BDD-based abstractions (bdd) achieve this. We can also see that the
equality (eq) and packing (pack) functors, regardless of the order in which they are
applied, do not change precision when applied to the BDD. However, when applied
to the linear set abstraction, they sometimes change precision. This is because they
affect internal representation and may affect the heuristics used within the abstract
domain. QUIC graphs (quic) and SMT (smt) do not perform as well under any



Table 1. Number of proved properties (provep; ), average aggregate run time for non-
timed-out benchmarks (Time), and number of timed-out benchmarks (TO) for 24 Memcad
benchmarks, 5 JSAna benchmarks, and 24 Python benchmarks.

Config Memcad(24) JSAna(5) Python(24)
provep; Time(TO) provep; Time(TO) provep; Time(TO)
lin 612/1366 0.036(0) 0/525 0.435(0) 4/42  0.004(0)
eq 608/1366 0.035(0) 0/525 0.235(0) 4/42  0.007(0)
pack 612/1366 0.049(0) 0/525 0.652(0) 4/42  0.006(0)
eqtpack  609/1366 0.045(0) 0/525 0.785(0) 4/42  0.011(0)
pack+eq  608/1366 0.067(0) 0/525 0.393(0) 4/42  0.011(0)
bdd 612/1366 0.021(0) 176/525 21.793(0) 34/42  0.105(0)
eq 612/1366 0.041(0) 176/525 1.206(0) 34/42  0.112(0)
pack 612/1366 0.052(0) 176/525 0.262(0) 34/42  0.109(0)
eqipack  612/1366 0.055(0) 176/525 1.692(0) 34/42  0.116(0)
packteq  612/1366 0.086(0) 176/525 1.796(0) 34/42  0.119(0)
quic 596/1366 4.209(1) 155/525 54.616(0) 20/39  0.412(2)
eq 549/1366 2.289(0) 116/525 4.633(0) 18/39 0.416(2)
pack 605/1366 5.556(0) 155/525 48.517(0) 20/39  0.454(2)
eq+pack 549/1366 2.307(0) 121/525 8.201(0) 18/39 0.456(2)
pack-req 55/58  0.080(10) 121/525 9.307(0) 17/38  0.362(3)
smt 177/315 44.995(4) 12/23  0.039(4) 34/41  0.296(1)
eq 416/927 35.798(1) 62/152 5.753(2) 3141 0.204(1)
pack 177/315 16.329(4) 12/23  0.787(4) 34/41  5.553(1)
eq+pack  438/927 40.621(1) 27/73  9.355(3) 31/41  10.884(1)
pack+eq  231/458 12.027(3) 12/23  0.609(4) 31/41  10.838(1)

configuration. The reason is that QUIC graphs do not employ appropriate heuristics
for all of the cases needed by Memcad and both have performance problems that
cause them to time out before completing some benchmarks.

For the JSAna benchmarks, the BDD abstraction was designed to meet its
precision needs and adding the equality or packing functor does not affect precision
in any way. It only affects performance. However, the linear sets abstraction is
not able to cope with the non-disjoint-union constraints that arise frequently in
the JSAna benchmarks and thus loses all precision rapidly. By comparison, QUIC
graphs perform well. They are unable to prove as many properties as is needed
by JSAna, but they are still able to prove many properties. Once again, tuning
the heuristics could improve this precision, but possibly at the cost of performance.
SMT, once again, does not perform well because of efficiency problems. On the
benchmarks where it completes, it is identical in precision to BDDs.

The Python benchmarks are slightly different because they are an analysis
of programs rather than traces of domain operations. Each program contains a
couple of properties to verify, so the target is 100%. Here we see that none of the
abstractions are able to achieve 100%. The linear set abstraction cannot achieve
this because it is unable to represent the non-disjoint-union constructs. The BDD



and SMT abstractions cannot achieve 100% because they do not support full
cardinality reasoning. Once again, QUIC graphs are insufficient because of the
limited heuristics they employ as well as some performance problems.

The scalability of the abstractions can be seen in Table 1 in the total analysis
time, which measures the time to run the full benchmark suite, on average. The
times are only directly comparable if there are no time outs, which happens after 60
seconds per benchmark. We first see that the linear domain is reliably fast. Applying
the equality and packing functors generally does not affect performance significantly.
By comparison, BDDs are less reliable. While they perform well in the Memcad
benchmarks, nearly matching the linear domain, we see significant variability in
the JSAna benchmarks. In fact, without any of the functors as in [10], performance
can be unacceptably slow at almost 22 seconds to analyze five functions. However,
the addition of the packing functor, in particular, makes a significant difference. It
lowers the cost of the analysis to a fraction of a second without losing any precision.
However, the variability here indicates that, depending on the particular benchmark
(or, in fact, the BDD implementation), the optimum combination of functors may
vary. Regardless, selecting the packing functor seems to be a benefit without
significant risk. The QUIC graphs performance is unreliable. Due to the expensive
pattern matching machinery, it does not compare in terms of performance, though
it is helped significantly by the equality functor, at the cost of precision. The SMT
domain fails to perform, timing out on at least one test in each benchmark suite.
This is because the SMT solver is failing to operate incrementally. In essence, it has
the same workload as the BDD, but it discharges its proofs lazily. This laziness is not
necessarily a problem if work can be reused from one proof to the next, but it appears
that this is not the case right now. We suspect that the combination of doing validity
proofs (instead of satisfiability queries) with quantifiers is preventing this reuse.

The results make four things clear. First, if it is possible to design a targeted
abstraction as the linear abstraction is for Memcad, it is worth it. The performance
is reliable and the precision is predictable. Second, if it is not clear what the con-
straints may be, BDDs provide a good alternative that gives excellent (if not perfect
due to the insufficient cardinality reasoning) precision with the risk of less reliable
performance. Third, much of the risk can be eliminated through the use of functors.
For equality heavy loads, the equality functor provides a significant benefit. The
packing functor seems to reliably improve performance by simply lowering the
cost of each BDD operation without any measurable impact on precision. Lastly,
unless the content-centric reasoning of QUIC graphs is necessary, it does not make
sense to use it due to both unreliable performance and precision. Similarly, with
the current state of SMT, this is not an appropriate use. It may be possible to fix
this, but today it remains impractical for performance reasons.

7 Conclusions and Related Work

The problem of creating scalable, precise, and predictable abstractions for sets
remains challenging. This paper introduced several ways of approaching this prob-
lem and showed that for symbolic set abstractions, binary decision diagrams offer



good performance, precision, and predictability trade-offs. However, it is preferable
to craft a custom abstraction such as the linear abstraction. This offers more
predictable performance by only having the necessary precision.

There are other set abstractions available. They all offer different functionality
at different costs. The QUIC graphs abstraction [8, 10] focuses on combining
reasoning about contents with symbolic set reasoning. This comes at the cost
of performance, precision, and predictability when it comes to purely symbolic
set reasoning. The FixBag abstraction [19] attacks the problems of multisets or
bags offering cardinality reasoning as well as symbolic set reasoning. Similar to
QUIC graphs, it exchanges performance, precision, and predictability for this
functionality. The linear and the BDD-based abstractions we present here are
designed to be scalable, precise, and predictable rather than complex.

There are several decision procedures for sets. Bradley et al. [3] introduced
a decision procedure for set contents and relationships (without cardinality).
BAPA [13, 14] is a decision procedure for sets with cardinality. Z3 [11] also includes
a decision procedure for sets with contents. None of these decision procedures are
designed for invariant generation. It is possible that interpolation procedures [18]
could be designed based upon these procedures, but to our knowledge this has not
been done. Regardless, without invariant generation that is compatible with static
analysis, it is difficult to use this work as a component of an existing analysis.

Due to the prevalence of Boolean algebra in the algorithms presented here,
there is a natural correspondence to hardware model checking [4] and predicate
abstraction [15]. However, one significant difference is the composability of the
abstractions presented here. The equality and packing functors alter the under-
lying abstractions, making problems that were previously intractable, tractable.
Additionally, because these are abstract domains, there is no conflation of control
flow with data flow and as a result, many of the analysis problems are changed.

Additionally, the use of BDDs is similar to [17], where BDDs are extended to
be possibly-cyclic graphs. These are used to represent tree structures.

As aresult, we find that for now, abstractions that construct normal forms, such
as the linear abstraction and binary decision diagrams, offer the best way of han-
dling sets in static analysis. We have shown that depending on the application, both
of these techniques offer sufficient performance and precision, especially when com-
bined with functors for performing packing and managing equalities. The end result
is that these abstractions are scalable, precise, and predictable in their behavior.
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