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Abstract
We present jumping, a form of selective control-flow abstrac-
tion useful for improving the scalability of goal-directed static
analyses. Jumping is useful for analyzing programs with
complex control-flow such as event-driven systems. In such
systems, accounting for orderings between certain events is
important for precision, yet analyzing the product graph of
all possible event orderings is intractable. Jumping solves
this problem by allowing the analysis to selectively abstract
away control-flow between events irrelevant to a goal query
while preserving information about the ordering of relevant
events. We present a framework for designing sound jumping
analyses and create an instantiation of the framework for per-
forming precise inter-event analysis of Android applications.
Our experimental evaluation showed that using jumping to
augment a precise goal-directed analysis with inter-event rea-
soning enabled our analysis to prove 90–97% of dereferences
safe across our benchmarks.

Categories and Subject Descriptors D.2.4 [Software Engi-
neering]: Software/Program Verification

Keywords Android static analysis; event-driven systems;
control-flow abstraction

1. Introduction
We consider the problem of selective flow/path-sensitive
static analysis of event-driven systems. These systems are
becoming increasingly important due to their prevalent use
in web and mobile applications. In event-driven systems,
control-flow occurs via invocation of event callbacks that
may or may not be ordered. Inter-event flow/path-sensitive
reasoning is often important for precision, but such reasoning
can be prohibitively expensive due to the large number of
possible event orderings that must be considered.
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Figure 1: A simple event system containing three components
with independent lifecycles.

To illustrate this problem, consider the simple event sys-
tem in Figure 1. This system has three components (a), (b),
and (c) with independent event lifecycle graphs. Events within
an individual lifecycle graph are ordered by directed edges:
e1→ e2 specifies that e1 must execute before event e2. Other-
wise, the events are unordered with respect to events in other
lifecycle graphs. For example, the system specifies that any
of events e2, e4–e9 can execute immediately after e1, but e3
cannot. Event interleavings across lifecycle graphs are impor-
tant to consider since all events may access shared mutable
state.

The challenge in performing a flow/path-sensitive anal-
ysis of such systems is respecting intra-lifecycle ordering
constraints while soundly accounting for interleavings of
inter-lifecycle events. The obvious approach to achieving
this result is to compute and analyze the product graph of
all event lifecycle graphs in the event system. However, the
number of edges in the product graph will be exponential
in the number of components, and all such edges must be
considered to perform a flow/path-sensitive analysis (even
for the tiny system of Figure 1, the product graph contains 27
edges). For practical event systems with tens of components
and hundreds of events like the Android applications we con-
sider in Section 7, this graph quickly becomes intractable to
represent—let alone analyze.

In practice, additional complications arise that make this
problem even more difficult. Analyzing an individual event
can be quite expensive because each event is essentially a
standalone program—it may call thousands of procedures
and contain loops and recursion. Component lifecycles can
execute more than once, so the analysis may have to visit each
edge in the product graph multiple times in order to compute a
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fixed point. Finally, systems like Android implement lifecycle
components and events via objects and instance methods, so
the analysis may need to consider an unbounded number of
instances of each lifecycle component.

Our insight is that although inter-event flow-sensitive rea-
soning is required to prove many properties of event-driven
systems, most of these properties can be proven without con-
sidering all of the possible interleavings across component
lifecycles. To leverage this insight to improve scalability,
we need a selective form of control-flow abstraction flexi-
ble enough to apply flow/path-sensitive reasoning within an
event lifecycle, but not across all edges in the lifecycle prod-
uct graph. Though previous approaches to control-flow ab-
straction have effectively addressed the problem of selective
context/object-sensitivity [26, 29, 30, 33], we are not aware
of any previous work that can vary flow/path-sensitivity in
the manner desired here. Previous flow-sensitive approaches
to analyzing Android applications (e.g., [18]) have avoided
this issue by assuming the lifecycles of different components
cannot interleave. This is unsound and (as we will see in
Section 2) can cause the analysis to miss real bugs.

In this paper, we tackle the challenge of selective flow/path-
sensitive abstraction by introducing jumping, a form of goal-
directed control-flow abstraction that enables the analysis to
jump directly to code relevant to a particular goal query. Our
key idea is that if we can identify the set of events that may
affect the query at hand, we only need to reason about all
possible orderings between these events in order to be sound.
We have found that since the number of relevant events for
a given query is typically small in practice, this approach is
tractable even for large event systems. Our jumping frame-
work allows us to limit the analysis to relevant events while
retaining flow/path-sensitivity.

Our approach chooses locations to jump to by considering
both data dependencies using a data-relevance relation and
control dependencies using a notion of control-feasibility.
The data-relevance relation enables the analysis to identify
commands that may affect the current query, while control-
feasibility information allows the analysis to consider event
lifecycle constraints to preserve flow/path-sensitivity while
jumping.

Though this paper focuses primarily on applying jumping
to enable scalable analysis of event-driven systems, jumping
is a general framework for selective control-flow abstraction
whose utility goes beyond analyzing event-driven systems.
Our framework provides an expressive way to describe a wide
variety of sound control-flow abstractions that can be applied
to any goal-directed backward abstract interpretation.

This paper makes the following contributions:

• We present a framework for jumping analysis, an approach
for improving the effectiveness of goal-directed abstract
interpretation via selective control-flow abstraction. We
define soundness conditions for the relevance relation that

enable jumping and prove the soundness of an analysis
that performs jumps based on such a relation (Section 3).
• We devise an efficient points-to based technique for

computing precise data-relevance information in heap-
manipulating programs (Section 4).
• We give a semantics to the lifecycle graphs used by

Android documentation to represent inter-event control-
flow constraints, and we show how to specialize a general
lifecycle graph to a specific subclass and object instance
(Section 5).
• We use our jumping framework to design HOPPER, a

practical jumping analysis for verifying safety properties
in event-driven, heap-manipulating Android programs.
HOPPER leverages our precise data-relevance relation
along with control-feasibility information from Android
lifecycle graphs to efficiently preclude consideration of
concretely infeasible event orderings (Section 6).
• We evaluated HOPPER on the challenging client of check-

ing null dereferences in event-driven Android programs
(Section 7). Our results showed that adding jumping to
a path-, flow-, and context-sensitive backward analysis
decreased the number of unproven dereferences by an
average of 54%. In addition, we found 11 real bugs in
four different Android applications, nine of which have
already been fixed via our submitted patches.

2. Overview
In this section, we motivate the difficulty and importance of
verifying the absence of null dereferences in event-driven
Android programs (Section 2.1) and show how jumping al-
lows our analysis to prove the safety of dereferences without
reasoning about an intractable number of event orderings
(Section 2.2). Our running example (distilled from buggy
code in the ConnectBot1 app) will be attempting to prove the
safety of the dereferences at lines 7 and 8 in Figure 2—that is,
we want to show that mService and mHostDb (respectively)
are always non-null at these lines. However, only the derefer-
ence at line 8 can be proven safe; the dereference at line 7 is
buggy.

2.1 Motivation: Verifying Dereference Safety in
Android

Null dereference errors (a Java NullPointerException, or
NPE) are a major cause of failures in Android applications.
In a search of the commit logs of the ten open-source
Android apps used in our evaluation, we found 738 distinct
commits containing the string “NPE” or “null,” roughly
3% of all commits. Further, a recent paper on Facebook’s
INFER static analyzer reported that their internal database
of production Android app crashes contained many null
dereference errors [11]. Such errors cause crashes that stop
the app and degrade user experience. Unlike crashes in web

1 https://github.com/connectbot/connectbot/pull/60
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class HostActivity extends onClickListener {

// in method HostActivity.<init>
1 ManagerService mService = null;
2 HostDatabase mHostDb = null;

void onCreate() {

ServiceConnection cxn =

3 new ServiceConnection() {

void onConnected(@Nonnull Service s) {

4 mService = (ManagerService) s;

}

};

bindService(..., cxn);

5 findViewById(...).setOnClickListener(this);
6 mHostDb = new Database();

}

void onClick(View v) {

7 Host host = mService.getHost();

8 mHostDb.saveHost(host);

}

void onDestroy() {

9 mHostDb = null;
10 mService = null;

}

}

Figure 2: A simple Android app with two components whose
lifecycles are shown in Figure 3. The programmer uses cor-
rect reasoning about the lifecycle to ensure that the derefer-
ence at line 8 is safe, but mistaken assumptions about the
lifecycle make the dereference at line 7 unsafe.

application code that can be fixed on the backend and pushed
to the user when the page is refreshed, an app crash cannot
be fixed until (1) an update fixing the bug is released and
approved by the app store, and (2) the user elects to download
the update, a process that can take weeks or even months [11].
Below, we discuss how subtleties of the Android app lifecycle
can lead to null deference errors.

Bugs, Safety, and Lifecycles One reason that null derefer-
ences in Android apps are easy to create and difficult to rea-
son about is the complicated Android lifecycle. Though most
events within the lifecycle of a single component are ordered,
the lifecycles of different components can interleave arbitrar-
ily and cause unexpected behavior. As a concrete example,
Figure 3 shows the lifecycle graphs of the HostActivity and
ServiceConnection classes from Figure 2. As in Section 1,
a directed edge from event e1 to e2 means that e1 must exe-
cute before e2 is allowed to execute. The ε event represents
a special “skip” event to soundly model the fact that user in-
teraction events such as onClick may not be triggered. The
edges between onClick and ε model the fact that a user can
trigger the callback an arbitrary number of times.

The HostActivity and ServiceConnection components
have independent lifecycles, but (as we can see from the code
in Figure 2) they share the mService object. This leads to a
null dereference at line 7 in the case that the onClick event
fires before the onConnected event (since mService will
still be null). This bug is due to faulty reasoning about the
event-driven lifecycle of Android—the developer does not ac-
count for all possible interleavings between the HostActivity
and ServiceConnection lifecycles.

On the other hand, the dereference at line 8 is safe
because of ordering constraints in the HostActivity lifecycle.
The developer delays initializing the mHostDb field to the
heavyweight Database object until line 6 of the onCreate

callback to avoid incurring the memory footprint of this object
until it is needed. In addition, the developer assigns null
to mHostDb at line 9 of the onDestroy event in order to
relieve memory pressure as soon as possible (the enclosing
HostActivity object may not become unreachable for some
time after this event). These optimizations are safe because
the lifecycle for HostActivity dictates not only that the
onCreate event always executes after the constructor and
before the onClick event, but also that the onDestroy event
can only execute after all invocations of the onClick event.

Finding lifecycle sensitive bugs via testing is difficult
given that (a) real apps have hundreds or thousands of events,
(b) the developer must find the right combination of events
that lead to a bug, and (c) exercising the app in a way that
triggers the right events in the proper order is a tedious
process. Thus, an effective static approach to this problem
has the potential to significantly improve the state of affairs
for Android app developers.

2.2 Proofs and Bug-Finding with Jumping Analysis
Though numerous static approaches to proving the absence of
null dereferences have been proposed (e.g., [15, 22, 24, 25]),
the key challenge in analyzing our motivating example does
not concern the client of null dereferences specifically. Even
a type-based approach with programmer-written nullness
annotations would likely not work well. In Android, the
nullness or non-nullness of a reference is frequently not a
flow-insensitive invariant that holds at every program point or
even an almost-everywhere invariant [12] that holds at nearly
every program point. Instead, non-nullness (along with many
other properties) holds during some phases of the lifecycle
and not others.

Thus, the challenge for analyses (as we have explained
in Section 1) is to perform precise reasoning about event
orderings within a lifecycle without incurring the cost of
reasoning about all event orderings. In what follows, we use
the example in Figure 2 to demonstrate how jumping meets
this challenge. This example has been simplified to contain
only the events and instructions relevant to the two queries,
but a real app would have many other lifecycle components
whose event orderings the analysis might need to consider. In
essence, the power of jumping is that it allows the analysis
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HostActivity.<init>

onCreate

onResume

εonClick

onPause

onDestroy

ServiceConnection.<init>

onConnected

onDisconnected

Figure 3: Lifecycle graphs for the HostActivity and
ServiceConnection classes of Figure 2.

to soundly reduce a complex real-world event system into a
simple system like the one in Figure 2.

Anatomy of a Jumping Analysis We consider extending
THRESHER [7] (a path-, flow-, and context-sensitive back-
ward analysis for refuting queries written in the symbolic
heap fragment of separation logic [4] without inductive pred-
icates) with the ability to jump, but jumping can just as eas-
ily be combined with any form of backward abstract inter-
pretation (e.g., [9, 28]). At the intra-event level, the anal-
ysis behaves like THRESHER. When the backward analysis
reaches an event boundary (that is, the entry of an application
method that is invoked by the Android framework), the anal-
ysis chooses to compute a set of relevant events to jump to
rather than continuing to follow backward control flow into
the complex Android framework code.

From the entry of the current event ecur, the analysis
executes a jump by performing the following steps:

(1) Identify important commands using data-relevance
For each constraint in the query, the analysis computes the
set of data-relevant program commands whose concrete
execution may produce a configuration in the concretiza-
tion of the constraint. This process is similar to computing
a partial slice that only considers immediately relevant
commands (see Section 8 for a full discussion of the dif-
ferences between our technique and slicing). Finding the
set of relevant commands makes use of a global view
of the program from a points-to graph computed by an
up-front analysis.

(2) Associate relevant commands to events The analysis
walks backward in the program’s call graph from the
containing method of each relevant command identified
in step (1) and stops each time it hits an event boundary.
This yields the set of events that may lead to the execution
of relevant commands.

(3) Order relevant events using control-feasibility infor-
mation. Though it would be sound to jump to all relevant
events or even to jump directly to each relevant command,
doing so loses information about the ordering of relevant

onClick

PRE: this 7� âct N âct ·mHostDb7� null

onCreate

HostActivity.<init> onDestroy

PRE: this 7� âct N âct ·mHostDb7� d̂b ∧ d̂b = null ∧ d̂b 6= null †

† †

Figure 4: Proving safety of the dereference at line 8 of
Figure 2 using jumping analysis.

onClick

PRE: this 7� âct N âct ·mService7� null

HostActivity.<init>

onConnected

onDestroy

PRE: this 7� âct N âct ·mService7� ŝ ∧ ŝ = null ∧ ŝ 6= null †

PRE: true ♠

†

Figure 5: Failed safety proof for buggy dereference at line 7
of Figure 2 using jumping analysis.

events/commands, which is bad for analysis precision.
In order to be precise, the analysis must account for the
fact that only certain events are control-feasible with re-
spect to the current event ecur according to the Android
lifecycle.

(4) Jump to each control-feasible event. The analysis forks
a case split for each event that is both data-relevant
and control-feasible, jumps to the exit of the event, and
continues backward analysis for each case.

Analyzing the Example App We now demonstrate how our
jumping analysis uses the process described above to prove
the safety of the dereference at line 8 and identify the bug
at line 7. The analysis works in the style of THRESHER: it
takes an initial query R that is a necessary precondition [13]
for the bug to occur and attempts to prove safety (refute the
query) by propagating the query backward from its initial
program point ` in an attempt to derive a contradiction. This
analysis is a form of proof by contradiction: it computes an
over-approximation of the backward reachable states from the
program point/query and refutes the query when it has derived
the unreachability of (R, `) (e.g., ⊥—no possible concrete
states) at a set of locations that together control-dominate
the initial program point `. For the dereference at line 8
to fail, the initial query is âct ·mHostDb 7� null2 at program
point 8, where âct is a symbolic variable representing a non-
null HostActivity object and the 7� edge denotes an exact
points-to constraint in the sense of separation logic [27].

2 All separation logic queries we write should be interpreted as describing a
sub-heap (i.e., spatially conjoined with the predicate describing any heap).
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The diagram in Figure 4 visualizes the process of prov-
ing the safety of this dereference by refuting the query. The
analysis first uses THRESHER’s transfer functions to prop-
agate this precondition backward to the beginning of the
onClick event, yielding the necessary bug precondition
this 7� âct N âct·mHostDb 7�null shown in the figure.

At this point, the analysis chooses to perform a jump
because it has reached an event boundary. The analysis
decides which events to visit next using the four steps outlined
above: first, it computes the data-relevant commands that
may change the current bug precondition. This step yields
the commands at lines 2, 6, and 9. Second, it uses the call
graph to associate these relevant commands with their calling
events, which yields the set of events HostActivity.<init>,
onCreate, and onDestroy.

Third, the analysis uses the lifecycle graph for HostActivity
in Figure 3 to perform control-feasibility filtering. The analy-
sis determines that onDestroy is not control-feasible with
respect to the current event onClick because onDestroy

is not backward-reachable from onClick in the lifecycle
graph for HostActivity. The analysis also determines that
HostActivity.<init> is not control-feasible because it is
postdominated by the relevant event onCreate—every fea-
sible concrete execution reaching onClick visits onCreate
between HostActivity.<init> and onClick.

Thus, the analysis concludes that it only needs to jump
to onCreate. Figure 4 represents the decision not to
jump to the data-relevant, but control-infeasible events
HostActivity.<init> and onDestroy by marking the edges
to these events with †’s. The directed edge from onClick

to onCreate indicates that the analysis performs a jump
from the entry of onClick to the exit of onCreate with the
precondition shown for onClick as the abstract state.

When the analysis encounters the assignment at line 6 of
the onCreate event, it refutes the query because there is an
inconsistency between this command and the current abstract
state: the points-to constraint âct ·mHostDb 7� null says that
the mHostDb field must hold the value null, but the command
assigns a non-null Database value to this field. The analysis
has therefore shown the safety of the dereference at line 8.

Figure 5 shows how the same analysis process (cor-
rectly) fails to prove the safety of the dereference at line
7. The analysis determines that the dereference is safe if the
onConnected event executes before onClick and that the
relevant event onDestroy is not control-feasible with respect
to onClick, so it marks these paths as refuted (†). However,
in the case that HostActivity.<init> is the last relevant event
to fire before onClick, the command mService = null at
line 1 discharges the precondition for onClick, leaving a
necessary bug precondition of true. The analysis cannot hope
to find a refutation given this precondition, so it gives up
and reports the dereference at line 7 as a possible bug (as
indicated by the ♠ symbol).

programs P,T ::= {t1, . . . , tn}
transitions t ::= `1 −[c]� `2
commands c ::= skip | assume e | call ` | return ` | . . .
program labels ` ∈ Label

call strings L ∈ Strings ::= [] | `::L
abstract call strings L̂ ∈ ˆStrings

concrete stores ρ ∈ Store
concrete states σ ∈ State ::= (ρ,L)
abstract stores ρ̂ ∈ ˆStore
abstract states R ∈ ˆState ::= > | ⊥ | (ρ̂, L̂) | R1∨R2

command semantics 〈σ ,c〉 ⇓ σ ′

abstract semantics ` {Rpre } c {Rpost }
concretization γ : ˆState→℘(State)
invariant map I : Label→ ˆState

Figure 6: A language composed of atomic commands con-
nected by unstructured control flow.

3. Jumping Analysis Framework
In this section, we formalize a framework for jumping analy-
ses. The framework provides a mechanism by which any goal-
directed, over-approximate, backward abstract interpretation
can soundly perform “jumps” over irrelevant code given a
relevance relation that meets certain soundness conditions.
We will show how to instantiate this framework to perform
tractable analysis of event-driven programs in Section 6.

3.1 Preliminaries: Commands and Transitions
We consider the imperative programming language of com-
mands and unstructured control-flow presented in Figure 6.
Our framework is parametric in the sub-language of com-
mands and abstraction of concrete states chosen. A program
in our language consists of a finite set of transitions t. We use
P for the program of interest and T for a set of transitions in P.
A transition `1 −[c]� `2 consists of a pre-label `1, a command
c, and a post-label `2.

We assume that the concrete semantics of the commands
are provided via a judgment form 〈σ ,c〉 ⇓ σ ′ that specifies
how c transforms a concrete state σ to another state σ ′. A
transition relation for a small-step operational semantics of
transition systems is given by a judgment form

〈σ , `〉 →t 〈σ
′, `′〉 ,

defined by applying the concrete command semantics 〈σ ,c〉 ⇓
σ ′ to transition t : `−[c]� `′. A judgment 〈σ , `〉 →t 〈σ

′, `′〉 is
well-formed only if the pre- and post-labels of t are ` and `′,
respectively.

Our model encodes conditional branching using an
assume e command that blocks unless e evaluates to true
and encodes looping using assume along with back edges
in the transition relation. We represent procedure calls using
call and return commands that are linked to (respectively)
callee procedures and caller sites in the program transitions.
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I ` `1 −[c]� `2

A-TRANSITION
I(`2) |= R ` {R′ } c {R} R′ |= I(`1)

I ` `1 −[c]� `2

I ` `

A-JUMP
I(`post) |= R 〈R, `post〉 Trel I ` t for all t : `i −[ci j]� ` j ∈ Trel

R |= I(` j) for all ` j I ` `i for all `i

I ` `post

Figure 7: Jumping analysis. The key A-JUMP rule expresses
the ability to skip code based on a relevance relation.

Both commands manipulate a call string L composed of pro-
gram labels. The concrete semantics for these commands are
standard (they are given in Blackshear [6, Chapter 5]). For
simplicity in presentation, we assume that all variables in the
program are globally scoped and that parameter binding is
accomplished via ordinary assignment.

We write R for an abstract state that over-approximates a
set of concrete states defined by a concretization γ . Notation-
ally, we use a semantic entailment relation R1 |= R2 defined
over concretization as γ (R1) ⊆ γ (R2). We write > for the
state such that γ (>) def

= State and ⊥ for the state such that
γ (⊥) def

= /0. Otherwise, a state is a finite disjunction of pairs of
a store abstraction ρ̂ and a call string abstraction L̂. We leave
the particular store and call string abstractions of interest
unspecified. An abstract semantics for commands is given
by the judgment form ` {Rpre } c {Rpost }: a backward Hoare
triple stating that for all concrete post-states in Rpost in which
c terminates for some concrete pre-state, then that concrete
pre-state is in Rpre. More formally, the abstract semantics
must satisfy the following soundness condition:

If ` {Rpre } c {Rpost } and 〈σpre,c〉 ⇓ σpost such that

σpost ∈ γ (Rpost), then σpre ∈ γ (Rpre).
(1)

As an informal shorthand, we say Rpost is may-witnessed by
executing the command c from Rpre. As a corollary of this
soundness condition, if the analysis refutes an input query
Rpost (i.e., derives ⊥ on all backward paths originating from
Rpost), then Rpost represents a set of unreachable concrete
states. However, the analysis may over-approximate by failing
to refute Rpost even if Rpost does not represent any concretely
reachable states.

3.2 Control-Flow Abstraction with Jumping
To describe static analysis of transition systems, we define
an invariant map I : Label→ ˆState that maps each program
label ` to candidate invariants at ` given by an abstract state
R. Our jumping analysis is defined by the judgment form
I ` ` that asserts, “I over-approximates the concrete states

from which ` can be reached in a state satisfying I(`).” As
a shorthand, when the judgment I ` ` holds, we say that I
may-witnesses I(`), or simply I may-witnesses `.

This judgment form relies on an auxiliary judgment form
I ` t that asserts, “For a transition t : `1 −[c]� `2, I(`1) over-
approximates the concrete states from which executing c
yields a state satisfying I(`2).” As above, we say that I may-
witnesses transition t when the judgment I ` t holds.

In Figure 7, we define these two judgment forms. The
A-TRANSITION rule defines I ` t, which is analogous to the
consequence rule of standard Floyd-Hoare logic. The rule
says that I may-witnesses `1 −[c]� `2 if there is a triple
` {R′ } c {R} that satisfies soundness condition (1), such that
I(`2) is stronger than R and I(`1) is weaker than R′. This rule
is essentially just a wrapper that lifts an abstract semantics
for commands to an abstract semantics for transitions that is
constrained by our invariant map I.

The key rule for our jumping analysis is A-JUMP, which
decides the transitions that the analysis should visit next. This
rule relies on a relevance relation written using the judgment
form 〈R, `post〉 Trel that asserts, “Given an abstract state R
at program label `post, the set of relevant program transitions
is Trel.” Intuitively, the rule says to perform a backward jump
from the current label `post to the post-label of each relevant
transition in Trel, skipping all transitions in between.

The rule’s first two premises I(`post) |= R and 〈R, `post〉 
Trel state that we compute a set of relevant transitions Trel
using some weakening of the query I(`post). Allowing this
weakening of the state abstraction is crucial, as weakening
of the state can only make the set of relevant transitions Trel
smaller. The “R |= I(` j) for all ` j” premise constrains the
post-state of each relevant transition to be weaker than the
current state R. Together, these two premises can be seen as
consequence for the transitions skipped by the jump.

The premise “I ` t for all t : `i −[ci j]� ` j ∈ Trel” checks
that I may-witnesses each relevant transition t ∈ Trel—that is,
it uses the auxiliary judgment form to abstractly execute each
relevant transition that was jumped to. Finally, the remaining
premise “I ` `i for all `i” recursively continues the backward
analysis by checking that I may-witnesses the pre-label `i of
each relevant transition that was jumped to.

Inference, Loops, and Recursion While the judgment
form I ` ` is most easily read as a checking system for
judging when I may-witnesses ` for a given I, we can obtain
an inference system that computes an invariant map I with
a standard post-fixed-point computation via abstract inter-
pretation. We begin the abstract interpretation from a map
I0 initialized with the initial query at the start label ` and all
other labels mapping to ⊥. The analysis applies the A-JUMP

rule to that start label and updates the invariant map with the
inferred values for R. A weakening (as in premise R′ |= I(`1)
of A-TRANSITION) corresponds to an update to the invariant
map with a join (i.e., Ii+1(`1) = Ii(`1)t R′) or widen O as
appropriate to break loops in the abstract interpretation. This

168



process continues with additional labels via the recursive
invocation “I ` `i for all `i” in the A-JUMP rule until the
invariant map computation reaches a fixed point.

In the analysis, an arbitrary context- and object-sensitivity
policy can be implemented by the choice of the call string
abstraction L̂ ∈ ˆStrings and the state abstraction R ∈ ˆState.
For example, a simple k-callstring context-sensitivity policy
could keep a disjunct for distinct call strings up to length k
(joining or widening abstract stores ρ̂ as needed).

In our implementation, we uniformly handle all sources of
looping and recursion by widening at targets of back edges.
Our widening operator bounds the length of the materialized
prefix of the abstract call string L̂ (i.e., program labels
`1 :: · · · :: `k :: anystring) and the number of materialized
heap locations (i.e., 7� constraints) in the abstract store ρ̂ .

3.3 Identifying Relevant Transitions
The A-JUMP rule is an extremely general rule that allows a
wide variety of strategies for choosing the transitions that the
analysis should jump to. All transitions not jumped to are
skipped. But what transitions can the analysis soundly skip?
A-JUMP allows the analysis to skip any transitions except for
the set of transitions Trel returned by the relevance relation,
so the burden of ensuring soundness falls squarely upon this
relation. In this subsection, we will first build intuition for
what transitions can and cannot be skipped before formally
defining the soundness conditions that must imposed on a
relevance relation in order to ensure sound jumping.

Data-Relevance and Control-Feasibility For the relevance
relation to be sound, it must not omit any important transitions
that could be involved in may-witnessing the query of interest.
There are many different strategies that the relevance relation
can use to ensure this soundness property. We will show that
each of these strategies can be thought of as (1) choosing a
set of data-relevant transitions that would be sound to return
on their own, then (2) soundly filtering this set using control-
feasibility information. As a first consideration, consider a
relevance relation that returns all transitions in the program
as data-relevant and performs no filtering. This relevance
relation is trivially sound: it cannot skip any important
transitions because it does not skip any transitions at all.
This corresponds to a fully flow- and context-insensitive view
of the program, as every transition will be a jump target from
every other transition.

The above strategy of taking all program transitions can be
improved by considering a simple form of control-feasibility:
postdominance in the control-flow graph. Intuitively, if transi-
tion t ′ postdominates transition t, there is no need to consider
both t and t ′ as relevant, as all backward paths to t must go
through t ′. Hence, it is sufficient to only consider t ′ as relevant.
Via this reasoning, we can conclude that instead of treating all
transitions in the program as relevant, one can instead use just
the immediate predecessor transitions of the current program

label while remaining sound. We have simply recovered the
standard approach taken by flow/path-sensitive analyses.

Treating just the immediate predecessors as relevant is
quite precise, but it does not utilize the key strength of jump-
ing: the ability to skip irrelevant transitions entirely. We can
make better use of jumping by refining the set of transitions
returned by the data-relevance step using information about
the program’s data-flow. We can leverage data-flow infor-
mation by modifying the data-relevance step to return all
transitions that may affect the query state as data-relevant.
For example, if the abstract state R is x ≥ 0 for a program
variable x, then writes to any variable other than x clearly
cannot affect the query state and can be soundly skipped. An
interesting aspect of our framework is that it admits a more
restrictive strategy in which only transitions that weaken the
abstract state are considered relevant (further discussion in
Blackshear [6, Chapter 5]).

This strategy of taking the set of data-relevant transitions is
less precise than taking the set of the immediate predecessors.
An analysis that uses the data-relevance strategy will lose
flow-sensitivity while jumping because it does not take the
program’s control-flow into account. On the other hand, the
data-relevance strategy is likely to be more efficient because
it considers only the (typically small) set of transitions that
may affect the query without reasoning about any of the other
transitions in the program or the control-flow between them.

A very powerful strategy is combining the previous two:
first identify a set of data-relevant transitions for the cur-
rent query, then use control-feasibility information such as
postdominance in the control-flow graph to filter this set as
much as possible. Doing this allows us to get the best of
both worlds while jumping: we can skip vast swaths of irrele-
vant code by limiting our consideration to the data-relevant
transitions, and we can maintain flow-, path-, and context-
sensitivity while jumping by filtering away control-infeasible
transitions using information about the control-flow between
data-relevant transitions. This is the approach that we take
with the relevance relation we will define in Section 6.

Defining Relevance Soundness Motivated by the preced-
ing discussion of sound strategies for selecting relevant tran-
sitions to explore, we define our soundness condition for
a relevance relation in a way that permits all strategies to
be thought of as computing data-relevant transitions, then
filtering these conditions using control-feasibility:

Condition 1 (Relevance soundness).
If 〈R, `post〉 Trel, 〈σ , `pre〉 −→T

∗ 〈σ ′, `post〉,
tirrel : `1 −[c]� `2 ∈ P−Trel, and ` {R′ } c {R}, then either
(a) R′ |= R, or
(b) ∃ T1, T2 s.t. T = T1 ˆ T2, tirrel /∈ T2 and Trel ∩ T2 6= /0.

We write 〈σ , `〉 −→T
∗ 〈σ ′, `′〉 for the judgment form of

multi-step concrete evaluation, that is, the reflexive-transitive
closure of single-step concrete evaluation. This multi-step
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concrete evaluation records each transition it visits between
`pre and `post in the trace T . We denote trace concatenation
with T1 ˆ T2.

Condition 1(a) captures the soundness of returning data-
relevant transitions by imposing restrictions on a transition
tirrel that is not returned by the relevance relation. It states
that for any program transition tirrel not included in the set of
relevant transitions for state R, the pre-state R′ with respect to
the transition command c is at least as strong as R. From the
analysis perspective, this means that it is sound to exclude
tirrel from the jump targets because it cannot possibly move
R closer to being witnessed. This is a very general notion
of data-relevance, as it captures relevance based on both
modification and weakening.

Condition 1(b) captures the soundness of filtering data-
relevant transitions based on control-feasibility information.
It says that if a transition tirrel is not included in the set
of relevant transitions for program point `post, then we can
decompose the trace of visited transitions T into a pre-trace T1
and a post-trace T2 such that the post-trace contains a relevant
transition, but does not contain tirrel. This means then some
relevant transition trel ∈ Trel must always happen between
tirrel and `post. From the perspective of our backward analysis,
this means that it is sound to exclude tirrel from the set of
jump targets because some relevant transition trel that will be
jumped to postdominates tirrel in the program control-flow.

Using data dependence analysis to skip analysis of clearly
irrelevant code is an effective and commonly used technique
in program analysis. The novelty of our framework for sound
jumping analysis based on Condition 1 is the ability to simul-
taneously reason about data-relevance and control-feasibility
information to filter away a larger set of transitions (i.e., tran-
sitions that are data-relevant, but not control-feasible). Our
relevance soundness condition is both permissive and gen-
eral: it allows all of the control-flow abstraction strategies
we have discussed so far and opens the door for any strategy
whose structure can be described as computing data-relevant
transitions, then filtering using control-feasibility.

Soundness of Jumping Analysis Next, we state and prove
a soundness theorem demonstrating that any relevance rela-
tion satisfying this soundness condition can be used to define
a sound jumping analysis.

Theorem 1 (Soundness of jumping analysis).
If 〈σdummy, `dummy〉 −→T

∗ 〈σpost, `post〉 and I ` `post such that
σpost ∈ γ (I(`post)), then σdummy ∈ γ (I(`dummy)).

The theorem says that if the concrete state σpost at program
point `post is in the concretization of the abstract state stored
at label `post of the invariant map, then σdummy is in the
concretization of the abstract state stored at the pre-entry
label `dummy. In the theorem, we write concrete state σdummy

for a distinguished element of State that represents the
uninitialized, “junk” state before beginning the execution
of the program. The proof of this theorem can be found in

Blackshear [6, Appendix A]. The primary challenge of this
proof was in formulating Condition 1 to be strong enough
to prove the theorem, but weak enough to permit a wide
variety of strategies for control-flow abstraction (including
all of the other strategies described in the “Data-Relevance
and Control-Feasibility” discussion on page 7).

Instantiating the Framework This section has presented
a general framework for performing control-flow abstrac-
tion in a goal-directed backward abstract interpretation. In
subsequent sections, we will present a practical instantia-
tion of this framework for effective goal-directed analysis of
event-driven Android programs. Section 4 explains how we
compute precise data-relevance information in the presence
of heap-manipulating commands, Section 5 explains how we
represent inter-event control in Android in a way that en-
ables control-feasibility filtering, and Section 6 combines the
previous two sections to define a relevance relation for effi-
cient event-driven analysis that satisfies relevance soundness
(Condition 1).

4. Computing Precise Data-Relevance
Information for Separation Logic
Constraints

In this section, we explain how we compute precise data-
relevance information for heap constraints in a way that
satisfies the data-relevance condition of relevance soundness
(Condition 1(a)). The key challenge of computing data-
relevance information in the presence of the heap is to
compute a precise approximation of relevant writes (i.e.,
precisely identify commands that may write to portions of
the heap described in abstract state). If the analysis is not
effective at precisely identifying such commands, it may
report too many commands as data-relevant and negate the
scalability benefits of jumping. Our approach is to leverage a
combination of up-front points-to information, instance-from
constraints [7] relating object instances to abstract locations,
and explicit disaliasing information to precisely identify heap
dependencies.

4.1 Command Language, Abstract State, and Abstract
Semantics

As explained in Section 3.1, our framework for jumping anal-
ysis can be used with any representation of abstract state,
command language, and abstract semantics. Here, we will
consider computing data-relevance information for the sepa-
ration logic-based abstract representation of THRESHER [7].
Specifically, the relevance relation we define here comple-
ments the abstract semantics of THRESHER extended with the
abstract semantics for performing procedure calls presented
in Figure 10. We will carefully explain the the command
language and abstract state used by THRESHER as well as the
abstract semantics of procedure calls before defining our data
relevance relation in Section 4.2.
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commands c ::= x := e | x := newa τ() | x := y.f | x.f := y
| assume e | call ` | return `

expressions e ::= x | · · ·
abstract locations a
program variables x,y
object fields f
types τ

Figure 8: An imperative command language with dynamic
memory allocation and heap reads/writes.

abstract states R ::= > | ⊥ | (ρ̂, L̂) | R1∨R2
abstract call strings L̂ ::= anystring | `::L̂
abstract stores ρ̂ ::= M∧F | false
memories M ::= any | x 7� v̂ | v̂· f 7� û |M1 N M2
pure formulæ F ::= true | F1∧F2 | v̂ from r̊ | · · ·
points-to regions r̊, s̊ ::= {a0, . . . ,an}
instances v̂, û, ô

Figure 9: Components of abstract state.

Command Language We consider a simple imperative
command language with objects and dynamic memory al-
location (Figure 8). Like in Figure 6, concrete states σ are
pairs of a concrete store ρ and a concrete call string L. Com-
mands interact with the program heap via reads, writes, and
allocations. Programmers can create aliasing relationships
using imperative assignment. We leave our language of ex-
pressions unspecified, but we assume that expressions are
pure and include reads of variables. An abstract location a is
named by a syntactic allocation site x := newa τ() and repre-
sents a potentially unbounded number of object instances of
type τ allocated from its naming site. The language also con-
tains call and return commands for performing procedure
calls (as explained in Section 3.1).

Abstract State The components of THRESHER’s state are
enumerated in Figure 9. The top-level analysis unit is an
abstract state R which consists of an (abstract store, abstract
call string) pair, a disjunction of abstract states, or the special
>/⊥ states representing all concrete states and an unreachable
state (respectively). A symbolic instance v̂ represents a single
instance of an object (unlike an allocation site, which may
represent an unbounded number of objects).

Abstract call strings implement a simple call-site sensitive
form of context-sensitivity. Call strings consist of either the
special anystring call string representing any possible call
string, or a known label ` prepended to an abstract call string.

A memory M consists of an arbitrary memory any, an
exact points-to constraint, or a separating conjunction of two
memories. We write any for an arbitrary memory instead of
using the more traditional true because we use true to denote

` {R′ } c {R}

A-RETURN

` {(ρ̂, `::L̂)} return ` {(ρ̂, L̂)}

A-CALL-OK
`= `1

` {(ρ̂, L̂)} call `1 {(ρ̂, `::L̂)}

A-CALL-REF
` 6= `1

` {⊥} call `1 {(ρ̂, `::L̂)}

A-CALL-ANY

` {(ρ̂,anystring)} call ` {(ρ̂,anystring)}

Figure 10: Abstract semantics of call and return com-
mands.

the boolean truth value. We interpret memory M as M N any,
but typically omit the any when writing a memory for the
sake of conciseness.

Points-to edges in our analysis state are exact points-to
constraints of the form x 7� v̂ or v̂· f 7� û. The form x 7� v̂ means
that the program variable x contains a value represented by
the symbolic instance v̂. Similarly, the form v̂· f 7� û means
the symbolic instance v̂ holds the value represented by the
symbolic instance û at the offset specified by its f field.

The spatial constraints in a memory M are conjoined
with a pure formula F consisting of either the truth value
true, a conjunction of pure formulæ, or a special instance-
from constraint. Instance-from constraints of the form “v̂
from r̊” state that the instance v̂ must have been allocated
from the region r̊ (a region r̊ is a set of allocation sites).
The constraint v̂ from /0 is equivalent to false since it means
that v̂ could not have been allocated from any allocation site.
Tracking instance-from constraints explicitly in the analysis
enables deriving such contradictions, and have been shown to
significantly decrease the number of aliasing case splits that
a backward separation logic-based analysis must perform [7].
We leave the remaining forms of pure formulæ unspecified,
but our implementation handles other pure constraints that
can be easily represented and solved by an SMT solver
(inequality, arithmetic constraints, etc.).

Abstract Semantics for Procedure Calls Figure 10 defines
the abstract semantics for call and return commands.
We explained the meaning of the backward Hoare triple
` {R′ } c {R} in Section 3. The abstract semantics for com-
mands follows those defined previously in Blackshear et al. [7,
Figure 4], which include all command forms other than call

and return. While the abstract semantics are not strictly nec-
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essary for understanding the data-relevance relation that we
will present in Section 4.2, we define the abstract semantics
for call and return here for completeness.

The A-RETURN rule says that when the analysis moves
backward across the statement return `, the return label `
is prepended to the abstract call string. This constrains the
abstract call string to reflect that any concrete execution could
only have reached this program point if it previously visited a
matching call ` instruction that pushed ` onto the call string.
The A-CALL-OK rule expresses the case where the analysis
subsequently encounters this matching call. If the label ` on
top of the call string matches the label `1 of the call command,
the analysis weakens the state by popping the label off of
the call string. By contrast, the A-CALL-REF rule expresses
the case where the analysis subsequently encounters a non-
matching call. If the label on top of the call string ` does not
match the label `1 of the call command, the analysis refutes
the current path (derives ⊥) since no concrete state could
have a non-`1 label on top of its call string immediately after
executing the command call `1. Finally, the A-CALL-ANY

rule says that an unconstrained call string anystring can be
propagated backward across a call command without any
changes.

4.2 Creating a Data-Relevance Relation for Separation
Logic Constraints

Figure 11 defines a data-relevance relation for the abstract
state and semantics explained in Section 4.1. The top-level
judgment form R Trel asserts that the transitions in Trel may
be relevant to the abstract state R. The auxiliary judgment
forms ρ̂ Trel and L̂ Trel assert the same thing for the two
sub-components of an abstract state: an abstract store ρ̂ and
an abstract call string L̂.

They key challenge in computing data-relevance infor-
mation for separation logic is determining what commands
might be relevant to a points-to constraint v̂· f 7� û stating that
an object instance v̂’s field f contains the value û. For this
constraint, we begin by considering commands that syntacti-
cally update field f (commands of the form x. f := y) as being
possibly-relevant. Then, we can use the pure constraints in
the abstract memory to further restrict relevant commands.
In particular, if we have the instance-from constraint v̂ from
r̊, we can restrict the relevant commands to those that sat-
isfy the condition pt(x)∩ r̊ 6= /0. The function pt(x) denotes
the points-to set of x as computed by an up-front points-to
analysis on the program P. The above condition ensures con-
sistency between the points-to sets of x and the corresponding
region r̊, rejecting any command that could not possibly yield
the v̂· f 7� û points-to constraint because it writes to an object
different from v̂.

This process of leveraging instance-from constraints and
up-front points-to information to precisely identify heap
writes is encoded in the R-WRITE rule of Figure 11. We can
further restrict relevant writes based on disaliasing constraints
(either explicitly given v̂ 6= ô or implied by separation v̂·g 7�

− N ô·g 7�−), though these additional restrictions are not
expressed in the rule for presentation. In other words, we
consider all transitions that may modify v̂· f 7� û (syntactically)
to be relevant and exclude a transition when we can prove
that it does not modify v̂· f 7� û (semantically). This strategy
satisfies the data-relevance condition of relevance soundness
(Condition 1(a)), and we adopt a similar strategy to ensure
soundness for the remaining rules.

The remaining rules for the judgment form ρ̂ Trel define
data-relevance for other store-manipulating command forms.
The rules R-READ, R-NEW, and R-ASSIGN compute the rele-
vant commands for a local points-to constraint x 7� v̂ by using
program syntax to identify all possible writes to x. These rules
essentially encode a flow-insensitive variation of reaching
definitions. The R-SEP rule gives structure to the judgment
form by recursively applying the relevance relation to each
sub-memory of the store to find the relevant transitions for
the entire store. It says that the set of relevant transitions for
the store ρ̂ is the union of the relevant transitions for each of
its sub-memories.

The R-BOT, R-TOP, and R-ANY rules defines the base
cases of relevance for an unreachable state, a state repre-
senting all concrete states, and the separation logic predicate
any that is satisfied by any heap (respectively). Each of these
rules returns only the special initial transition tinit representing
the first transition in the program. We can think of these rules
as saying that nothing is relevant to each of these states; the
reason each rule returns tinit is that proving relevance sound-
ness is much easier if we can maintain the invariant that the
set of relevant transitions is never empty (more specifically,
that it always contains tinit).

The R-CASES rule says that for a disjunction of abstract
states R0 ∨ R1, the set of relevant transitions is the union
of the relevant transitions for R0 and R1. The R-SPLIT rule
decomposes an abstract state into its store component and
call string component, computes the relevant transitions for
each component using the auxiliary relevance judgments, and
returns the union of the relevant transitions.

Finally, the R-CALL rule says that a call command with
return label `1 must be considered relevant to a call string
with a label ` = `1 as its first label. In our backward analysis,
the abstract semantics for call can weaken the abstract state
by popping a label off of the call string, thereby creating a
less constrained call string. Thus, we must consider all call
instructions with labels matching the top of the call string
to be relevant in order to be sound. However, at an event
boundary our implementation always chooses to weaken the
abstract call string to anystring at before computing data-
relevance/control-feasibility information and jumping, so this
rule is never applied in practice. Instead, R-ANYSTRING will
always be applied. This rule is simply the call string analog
of the R-ANY and R-TOP rules.
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R Trel

R-CASES
R0 T0 R1 T1

R0∨R1 T0∪T1

R-BOT

⊥ {tinit}

R-TOP

> {tinit}

R-SPLIT
ρ̂  T1 L̂ T2

(ρ̂, L̂) T1∪T2

ρ̂  Trel

R-SEP
ρ̂ = M1 N M2∧F M1∧F  T1 M2∧F  T2

ρ̂  T1∪T2

R-ASSIGN
Trel = { t | t ∈ P and t = `i −[x := y]� ` j }

x 7� v̂∧ v̂ from r̊∧F  Trel

R-NEW
Trel = { t | t ∈ P and t = `i −[x := newa τ()]� ` j }

x 7� v̂∧ v̂ from r̊∧F  Trel

R-READ
Trel = { t | t ∈ P and t = `i −[x := y.f ]� ` j }

x 7� v̂∧ v̂ from r̊∧F  Trel

R-WRITE
Trel = { t | t ∈ P and t = `i −[x.f := y]� ` j and pt(x)∩ r̊ 6= /0 }

v̂· f 7� û∧ v̂ from r̊∧ û from s̊∧F  Trel

R-ANY

any∧F  {tinit}

L̂ Trel

R-CALL
Trel = { t | t ∈ P and t = `i −[call `1]� ` j and `= `1 }

`::L̂ Trel

R-ANYSTRING

anystring {tinit}

Figure 11: A data-relevance relation that uses an up-front points-to analysis and instance-from constraints to precisely identify
relevant commands for separation logic constraints.

4.3 Cost of Computing Data-Relevance
To conclude, we briefly comment on the cost of computing
data-relevance information. Clearly, this process needs to be
efficient in order for control-flow abstraction via jumping to
enhance the scalability of the analysis. Our data-relevance
relation’s use of a precomputed points-to analysis typically
allows us to compute relevance quite quickly.

One potential scalability concern is than many rules in
Figure 11 quantify over every command in the program P. We
note that in practice, we can often compute relevance much
more efficiently by exploiting procedural abstraction and
up-front points-to information. The R-ASSIGN, R-NEW, and
R-READ rules compute the relevant statements for a constraint
on some local variable x, so we only need to inspect each
command in the method that x belongs to.

Shrinking the number of commands that the R-WRITE rule
must consider is slightly more challenging, but we can do
so using the points-to graph and instance-from constraints.
Let E̊ be the edge set of the points-to graph, and let x Z⇒ a
denote a may-points to edge from the graph. Further, let
the containing method of a local variable x be given by
method(x). Assuming that we are interested in determining
the relevant write commands of the form x. f := y for a heap

constraint v̂· f 7� û ∧ v̂ from r̊∧ û from s̊, we can compute two
sets of procedures: P̂v = {method(x) | (x Z⇒ a) ∈ E̊ ∧ a ∈ r̊ }
and Pû = { method(y) | (y Z⇒ a) ∈ E̊ ∧ a ∈ s̊ }. These are the
sets of methods containing locals that may point to v̂ and û
(respectively). Any method containing a write command that
discharges the constraint v̂· f 7� û must have a local variables
pointing to both v̂ and û, so we only need to look at write
commands from methods in the set P̂v ∩ Pû. In practice, this
set is typically small enough to investigate efficiently.

5. Representing Inter-Event Control-Flow
In this section, we explain how we use lifecycle graphs to
represent the inter-event control-flow in Android applications
in a way that allows our analysis to address the challenges
laid out in Section 1. We will make use of this information
to check inter-event control-feasibility when we define a
practical relevance relation for Android in Section 6.

For Android programs, we must consider two distinct
kinds of control-flow information: intra-event control flow
and inter-event control flow. Handling intra-event control-
flow is the same as handling interprocedural control flow
in an ordinary Java program, which is a well-understood
problem. Control-flow between methods can be represented
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using a call graph and control-flow within a method can be
represented using a control-flow graph for the method.

Representing inter-event control-flow is more difficult
because this information is not directly represented in the
call graph. In fact, the logic for maintaining orderings among
events lives in native code in the Android framework, so
ordering information cannot be inferred by analyzing the
Java portion of the framework alone.

Our approach to representing inter-event control-feasibility
constraints is to formally define the meaning of the event
ordering information that programmers have access to: the
lifecycle documentation for Android components (e.g., the
Activity lifecycle3). This documentation takes the form of
lifecycle graphs where nodes are lifecycle event methods
and directed edges express ordering constraints among the
events. We have already seen how such graphs are useful in
Section 2: Figure 3 specified the ordering of lifecycle events
for the components used in the example and allowed the
analysis to filter the set of relevant events to jump to.

To go from the documentation to a graph to a representa-
tion that can provide control-feasibility information during
static analysis, we need the following:

(1) A well-defined semantics for Android lifecycle graphs.
Our analysis can then use these graphs to filter out irrelevant
transitions based on the control-feasibility condition of rele-
vance soundness (Condition 1(b)).

(2) A specialization of generic lifecycle graphs of core
Android components (e.g., Activity, Service) to a lifecycle
graph for a specific application subclass of that component.
This specialization resolves Java method overriding to make
explicit the method code for each application subclass, and
for precision, it incorporates other callbacks, such as those
for handling user interface widgets.

(3) A way for the analysis to resolve lifecycle events on
object instances. Since events in Android are methods on
lifecycle objects, we need to prove that object instance ô1
must-aliases ô2 for two events ô1.m1 and ô2.m2 in order to
show that ô1 and ô2 are constrained by the same lifecycle
graph. If we cannot prove this fact, it is unsound to do
any control-feasibility filtering because ô1 and ô2 could be
different instances of the same lifecycle class (and therefore
would have independent lifecycles).

Once a lifecycle graph has been specialized for a particular
subclass and its events have been resolved to a particular
object instance, it can be used directly by the analysis to
perform control-feasibility filtering.

Giving Semantics to Android Lifecycle Graphs Consider
the lifecycle graphs in Figure 3. These graphs specify the
sequence of possible event traces for a particular Android
lifecycle component (though the Android documentation
never explicitly explains their meaning). If we think of the
nodes of a lifecycle graph as labels for their outgoing edges,

3 http://developer.android.com/guide/components/

activities.html#Lifecycle

lifecycle graphs G ::= {. . . ,e1→ e2, . . .}
events e ::= C.m | ô.m | ε

classes C methods m

Figure 12: Components of lifecycle graphs.

we can interpret a lifecycle graph as a nondeterministic finite
automata (NFA) that accepts the language of all feasible
concrete event traces for its lifecycle component. In order to
account for partial traces (e.g., traces ending in an exception
that interrupts the lifecycle), every node must be an accepting
state. For example, the lifecycle graph for the HostActivity
class from Figure 3 (reproduced below right for convenience)
corresponds to the following NFA:

start

HostActivity.<init>

onCreate

onResume

ε

ε

onClick

onPause

onDestroy

HostActivity.<init>

onCreate

onResume

εonClick

onPause

onDestroy

In order to connect the meaning of a lifecycle graph G
to our model of concrete program execution, let us consider
labeling an NFA edge not with the name of its corresponding
event e, but with the entry transition of the event method,
which we write as entry(e). This means that the strings
accepted by the lifecycle NFA (which we write as pGq for a
lifecycle graph G) are strings of transitions t (i.e., traces T )
rather than strings of events e. We can now state a soundness
condition for lifecycle graphs.

Condition 2 (Lifecycle graph soundness). If concrete execu-
tion can reach event e ∈ G, the lifecycle graph G accepts the
concrete trace projected onto the transitions of the lifecycle
graph. More formally, if 〈σ , `dummy〉 −→T ˆ t

∗ 〈σ ′, `′〉 and event
e ∈ G where t = entry(e), then pGq accepts events(T ˆ t,G).

The function events(T,G) simply projects a concrete trace
T onto the transitions of a lifecycle graph G:

events(T,G)
def
=


t ˆ events(T1) if T = t ˆ T1 and ∃ e ∈ G. entry(e) = t
events(T1) if T = t ˆ T1 and 6 ∃ e ∈ G. entry(e) = t
[] if T = []

We assume that the lifecycle graphs specified in the
Android documentation are sound.

Static Lifecycle Graphs: Specializing Lifecycle Graphs to
Application Classes Android applications hook into the
framework by subclassing special Android core components
like Activity. Thus far, we have discussed events rather
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abstractly, but events in Android correspond to methods on
Java objects. We make this explicit by considering events as
pairs of the method and the class in which it is defined (i.e.,
C.m) or as pairs of the method and the receiver object on
which it is invoked (i.e., ô.m) as shown in Figure 12. A well-
formed lifecycle graph can consist of class-method events
or object-method events; we call the former version a static
lifecycle graph and the latter a dynamic lifecycle graph. We
will explain the special event ε shortly.

The Android lifecycle documentation specifies the order-
ing of methods for core components, but we would like static
lifecycle graphs specialized for the classes in the application
under analysis. The specialization of lifecycle methods is
straightforward by following the method resolution seman-
tics of Java given a class hierarchy. Suppose we wish to
specialize a general lifecycle graph G describing an Android
core component Ccore for an application subclass Capp (i.e.,
Capp <: Ccore). For each event method node Ccore.m in G, we
replace the node with C.m where C is the class from which
Capp inherits method m (e.g., C =Capp if Capp overrides m).

An application class can also register custom callback
methods that are triggered by external events such as user
interaction. For example, the HostActivity class from Fig-
ure 2 extends the OnClickListener interface, overrides
the onClick method, and registers itself as the listener for
onClick events by calling setOnClickListener(this) at
line 5. For soundness, we need to account for all such call-
back methods, which we could do simply by treating them
as independent lifecycle components that have no ordering
constraints. However, for precision it is important for the
analysis to associate these callback methods with the appro-
priate component. The analysis should also understand that
these user-triggered events can only occur during the “ac-
tive” phase of the registering lifecycle component when the
user can interact with the component. For Activity compo-
nents, this active phase is the interval between onResume and
onStop.

We incorporate custom callback events into the lifecycle
graph with a simple flow-insensitive analysis. For an applica-
tion class Capp, we consider its reachable methods in the call
graph to determine what custom callbacks it may register. To
represent the active phase of a class C <: Activity, we intro-
duce an ε event between onResume and onClick events as
we saw in Figure 3. An ε event is a no-op event that translates
to an ε-transition in the NFA formulation.

Once we have identified the set of callbacks {ecb, . . .} that
can execute during the active phase of the registering compo-
nent, we “attach” each custom callback event ecb to the active
phase with edges ε → ecb and ecb→ ε . This models the fact
that the user may or may not trigger an interaction event and
that interaction events can be triggered an arbitrary number
of times. This analysis is flow-insensitive because we do not
consider the program point where registering methods like
setOnClickListener are called. We also do not consider

orderings between core lifecycle components (e.g., modeling
the launching order of Activity’s). Incorporating this infor-
mation via techniques like those presented in Yang et al. [32]
could improve the precision of our static lifecycle graphs.

Callback-registering methods like setOnClickListener
may register any object with the appropriate method defined
as the callback object (not just the this object). A common
pattern is to use anonymous inner classes to implement these
callbacks, as the anonymous ServiceConnection object cre-
ated at line 3 of Figure 2 does. As a consequence, a lifecycle
graph may need to contain methods invoked on multiple ob-
ject instances (e.g., the this object and the anonymous inner
class object). We consider this issue next.

Dynamic Lifecycle Graphs: Resolving Lifecycle Events on
Object Instances A significant challenge in leveraging life-
cycle information in a flow/path-sensitive analysis is to
soundly account for the fact that the lifecycle applies to object
instances at run time. Our approach is to resolve static life-
cycle graphs to object instances in order to create a dynamic
lifecycle graphs that can be directly used by the analysis. We
perform this resolution on-the-fly during analysis.

To describe this approach more concretely, suppose our
abstract memory is (this 7� ô1) N (x 7� ô2) N M for some
memory M while currently analyzing code in some event
method C.m2; that is, we are in the lifecycle event ô1.m2 in
the corresponding dynamic lifecycle graph with some facts
about objects ô1 and ô2. We would like to leverage an event-
ordering constraint C.m1→C.m2 in the static lifecycle graph
for C, but for soundness, we have to consider both ô1.m1 and
ô2.m1 as possible events.

Our analysis handles this problem by performing an
eager case split on aliasing (if we have no existing aliasing
information on ô1 and ô2). That is, just before considering
the event-ordering constraint, we split the abstract state into
an aliased case (this 7� ô1) N (x 7� ô2) N M ∧ ô1 = ô2 and a
disaliased case (this 7� ô1) N (x 7� ô2) N M ∧ ô1 6= ô2. The
aliased case gives us the must-alias fact that we need to
soundly leverage the event-ordering constraint for control-
feasibility filtering.

The eager case split means that we have a separate proof
obligation for the disaliased case where we cannot use
the event-ordering constraint in the static lifecycle graph.
However, as we will see in more detail in Section 6, applying
data-relevance often allows us to quickly rule out this case.
In the common case that the relevant commands in C.m1 and
C.m2 are writes to this of the lifecycle object, we can use data-
relevance to rule out ô2.m1 (in the disaliased ô1 6= ô2 case).
Even if the relevant writes are through non-this pointers (e.g.,
p.f = · · ·), our precise reasoning about aliasing and strong
updates typically handles this disaliased case quickly.
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6. A Jumping Analysis for the Heap and
Events

In this section, we bridge the gap between theory and practice
by combining the jumping framework from Section 3, the
data-relevance relation for the heap from Section 4, and the
formalization of Android lifecycle graphs in Section 5 to
design HOPPER, a practical jumping analysis for analyzing
event-driven Android programs. We achieve this by devising
a sound relevance relation for THRESHER [7], a precise
backward analysis that tightly integrates the results of an
up-front points-to analysis to refute separation logic queries.

We have given the intuition for the jumping strategy
that our relevance relation implements in Sections 1 and
2: when the analysis reaches an event boundary, it identifies
events that contain data-relevant commands, filters the set
of data-relevant events using control-feasibility constraints
based on Android lifecycle information, then jumps to the
remaining events. To realize this vision, we need to address
one remaining issue: using the semantics of lifecycle graphs
to perform control-feasibility filtering. We explain how we
solve this issue in Section 6.1 before presenting an algorithm
for computing relevant transitions that utilizes our solution in
Section 6.2.

6.1 Using Lifecycle Graphs for Control-Feasibility
Filtering

To utilize Android lifecycle information in our relevance re-
lation, we must connect the meaning of lifecycle graphs from
Section 5 (Condition 2) to the control-feasibility condition
of relevance soundness (Condition 1(b)). To maintain pre-
cision while jumping from one event to another, we must
ensure that we only perform jumps that respect the ordering
constraints encoded in Android lifecycle graphs (while simul-
taneously considering the necessary interleavings in order to
be sound). Our solution is to utilize the reachability and post-
dominance information encoded in the lifecycle graph. Since
our analysis is backward, only jumps from the current pro-
gram point to a preceding transition in a concrete execution
trace ending at the current program point are control-feasible.
Thus, we can filter a set of possibly relevant transitions using
control-feasibility by considering backward reachability in
the lifecycle graph.

If some event e is not backward-reachable from the current
event ecur, then we know that no concrete trace ending in ecur
can possibly have visited e first (following the semantics
of lifecycle graphs as concrete trace-accepting NFAs in
Condition 2). Thus, we can prune all events that are not
backward-reachable from ecur in the lifecycle graph G to
produce a pruned lifecycle graph G′ where ecur is a leaf node.

For example, we can use this technique to reason that if
the analysis is currently in the onClick event of Figure 3, the
onDestroy event has not yet occurred in the current lifecycle.
If we prune nodes and edges not backward reachable from the

current node onClick, we can prune the onDestroy event.
We do not need to consider jumps from ecur to pruned events.

The analysis can further refine the possible jump targets
using postdominance on the pruned graph G′. Consider the
postdominance tree rooted at ecur; that is, a tree where each
node is the immediate postdominator of its children. For any
set of potentially relevant events E, we only need to consider
the smallest set E ′ ⊆ E such that E ′ postdominates E. As
a consequence, for all e ∈ E, there is an e′ ∈ E ′ such that
e′ is between ecur and e in the postdominator tree rooted
at ecur. The correctness of this reasoning follows directly
from the meaning of lifecycle graphs and the definition of
postdominance: if ecur postdominates e′ and e′ postdominates
e, we can conclude that every trace accepted by the lifecycle
NFA that visits ecur always visits e′ beforehand without
visiting e in between.

To give a more concrete example using the HostActivity
lifecycle graph in Figure 3, we would like to able to deter-
mine that if the analysis is currently in the onClick event and
we know that only the onCreate and HostActivity.<init>
events are relevant, then we only need to jump to onCreate.
We can derive this fact by demonstrating that onClick

postdominates onCreate and onCreate postdominates
HostActivity.<init> in G′.

6.2 An Effective Relevance Relation for Android
Finally, we present our algorithm for computing Android-
specialized relevance information (Figure 13) and argue that
our algorithm is sound with respect to relevance soundness
(Condition 1). The algorithm implements the 〈R, `〉 Trel
judgment form for relevance relations and is executed each
time the A-JUMP rule is applied.

In the usual case where the current program label `cur is
not the entry label of an event, the algorithm behaves like
a standard path-sensitive backward analysis by choosing to
visit the predecessor labels of the current program label next
(lines 2–4). Clearly, this satisfies relevance soundness by
satisfying the control-feasibility condition (Condition 1(b)).

In the case that the current program label is the entry label
of an event, we perform jumps to a computed set of relevant
transitions using the data-relevance and control-feasibility
constraints described previously. Specifically, the algorithm
computes the set of data-relevant events that may write to the
current abstract state (lines 5–20) and then filters this set of
events using control-feasibility information from the lifecycle
graph of the current event (lines 22-37).

First, the algorithm computes the set of data-relevant tran-
sitions Trel for Rcur using the points-to analysis, as we have
explained in Section 4.2. In principle, the algorithm could
return the set Trel and still be sound by satisfying relevance
soundness Condition 1(a), but this would be imprecise be-
cause it would not take the ordering of events in the lifecy-
cle graph into account. The algorithm thus walks backward
from the calling method of each relevant transition trel (given
by method(trel)) in the call graph until it reaches an event
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Require: Current abstract state Rcur
Require: Current label `cur
Require: Program transition relation P
Require: Call graph CG
Ensure: Returned transition set Trel satisfies Condition 1

1: // not at event entry, follow predecessors
2: if `cur is not the entry label of an event then
3: return preds(`cur, P)
4: end if
5: // at event entry, get data-relevant events
6: Trel ← dataRel(Rcur) // compute Rcur Trel
7: Erel ← /0 // events leading to a relevant transition
8: for all trel ∈ Trel do
9: W ← [ method(trel) ] // method worklist

10: V ← /0 // track visited methods to handle CG cycles
11: while W 6= /0 do
12: Remove m from W
13: if m is event then
14: Erel ← { m } ∪ Erel
15: else if m /∈ V then
16: Add preds(m, CG) to W
17: end if
18: V ← { m } ∪ V
19: end while
20: end for
21: // filter data-relevant events with a lifecycle graph
22: ecur ← event(`cur)
23: G← specializeLifecyleGraph(class(ecur), CG)
24: EinG ← { e | e ∈ Erel ∧ e ∈ G }
25: EnotinG ← { e | e ∈ Erel ∧ e /∈ G }
26: Efeas ← /0 // data-relevant/control-feasible events in G
27: W ← [ ecur ] // lifecycle graph event worklist
28: V ← /0 // track visited events to handle cycles in G
29: while W 6= /0 do
30: Remove e from W
31: if e ∈ EinG then
32: Efeas ← { e } ∪ Efeas
33: else if e /∈ V then
34: Add preds(e, G) to W
35: end if
36: V ← { e } ∪ V
37: end while
38: return exitTrans(Efeas ∪ EnotinG)

Figure 13: An algorithm for selecting relevant transitions to
visit in event-driven, heap-manipulating Android programs.

on each path (loop from lines 8–20). The resulting set of
data-relevant events Erel contains the set of all events whose
execution might lead to a relevant transition. Returning the
exit transition of each of these events Erel would also satisfy
relevance soundness via a combination of Condition 1(b)
and (a) because by construction of Erel, these exit transitions
collectively postdominate all relevant transitions.

However, we can gain additional precision by removing
events from Trel based on control-feasibility information from
the lifecycle graph, which is what the algorithm does next.
Lines 22 and 23 compute a lifecycle graph specialized for

the class of the current event ecur, as we have described in
Section 5. The algorithm then partitions the set of relevant
events Erel based on their presence in the lifecycle graph
(lines 24–25). It does this because only the events EinG that
are in the lifecycle graph should be filtered in the subsequent
step—the events in EnotinG are unordered with respect to ecur
and the algorithm must return all of them for soundness.

The loop from lines 29–37 performs control-feasibility
filtering on nodes in the lifecycle graph. This loop computes
a subset Efeas of EinG that must be returned for soundness.
The loop walks backward from the current event ecur in the
lifecycle graph G and stops each time it reaches a relevant
event. The construction of Efeas ensures that at the end of the
loop, relevant events that are not backward reachable from
ecur will be excluded from the set Efeas, and as will events
postdominated by both ecur and some other relevant event.
We have argued for the soundness of excluding events based
on backward reachability and postdominance in the lifecycle
graph in Section 6.1.

Finally, the algorithm takes the union of the lifecycle
graph control-feasible relevant events Efeas and the unordered
relevant events EnotinG and returns their exit transitions as the
set of transitions that must be visited (line 38). The set Efeas ∪
EnotinG is a subset of the set Erel whose exit transitions already
satisfy relevance soundness. We have only removed events
from this set by soundly filtering based on lifecycle control-
feasibility information, so returning the exit transitions of
Efeas ∪ EnotinG also satisfies relevance soundness.

7. Empirical Evaluation
In order to evaluate the effectiveness of jumping analysis, we
sought to test the following experimental hypothesis:

Jumping is a scalable approach to flow/path-sensitive
inter-event analysis.

We hypothesize that augmenting a state-of-the-art path-
sensitive analysis with jumping increases precision by allow-
ing the analysis to reason about event orderings, yet limits the
number of event orderings that must be considered enough to
make analysis tractable.

Experimental Setup In order to test our hypotheses, we
chose to evaluate jumping analysis by attempting to prove
the absence of null dereferences in event-driven Android
programs. We chose this client because null dereferences
are a common problem in real-world Android apps, and the
event-driven nature of Android makes precisely verifying
the absence of null dereferences a significant challenge for
analyses (see Section 2.1 for a more detailed discussion of
this client). We implemented the practical jumping analysis
described in Section 6 in the HOPPER [1] tool, a variant of
the THRESHER [7] tool that builds on the WALA [3] analysis
infrastructure and the Z3 [14] SMT-solver. HOPPER extends
THRESHER by adding the ability to perform jumps, but the
tools are otherwise identical.
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The core of THRESHER is an engine for refuting queries
written in separation logic. Clients are implemented as
lightweight add-ons that take a program as input and emit
separation logic queries for the core refuter to process. We ex-
tended THRESHER/HOPPER with a new client for checking
null dereferences. The client leverages @Nonnull annotations
inferred by the NIT [2] tool to eliminate easy cases where
non-nullness of fields, function return values, or function
parameters is a flow-insensitive property. For each non-static
field read/write x.f or function call x.m() in the the pro-
gram, the client emits the necessary bug precondition x 7�null
as a query to refute in order to prove dereference safety.

We gave THRESHER and HOPPER a maximum budget
of 10 seconds to refute each query. This budget includes
all aspects of analysis time except for the initial call graph
construction (including HOPPER-specific aspects such as
computing data-relevance, specialization of lifecycle graphs,
etc.). We chose this budget through trial and error—we
found that larger budgets did not allow either tool to find
appreciably more refutations, whereas smaller budgets caused
too many timeouts for both tools. In the case that a tool cannot
refute a query within the budget, a timeout was declared
and the dereference was reported as a potential bug. We ran
all experiments in single-threaded configuration on a Mac
desktop machine running Mac OS 10.10.2 with 64GB of
RAM and 3.5GHz Intel Xeon processors.

Android applications can make use of concurrency—
events execute atomically if they run on the same thread,
but the execution of events can interleave if the events exe-
cute on separate threads. In addition, app developers can use
Java threads for multithreaded execution in the usual way.
THRESHER and HOPPER do not soundly account for either
of these features, as both tools assumes that all events execute
atomically on a single thread. Both tools also do not soundly
handle reflection and native code for which we do not have
handwritten stubs—these constructs are treated as no-ops.

Representing Android Event Dispatch Instead of analyz-
ing a synthetic harness that models the event dispatch per-
formed by the Android framework, THRESHER and HOPPER
analyze the actual logic for event dispatch in the Android
framework source code. To allow this, we pre-process each
app we analyzed with DROIDEL [8], a tool that explicates key
reflective calls in the Android framework by replacing them
with calls to automatically generated, application-specific
stub methods. We then use the ActivityThread.main

method of the framework as a single entrypoint for call graph
construction. There are several advantages to analyzing the
actual event dispatch code instead of using a harness: (1) we
do not have to worry about soundly and precisely modeling
the execution context of events, which can be a significant
challenge, and (2) generating a harness that precisely rep-
resents all ordering constraints is impractical, as we have
already argued in Section 1.

7.1 Proving Dereferences Safe with Jumping
We ran both THRESHER and HOPPER on the corpus of ten
open-source Android apps shown in Figure 14. The apps
range in size from 3K source lines of code to 57K source
lines of code. Since the primary challenge of analyzing these
apps comes from considering interleavings of their compo-
nent lifecycles, we also report the number of core lifecycle
components (i.e., Application, Activity, Fragment, Service,
and ContentProvider subclasses) and the total number of
events in each app. Our analysis must consider the possibility
of interleavings between events of different components for
soundness, but must preserve the ordering of events within
the lifecycle of a single component for precision. Recall from
Section 1 that the size of a reified harness that considers the
interleavings between just a single instance per component is
exponential in the number of components.

The “Unsafe Derefs” columns of Figure 14 summarize the
results of proving null dereference safety on our benchmark
apps with NIT, THRESHER and HOPPER. Each column
reports the number of unproven dereferences after running
the tool (where 0 represents proving all dereferences safe,
so lower is better). The results show that although about a
third of the dereferences can be proven safe using the flow-
insensitive analysis of NIT, the path-, flow-, and context-
sensitive THRESHER analysis was significantly more precise
(providing evidence that precision beyond flow-insensitivity
is necessary for proving dereference safety in Android apps).
The Hop Impr column gives the percentage reduction in
unsafe dereferences achieved by running HOPPER (where
100% represents proving all remaining dereferences safe,
so higher is better). HOPPER substantially improved on the
already-significant precision of THRESHER—on average,
HOPPER reduced the number of dereferences unproven by
THRESHER by more than half.

The difference between HOPPER and THRESHER is that
the jumping capability of HOPPER enables precise inter-event
analysis, as we predicted in our experimental hypothesis. We
noticed that when THRESHER reaches an event boundary
without proving safety, it continues precise backward analysis
of the event dispatch code of the Android framework and
(almost always) times out without finding a proof. By contrast,
HOPPER jumps from an event boundary to a (typically) small
set of relevant events and is frequently able to prove safety
based on precise and tractable inter-event reasoning.

The final Total Hop Proven column shows that for every
benchmark, HOPPER proved at least 90% of the dereferences
safe (92% safe on average). We note that previous state-of-the-
art work in null dereference checking for ordinary, non-event-
driven Java programs (e.g., [22–25]) reports proving 84-91%
of dereferences safe on average. Achieving similar precision
results in the presence of the formidable scalability challenges
introduced by an event-driven setting is a significant advance.
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Benchmark Size Unsafe Derefs HOPPER Effectiveness

Bench KLOC Com Evt Deref Nit Thr Hop (Impr %) Proven (%) Time (s) Time/deref (s)
DrupalEditor 3 10 127 790 574 157 66 (58) 92 717 0.9
NPR 5 14 120 829 617 181 50 (72) 94 691 0.8
Last.fm♠ 11 12 174 4840 3528 950 474 (50) 90 5922 1.2
DuckDuckGo 13 34 272 1901 1277 514 144 (72) 92 1751 0.9
GitHub 19 70 572 3603 2520 583 284 (51) 92 3749 1.0
SeriesGuide♠ 32 80 871 8184 5438 987 625 (37) 92 13929 1.7
ConnectBot♠ 33 13 201 2190 1562 316 75 (76) 97 880 0.4
TextSecure 38 63 588 5921 3643 621 272 (56) 95 2306 0.4
K-9Mail 55 52 750 19032 11968 3067 1988 (35) 90 27197 1.2
WordPress♠ 57 98 1325 15000 9735 2402 1341 (44) 91 18596 0.9
Total 266 446 5000 62290 40862 9778 5319 (53) 92 75738 0.9

Figure 14: Proving dereference safety in event-driven Android apps with HOPPER. The “Benchmark Size” column grouping
gives the number of (thousands of) lines of application source code (KLOC), lifecycle components (Com), and events (Evt)
for each benchmark. The “Unsafe Derefs” column grouping lists the number of possibly-unsafe dereferences in each app
before analysis (Deref) followed by the number remaining after running NIT (Nit), THRESHER (Thr), and HOPPER (Hop).
The HOPPER column also lists the percentage reduction in unproven derefs of HOPPER over THRESHER (Impr %). The final
column grouping gives the percentage of derefs proven safe by HOPPER (Proven (%)), the time taken to process all derefs
(Time (s)), and the time taken per deref (Time/deref (s)). The “Total” row gives the sum of all numeric rows and the geometric
mean of the (Impr %), Proven (%), and Time/deref rows. ♠’s indicate benchmarks where our partial manual triaging revealed
a true bug.

7.2 Manual Triaging of Alarms
To understand why HOPPER sometimes fails to prove safety,
we manually triaged a sample of 20 unproven dereferences
from each of our 10 benchmark applications (a total of 200
alarms). We classified the unproven dereferences into three
categories (a) true bugs, (b) scalability issues, or (c) precision
issues. We placed a dereference into the true bugs category
if we found a concretely feasible sequence of events would
lead the application to throw a NullPointerException. We
classified a dereference as a scalability issue if we determined
that HOPPER possessed the necessary precision to prove
the dereference safe, but was not able to do so within the
10 second budget. Finally, we labeled a dereference as a
precision issue if HOPPER did not have the precision required
to prove the query correct. This category includes both
analysis imprecision (e.g., loop invariant inference, container
abstraction) as well as modeling imprecision (e.g., Android
UI models, Android/Java reflection and native code).

The results from our manual triaging are shown inset. In
the 200 alarms we examined, most dereferences that cannot
be proven safe are due to precision issues (172). Of these
172 alarms, 132 would require more precise modeling of
the Android framework and 41 are due to more fundamental
analysis imprecision. Many of Android modeling issues are
additional constraints on the interaction between different
lifecycle components that we do not account for. For example,
proving safety of some dereferences required understanding
details such as the order in which Activity’s launch each other
or the fact that a callback on a Button cannot be invoked if
the visible attribute of the Button is set to false. Handling

all of the corner cases of the complex Android framework is
a challenging task that we leave to future work.

(a) Bug (b) Scalability (c) Precision
11 17 172

Nearly all of the the analysis imprecision issues stem from
imprecise abstraction of containers and strings. Both of these
precision problems are orthogonal to HOPPER’s approach to
analysis of event-driven programs and could in principle be
addressed by enhancing HOPPER with better abstractions or
solvers (e.g., [16] for containers and [20] for strings).

The fact that only 17 of the 200 unproven dereferences we
examined could not be proven safe due to scalability issues
strengthens our conviction that jumping is an effective ap-
proach for tractable analysis of event-driven systems. Though
HOPPER is not perfect, it proves an impressive 92% of the
dereferences it encounters. The vast majority of proof failures
are due to our incomplete modeling of Android rather than
scalability issues.

Bugs Found We found eleven bugs in four different apps:
Last.fm (1), Seriesguide (5), ConnectBot (4) and WordPress
(1). The bug in WordPress had already been eliminated by
the developers, though in an indirect way (replacing the
functionality in the buggy class with an entirely new class).
We sent pull requests fixing the bugs in each of the remaining
projects. The developer of SeriesGuide and ConnectBot
accepted all of our pull requests. The developers of Last.fm
have not yet responded to our pull requests. This project
is updated infrequently and has a backlog of pending pull
requests.
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Of the eleven bugs that we found, five of them involved
misunderstanding or misusing the Android lifecycle in some
way. This strengthens our belief that the lifecycle is a source
of confusion for developers that would be well-served by
better analysis tools. We further note that four of the five
bugs involved interactions between the lifecycles of different
components. These bugs could not be found by an unsound
approach that models the lifecycle of each component, but
does not consider interleaving lifecycles of different compo-
nents.

Other Instantiations of the Framework In addition to us-
ing jumping for effective analysis of event-driven programs,
we have also considered an alternate instantiation of the
jumping framework for analysis of ordinary (that is, non-
event-driven) Java programs. This instantiation relies on data-
relevance information alone and chooses to jump only when
the safety of the query may rely on a flow-insensitive in-
variant established earlier in the program. We applied this
instantiation to the problem of proving downcast safety in the
DaCapo2006 [5] benchmarks and observed a similar preci-
sion improvement of HOPPER over THRESHER. See Black-
shear [6, Chapter 6] for more details on this instantiation of
the framework.

8. Related Work
Static Analysis of Android Applications Numerous tech-
niques have considered static analysis of Android apps, but to
the best of our knowledge, few have tackled the problem that
we address in this paper: soundly modeling the interleaving
of different component’s lifecycles. The harness method gen-
erated by the state-of-the-art FLOWDROID [18] tool soundly
models the sequential execution of component lifecycles, but
not their interleaving. This unsound modeling avoids the cost
of computing a product graph as described in Section 1, but
will miss bugs like the one explained in Section 2 along with
the five lifecycle-sensitive bugs we found in Section 7.

ANADROID [21] is the only tool we are aware of that
explicitly claims to handle interleavings between lifecycles
of different components. Their entry point saturation tech-
nique efficiently computes a fixed point over all possible
event ordering. However, this computation does not take
intra-lifecycle event orderings into account and thus will
lose precision. We found this kind of precision to be cru-
cially important in Section 7—HOPPER’s improvement over
THRESHER comes entirely from more precise and scalable
inter-event reasoning.

Analysis of Asynchronous and Event-Driven Programs
Identifying a small set of commands relevant to the query
and their corresponding events using data-relevance exploits
the fact that the data dependencies of a program are often less
complex than its control dependencies in practice. Recent
techniques for concurrent program verification [17] and bug
finding [10] have used a similar insight: an effective way

to prevent the complexity of a concurrent program analy-
sis (static or dynamic) from growing exponentially in the
number of threads is to design the analysis around tracking
data dependencies rather than control dependencies. Jumping
based on a relevance relation allows the analysis to exploit
both data-relevance and control-feasibility information to
improve scalability, and jumping can be applied in sequential,
concurrent, and event-driven settings.

Jhala et al. show that the IFDS framework can be extended
to enable analysis of event-driven programs and present
a goal-directed algorithm for proving safety properties in
their extended framework [19]. Their focus is on handling
unordered events whose execution may interleave, whereas
we focus on the problem of preserving the ordering between
lifecycle events whose execution is atomic.

Program Slicing Identifying commands that may affect a
query using a data-relevance relation is closely related to
program slicing [31]. Our approach is most closely related
to semantic slicing [9, 28], since we perform a slice with
respect to an abstract state rather than a seed command.
A key difference between our data-relevance relation and
semantic slicing is that we only compute the first step of a
slice (i.e., the immediately relevant commands) rather than
computing a transitive closure of relevant commands as a
complete slice does. In many cases, taking a complete slice
includes the majority of the program and is prohibitively
expensive to compute. Our approach is much more efficient
than the obvious approach of taking a full slice with respect
to the query and analyzing the sliced program.

9. Future Work
In future work, we plan to demonstrate the generality of our
framework for jumping analyses by instantiating it with new
data-relevance/control-feasibility relations and applying it
to different problem domains. A logical next step would be
trying to adapt jumping analysis to the analysis of concurrent
programs (both event-driven and threaded). For example, we
could combine the data-relevance relation from Section 4
with a control-feasibility filter that leverages information
about synchronized blocks and graphs of thread spawning
structure (in a manner similar to our utilization of Android
lifecycle graphs in Section 6). We are hopeful that such a
strategy would greatly enhance the scalability of the analysis
by decreasing the number of thread interleavings that must
be considered while jumping, just as the analysis described in
this paper significantly reduces the number of event orderings
that the analysis needs to consider.

10. Conclusion
We have presented jumping, a general framework for selec-
tive control-flow abstraction that can be applied to any goal-
directed backward abstract interpretation. The key idea be-
hind jumping is an intertwining of data-relevance and control-
feasibility reasoning that enables an analysis to soundly jump
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to a small set of relevant program transitions. We instantiated
our jumping framework with HOPPER, a tool for performing
precise and scalable reasoning of event-driven Android apps
by leveraging heap dependencies for data-relevance and An-
droid lifecycle graphs for control-feasibility. HOPPER proved
the safety of 90–97% of dereferences in the apps it analyzed
and allowed us to isolate eleven real bugs.
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