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Abstract. Electronic, software-managed mechanisms using, for example, radio-
frequency identification (RFID) cards, enable great flexibility in specifying ac-
cess control policies to physical spaces. For example, access rights may vary
based on time of day or could differ in normal versus emergency situations.
With such fine-grained control, understanding and reasoning about what a policy
permits becomes surprisingly difficult requiring knowledge of permission levels,
spatial layout, and time. In this paper, we present a formal modeling framework,
called ACCESS NETS, suitable for describing a combination of access permis-
sions, physical spaces, and temporal constraints. Furthermore, we provide evi-
dence that model checking techniques are effective in reasoning about physical
access control policies. We describe our results from a tool that uses reachability
analysis to validate security policies.

1 Introduction

Access to physical spaces such as buildings, museums, airports, and chemical plants
is increasingly mediated by electronic, software-controlled mechanisms. These mech-
anisms combine traditional human mediation, mechanical lock-and-keys, as well as
electronic technologies such as radio-frequency identification (RFID) cards. The use
of computerized access control in these systems is on the rise, as they enable highly
flexible policies. Computerized access control policies enable administrators to add or
remove access to key personnel or specify policies that may vary depending on the
time of the day (working hours versus evenings), day of the week (weekdays versus
weekends), and months in the year (summer versus fall). These policies can even be
automatically changed in response to emergencies such as a fire in the building—in
contrast to access policies mediated using only mechanical lock-and-key.

In this paper, we address formal modeling and verification of access control policies
for physical spaces. Our approach combines dynamic models of access control policies
in physical spaces with an application of model-checking techniques. In particular, we
make the following contributions:

– We present a formal framework ACCESS NETS for the modeling of access control
in physical spaces, such as offices or buildings (Sect. 3). Our framework models
the topology of the physical space, as well as the movement of personnel with
various access levels in this space. Our model of access control accommodates rich
specifications, including those that depend on time.
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Access Levels

P1 The visitors may only be in the museum between 9:00 a.m. and 5:00 p.m.
P2 The visitors may only enter the archive with guard escort during museum hours.
P3 The curators may enter the museum and the archive at any time.

Fig. 1. A floor plan, access control roles (top) and access control policy (bottom) for a museum.

– We demonstrate a new and compelling application of formal verification tech-
niques, like model checking. While software-managed access control systems may
be large and complex, we see that well-known state-space reduction techniques are
surprisingly effective in reducing the size of the model. Thus, we identify a new
domain where model checking techniques are particularly apt (Sect. 4).

– We provide evidence for the applicability of our techniques through an initial case
study (Sect. 5). In particular, we observe that our ACCESS NET-specific reduction
techniques are quite effective in reducing the state space.

Motivating Example. Figure 1 outlines a simple floor plan and an access control policy
for a fictitious museum. The museum has a main entrance leading into a lobby. The
lobby in turn leads into a gallery, which is connected to an archive. The main entrance
and the entrance to the archive have key card readers. The archive entrance is staffed by
a guard during opening hours. The access control policies are also described in Fig. 1.

Given such a policy specification, we wish to verify that the access control mecha-
nisms support it. For example, is it possible for a visitor to be in the archive after hours?
Can curators access the archive at any time? In general, it is hard to manually consider
all the relevant scenarios, especially for larger buildings with more complex access con-
trol policies. Therefore, we desire a formal framework that captures the relevant details
of such systems and enables automatic verification.

2 Overview

In this section, we present an overview of the main features in the ACCESS NETS model,
using the museum example shown in Fig. 1. Note that we are not interested in details
like the precise spatial layout of the building (e.g., coordinates). Thus, we seek a graph-
like model that captures connectivity but abstracts spatial layout.

Drawing inspiration from Petri nets [19], we use tokens to model persons and tran-
sitions to capture the movement of persons from one place to another. Each transition
has at least one incoming and one outgoing arc. Transitions move tokens one-way from
their input places to their output places. This captures common situations wherein, a
key is needed to enter a room but not needed to exit. The ACCESS NET model for the
museum example has the graph structure shown in Fig. 2.
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main(in) gallery(in) archive(in)

outside lobby gallery archive

main(out) gallery(out) archive(out)

Fig. 2. The graph structure of the ACCESS NETS model for the example in Fig. 1.

Token Types. Each token in our model has an associated type that represents its access
level (e.g., visitor, guard, curator, administrator, or supervisor). Transitions are enabled
based on the number of tokens of each type from each of their input places. For example,
the rule that a visitor may only enter the archive under guard escort (rule P2 in Fig. 1)
is shown in Fig. 3. Both the incoming and outgoing arcs of the archive(in) transition are
annotated with 1 guard and 1 visitor. These labels specify the enabling condition that
there must be a guard and a visitor present in the gallery.

Transition Firings. Transitions whose input conditions are satisfied may fire non-
deterministically to yield a next state based on the output conditions of the transition.
Thus, for example, to capture that a curator may enter the archive herself without guard
escort (rule P3), we can simply add a separate transition with arcs from the gallery and
to the archive each labeled with 1 curator.

Time. Some transition rules depend on the time of day. For example, anyone may
enter the museum between 9:00 a.m. and 5:00 p.m. To model time, we add a global
clock to an ACCESS NET state and a set of time intervals to the enabling condition of
each transition. For instance, we can associate a set of times [9, 17] with the main(in)
transition in Fig. 3, so that it is enabled between 9:00 a.m. and 5:00 p.m.

Mandatory Transitions. Recall that visitors may be in the museum only between 9:00
a.m. and 5:00 p.m. (rule P1), so not only do we allow visitors to enter during those
hours, but we must require visitors to leave when the museum closes at 5:00 p.m. To do
so, we introduce the notion of a mandatory transition. At any state, if any mandatory
transition is enabled, one of them must be taken next (see Sect. 3). In this scenario, we
add mandatory transitions from the archive, gallery, and lobby to the outside requiring
the visitors to leave during the time range [17, 17.5] (i.e., 5:00 p.m. to 5:30 p.m.).

3 Access Nets

In this section, we provide a formalization of ACCESS NETS. The formal model provides
a basis for verification techniques (Sect. 4) and the case studies (Sect. 5).

places p ∈ P
transitions t ∈ T

arcs f ∈ F

Topology. The topology of a building is modeled using a di-
rected graph, whose nodes include a set of places P and a set
of transitions T . The arcs, F ⊆ (P × T ) ∪ (T × P ), connect
places to transitions, and transitions back to places. The inset
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Fig. 3. The ACCESS NET model from Fig. 2 with access controls specified.

box to the right summarizes the notation used. The incoming arcs for a transition t indi-
cate the places from which t removes tokens, and the outgoing arcs indicate the places
to which t adds tokens (cf. Definition 3). Pictorially, places are denoted as circles and
transitions as rectangles (cf. Fig. 2).

types s ∈ S
markings m : (P × S)→ N

global time τ ∈ [τmin, τmax]
enabled times H : T → P([τmin, τmax])

state σ = (m, τ)

State: Access Types, Markings, and
Time. To model various access con-
trol roles, each token is annotated
with a type drawn from a set S.
For example, in the museum exam-
ple discussed previously, the set S
is {visitor, guard, curator}, represent-
ing various roles. Persons are represented by tokens of particular types (i.e., with par-
ticular access roles). As part of the state, we describe where people are with a marking.

Definition 1 (Marking). A marking m is a function m : (P × S)→ N that represents
the number of tokens of type s in place p.

Pictorially, a marking is denoted by drawing m(p, s) dots labeled s at place p.
To model temporal access control rules, we introduce a global clock τ that is a

value in a fixed range [τmin, τmax]. For example, we may choose τmin = 0 and τmax =
24 representing the hours of day. The framework is agnostic to translation of these
values to “real time.” Therefore, time can be modeled at the appropriate granularity
(e.g., seconds, minutes, hours, and days). Time is updated in the ACCESS NET model
by using a special tick transition. For each transition t, we define the “hours” function
H : T → P([τmin, τmax]). For simplicity, H(t) is assumed to be the union of finitely
many disjoint intervals for each transition t, specifying the time instants during which
the transition t can be enabled (cf. Definition 2). Diagrammatically, H(t) is denoted by
writing a range next to the transition (e.g., [9, 17] in Fig. 3). The absence of such an
annotation indicates that the transition is time independent (i.e., H(t) is [τmin, τmax]).

A state σ of an ACCESS NET is then the pair (m, τ) consisting of its current marking
and its current time.

State Transitions. The execution of an ACCESS NET models the movement of people
throughout the building and the progression of time. Recall from Sect. 2 that our model
contains mandatory transitions M ⊆ T that are taken whenever enabled. Definition 2
describes the enforcement of mandatory transitions.
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State transitions σ −→ σ′ denote a move from current state σ to a next state σ′.
There are two main types of state transitions: (1) token transitions model the movement
of people, and (2) tick transitions model the progression of time.

Token Transitions. An ACCESS NET has a weight function W : (F × S) → N that
gives the number of tokens of a type s that move along each arc f during a transition.

Definition 2 (Enabled Transition). Transition t is enabled in state σ = (m, τ) iff

1. The current time belongs to the permissible range: τ ∈ H(t).
2. There are sufficiently many tokens in the input places: W (f, s) ≤ m(p, s) for all
f : (p, t) ∈ in(t) and for all s ∈ S.

3. If t /∈M , then every mandatory transition tm ∈M is not enabled.

where in(t) def= {(p, t) ∈ F | p ∈ P} and out(t) def= {(t, p) ∈ F | p ∈ P} (i.e., the
incoming and outgoing arcs of transition t, respectively).

An enabled transition can move tokens from its input places to its output places.

Definition 3 (Token Transition). Given state σ = (m, τ) and enabled transition t, a
token transition results in a new marking m′, such that

m′(p, s) = m(p, s)−W (f, s), ∀ s ∈ S, f : (p, t) ∈ in(t).
m′(p, s) = m(p, s) +W (f, s), ∀ s ∈ S, f : (t, p) ∈ out(t).

For simplicity in presentation, in(t) and out(t) are assumed disjoint, that is, there are no
self-loops. Self-loops can be eliminated by the introduction of dummy transitions and
places [19]. We write such a token transition as (m, τ) t−→ (m′, τ).

Tick Transitions. Tick transitions model the elapse of time. For any state σ = (m, τ)
such that τ ∈ [τmin, τmax), and no mandatory transitions are enabled, the global time
may progress to any time in (τ, τ ′] where τ ′ = min(τM , τmax) where τM > τ is the
next time when some mandatory transition could be enabled. We write a time transition
from τ to τ ′ as follows: (m, τ) tick−→ (m, τ ′). When checking the model, not all times
values τ need to be considered. Instead, time is abstracted using a region construction
along the lines of Alur and Dill [1]. To simplify some of formalization, we also define
idling transitions that do not change the state, which we write as σ ε−→ σ.

Execution. An execution of an ACCESS NET consists of a finite sequence of states
σ0, σ1, . . . , σn wherein each state σi+1 is obtained from the previous state σi by a le-
gal state transition as described above. For example, we write a sample execution as
follows: σ0

t1−→ σ1
ε−→ · · · tick−→ σn−1

t2−→ σn. We consider finite sequences of
states since we are interested in executions in which time remains within [τmin, τmax].
However, temporal logics are interpreted over infinite state sequences (or trees) [5]. We
extend our finite sequences to infinite ones by adding infinitely many idling transitions.

Conservation. Since tokens represent people, there is a physical constraint that all
state transitions σ −→ σ′ conserve the number and type of tokens. We enforce this
by requiring that all transitions t are conservative. Conservative transitions is not an
inherent limitation to our approach but rather a check for more faithful models.
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Definition 4 (Conservative Transitions). A transition t is conservative iff for every
access type, the sum of tokens of that type on incoming edges to t is equal to the sum of
that type on outgoing edges, that is, for all s ∈ S,∑

f∈in(t)

W (f, s) =
∑

f∈out(t)

W (f, s) .

If all transitions are conservative, then any execution is also conservative capturing the
desired physical constraint (see our companion technical report [10] for a proof).

For reference, we gather all of the pieces of an ACCESS NET as described above
in our companion technical report [10]. There are related Petri net models, e.g., with
typed tokens [16] and with predicates on transitions [11]. Here, we have incorporated
the aspects that are critically necessary to capture access control policies.

4 Verification of Access Properties

In this section, we consider verifying properties of ACCESS NETS. Our primary goal is
to check whether tokens of a certain type can be present in a certain room in a certain
time range; for example, a property of interest could say, “There is never a visitor in the
archive before 9:00 a.m. or after 5:30 p.m.” This restricted class of reachability proper-
ties enables us to perform aggressive state-space reduction. It is possible to extend our
reductions to verify ACTL∗ properties, following Clarke et al. [6].

Given an ACCESS NET A with a place p and a token type s, we say p is token
reachable for s at time τ if and only if σ0 −→∗ σn where→∗ is the transitive closure of
the transition relation, state σ0 is the initial state, and if σn = (mn, τn) thenmn(p, s) >
0 and τn = τ . As expected, we can verify such properties using model checking.

The state space of an ACCESS NET blows up quickly as we increase the number of
places, transitions, and token types, as we see in our case study (Sect. 5). Fortunately,
there are several natural reductions that can be performed that respect the token reach-
ability property of interest. Our reductions generate a new ACCESS NET that abstracts
the original in the sense that it is sound with respect to token reachability. Stated more
precisely, letA′ be a reduced ACCESS NET ofA, and let π be the function mapping each
place of A to its corresponding place in A′. Then, the reduction is sound with respect
to token reachability if whenever π(p) is not reachable for s at time τ in A′, then p is
not reachable for s at time τ in A. In other words, reduction preserves safety. Further-
more, two of our three reductions, namely the unlocked doors and redundant transition
reductions, are complete with respect to token reachability.

The two most interesting reductions use the following procedure (cf. Clarke et
al. [6]): (1) we define an equivalence relation pl∼ over places; (2) we define a new AC-
CESS NET A′ as the quotient of A with respect to pl∼.

Definition 5 (Access Net Reduction). LetA be an ACCESS NET and let pl∼ be an equiv-
alence relation over places. This equivalence relation induces the following equivalence
relation over arcs:

f1
ar∼ f2 iff p1

pl∼ p2 and t1 = t2, and
either f1 = (p1, t1) and f2 = (p2, t2)

or f1 = (t1, p1) and f2 = (t2, p2)
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Let π map a place or arc in A = (P, T, . . .) to its respective equivalence class (under
pl∼ or ar∼). We also write π−1 for the pre-image of this mapping. Then, A′ = (P ′, T ′, . . .)
is a reduced ACCESS NET under equivalence relation pl∼:

P ′ = π(P ) F ′ = π(F )

T ′ = T M ′ = M S′ = S

τ ′0 = τ0 τ ′min = τmin τ ′max = τmax H ′ = H

W ′ : (f ′, s) 7→
∑

f∈π−1({f ′})

W (f, s) m′0 : (p′, s) 7→
∑

p∈π−1({p′})

m0(p, s)

where π(P ) is the image of P under π and π(F ) is the image of F under π. That is, we
map all places and arcs to their equivalence classes (first line); transitions, mandatory
transitions, token types, time constraints and the clock stay the same; weights on arcs
and the initial marking are combined by summing the number of tokens of each type.

It remains to be shown thatA′ as defined above is actually an ACCESS NET. In particular,
the main property that must be checked is that conservation is preserved, which is shown
in our companion technical report [10]. We now define several reductions on ACCESS
NETS that use this idea of defining equivalence relations over places.

Unlocked Doors Reduction. If the only barrier between two rooms is an unlocked
door, then for the purpose of checking reachability, the two rooms can be merged into
a single room.

Definition 6 (Equivalent up to Unlocked Doors). A room p2 can be reached through
one unlocked door from a room p1 6= p2, written unlocked(p1, p2), if and only if for
every security role s, there is some transition t such that

1. We have H(t) = [τmin, τmax], that is, the transition is enabled at all times.
2. We have pred(t) = {p1} and succ(t) = {p2} where pred and succ are the functions

mapping a place to its sets of predecessor and successor places, respectively. In
other words, t is a transition from p1 to p2 and does not take tokens from or send
tokens to any places other than p1 and p2.

Two rooms p1 and p2 are equivalent up to unlocked doors in one-step, written p1
pl∼1

p2, if and only if unlocked(p1, p2) and unlocked(p2, p1). The equivalence relation for
unlocked doors is simply the reflexive-transitive closure of pl∼1.

Figure 4(a) shows a simplified ACCESS NET of the office building (ECOT) used in
our case study (see Sect. 5) with two token types s and f (to represent students and
faculty, respectively). Figure 4(b) shows the result of applying the unlocked doors re-
duction to Fig. 4(a). We see that the two places hall 1 and hall 2 have been merged into
a place [hall 1], as the two places allow free passage of both s and f in both directions.
After the unlocked doors reduction, the reduced model technically would have unneces-
sary self-loop transitions between each new representative and itself. These transitions
can be deleted from the model.
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office 1 hall 1 hall 2 office 2

s s

f f

ff

s s

f f

ff

ss
f f

ss

ff

(a) Simplified ACCESS NET before any reductions.

office 1 [hall 1] office 2

s s

f f

ff f f

ss

ff

(b) After the unlocked doors reduction.

[office 1] [hall 1]

s s

f f

ff

(c) After equivalent rooms and re-
dundant transitions reductions.

Fig. 4. Applying reductions to a simplified ACCESS NET for an office building.

Redundant Transitions Reduction. If two transitions represent identical access rules
and move tokens from the same sources to the same destinations, then one of the two
transitions can be deleted. This reduction does not follow the pattern of defining an
equivalence relation on places for the sake of merging places. Instead if two transitions
are equivalent according to the following definition, then one of the transitions can be
arbitrarily deleted.

Definition 7 (Equivalent up to Redundant Transitions). Two transitions t1 and t2
are equivalent up to redundant transitions, written tr∼, iff:

1. H(t1) = H(t2), that is, the transitions are enabled at exactly the same times.
2. There exists a bijective mapping µ : in(t1) → in(t2) such that for every place p1

where (p1, t1) ∈ in(t1), then whenever (p2, t2) = µ(p1, t1), we have:

p1 = p2 and W ((p1, t1), s) = W ((p2, t2), s) for every s ∈ S .

3. There exists a bijective mapping ν : out(t1) → out(t2) such that for every place
p1 where (t1, p1) ∈ out(t1), then whenever (t2, p2) = ν(t1, p1), we have:

p1 = p2 and W ((t1, p1), s) = W ((t2, p2), s) for every s ∈ S .

This definition says that two transitions are equivalent if they are enabled at exactly the
same times and if their incoming and outgoing edges can be put into a bijective corre-
spondence of equivalent edges. It is straightforward to show that tr∼ is an equivalence
relation. For each equivalence class of transitions, all of the transitions in that class can
be deleted except for one arbitrary representative.



Access Nets: Modeling Access to Physical Spaces 9

Equivalent Rooms Reduction. If two rooms are equivalent in the sense that they are
only reachable from the same rooms according to the same access control rules, then
the two rooms can be merged into a single room.

Definition 8 (Equivalent Rooms). First, we define two transitions as being equivalent
up to q1 = q2, written

q1=q2∼ in the same way as tr∼ from the redundant transitions
reduction with one change. Instead of requiring of µ and ν that p1 = p2, we require
only that

p1 = p2 or p1 = q1 and p2 = q2 or p1 = q2 and p2 = q1

That is, the transitions are redundant under an assumption that q1 = q2. Then two
rooms q1 and q2 are equivalent rooms, denoted q1

pl∼ q2 if and only if

1. There exists a bijective mapping µ : pred(q1) → pred(q2) such that for every
transition t ∈ pred(q1), we have t

q1=q2∼ µ(t).
2. There exists a bijective mapping ν : succ(q1) → succ(q2) such that for every

transition t ∈ succ(q1), we have t
q1=q2∼ ν(t).

It is straightforward to show that pl∼ is an equivalence relation. Figure 4(c) shows the
result of applying the equivalent rooms and redundant doors reductions to Fig. 4(b).
We see that office 1 and office 2 have been merged into a single place [office 1]. These
reductions correspond naturally to our intuition, as from the perspective of token reach-
ability, all of the offices and all of the halls look the same as long as they are connected
to each other though “unlocked areas.”

All three reductions, unlocked doors, redundant transitions, and equivalent rooms,
are sound with respect to token reachability. Furthermore, unlocked doors and redun-
dant transitions are complete with respect to token reachability (though equivalent
rooms is not). Proofs of these facts are given in our companion technical report [10].
At a high-level, the reductions merge “equivalent” places that satisfy the same set of
properties, in order to construct an abstraction. This abstraction is similar in ways to
canonical abstraction in the TVLA program analysis framework [22].

Untiming. Regarding tick transitions, the definition for state transitions allows arbi-
trary time steps and describes an infinite state space. However, only the the initial time
and the boundaries of time intervals referenced by time-dependent transitions need to be
considered during verification. To this end, we apply a standard untiming construction
as described in Alur and Dill [1]. The untiming construction is especially simplified in
the case of ACCESS NETS since the model has a single timer.

5 Case Study: Office Security

To validate the feasibility of our approach, we modeled a part of the Engineering Center
Office Tower (ECOT) at the University of Colorado, Boulder and a set of synthetic
access control rules. Furthermore, we have completely modeled an actual, large office
building with multiple floors, occupied by many businesses using a real access control
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Table 1. Dependence of explicit-state model checking using Spin on the size of the building for
verifying a valid property. In each test case run, we show the size of the ACCESS NET (number of
rooms, transitions, and persons) along with the number states observed by Spin, the total memory
used by Spin, and the total time for the model checking to run.

Model Rooms Transitions Persons States Memory (MB) Time (s)

ECOT 8 17 38 3 1603 13.9 0.1
ECOT 7,8 50 120 3 20429 22.7 2.7
ECOT 6,7,8 92 222 3 93578 103.6 22.8

policy. With these models, we applied explicit-state model checking using Spin [15]
and bounded model checking [4] using our implementation based on the Yices SMT
solver [8] (other verification techniques could apply). With this study, we are interested
in how the building and access control policy is encoded as an ACCESS NET model
and how feasible is model checking. We also look at how much the state space can be
reduced using the techniques from Sect. 4.

To create our ACCESS NET model of ECOT, we examined CAD drawings of the
sixth, seventh, and eighth floors of the building (which is where the Computer Science
Department is located). The access control policy involved three access types, student,
faculty, and maintenance and consisted of the following rules:

1. Any faculty can enter any office. Anybody in an office can exit it.
2. Any maintenance can enter a mechanical room or janitorial room. Anybody in one

of these rooms can exit it.
3. Any student can only enter a conference room accompanied by a faculty and only

between 9:00 a.m. and 5:00 p.m. Conference rooms can be exited freely.

As perhaps expected, the state space grows quickly even for our relatively small
models by either increasing the number of places and transitions or the number of to-
kens. Fortunately, the topology and access policies that we work with are amenable to
reduction, which apply regardless of model checking technique. We first consider veri-
fication of a valid property using Spin on unreduced models and look at the growth in
verification resources as a function of model size. Then, we look at the cost of discov-
ering property violations. We consider not only explicit-state model checking but also
bounded model checking, which is insensitive to number of tokens. Finally, we look at
the effectiveness of reduction.

Verifying Valid Properties. Table 1 shows the relationship between the resources re-
quired for explicit-state model checking and number of rooms and transitions in an
ACCESS NET, while Table 2 considers the dependence on number of persons. All of our
tests were executed on a Linux server with 32 GB memory and sixteen 2.93GHz Intel
Xeon X7350 CPUs. In the test runs in these two tables, we checked that “a student can
never be in a particular office (826) and a faculty member can never be in a specific
mechanical room (805A),” which is valid in these models. There were no uses of time
in any of these models (i.e., we did not use rule 3 regarding the conference rooms here).

In Table 1, we see that Spin works with reasonable memory and time constraints,
but the state space blows up quite quickly as we add additional rooms (by successively
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Table 2. Dependence of explicit-state model checking using Spin on the number of persons in
the model for verifying a valid property. We started with one person of each type and then suc-
cessively added one faculty at a time.

Model Rooms Transitions Persons States Memory (MB) Time (s)

ECOT 8 17 38 3 1603 13.9 0.1
ECOT 8 17 38 4 12523 15.8 0.7
ECOT 8 17 38 5 70763 26.1 4.3
ECOT 8 17 38 6 318283 89.1 22.4
ECOT 8 17 38 7 1209355 405.3 97.9

adding the rooms on the 7th and 6th floors). In these tests, we started one token of each
type in a public room on the 8th floor.

For increasing number of persons, we see the number of states considered by Spin
also grows rapidly, as does the increase in memory and time consumption, as shown
in Table 2. In these tests, we started with one token of each type and then successively
added one token of type faculty at a time. We chose the faculty type, as it leads to the
largest state space.

Discovering Property Violations. Both of the previous examples checked properties
that could not be violated (and thus required an exhaustive exploration of the state
space). Here, we consider violated properties. First, we consider the same set of ACCESS
NET models from Table 1 that do not use timed transitions. The violated property was
“a faculty member cannot be in a particular office on the 8th floor (826).” The test runs
are shown in the top half of Table 3.

We then looked at a set of timed models that adds the conference room rule (rule 3),
that is, that a student can only enter a conference room with a faculty member between
9:00 a.m. and 5:00 p.m. In this case, the initial state was a student and a faculty on
the 7th floor at 9:00 a.m. The violated property was “a student cannot be in the confer-
ence room (831) at 6:00 p.m.” This property can be violated by the faculty letting the
student into the conference room between 9:00 a.m. and 5:00 p.m. and then the student
remaining in the room after 5:00 p.m. until 6:00 p.m.

Table 2 shows rapid explosion in the number of states considered by Spin as we
increase the number of tokens. A potential advantage of bounded model checking is its
insensitivity to number of tokens, and thus, we applied it to the property violation cases
of Table 3. Table 4 presents these results. We confirm that the Yices-based bounded
model checker finds the same witnesses as Spin in a reasonable amount of time and
space. Note that our BMC implementation is currently a prototype.

Reductions. The redundant structure of ECOT is particularly well-suited to the re-
ductions described in Sect. 4. Even after adding in the 5th floor, ECOT reduces to just
four rooms! In the reduced model, there is one public room, one representative office,
one representative maintenance room, and one representative conference room. Table 5
shows the results from the reductions; the memory and time measurements show the
cost of computing the reduced model. In all cases, after applying all reductions, the
models are so small that the model checking times are negligible (and thus not shown
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Table 3. Discovering a property violation using Spin in breadth-first search mode. We consider
the set of ACCESS NET models without timed transitions from Table 1 and a new set with timed
transitions.

Model Rooms Transitions Persons States Memory Depth Time
(MB) (s)

Without Timed Transitions

ECOT 8 17 38 3 556 4.8 2 0.0
ECOT 7,8 50 120 3 2961 10.5 5 0.3
ECOT 6,7,8 92 222 3 10730 46.0 6 2.4

With Timed Transitions

ECOT 8 17 42 3 6897 7.1 6 0.1
ECOT 7,8 50 124 3 64323 68.5 9 6.0

Table 4. Discovering a property violation using the Yices-based BMC (untimed models). Note
that BMC does not require a bound on the number of persons.

Model Memory (MB) Time (s) Depth

ECOT 8 6.4 0.2 2
ECOT 7,8 38.4 5.7 5
ECOT 6,7,8 104.9 21.7 6

in the table). The rows labeled ‘some reductions’ show the effect of performing only
the unlocked doors and redundant transitions reductions (Definitions 6 and 7). The rows
labeled ‘all reductions’ add the equivalent rooms reduction (Definition 8), which is all
reductions described in Sect. 4. In our model, all faculty can access all offices, but in
a slight variant, we may have a unique access policy for each office. In this case, the
equivalent rooms reduction would have no effect giving reduced models analogous to
the cases with ‘some reductions.’

Real-World Example. We also obtained the complete access control specification for
an actual four-story, multi-tenant office building. The building houses roughly 200 em-
ployees during working hours. Our model of the building had about 200 rooms and 230
doors. The operators of the building can assign up to 24 different access types. Due to
the exponential dependence of our model on the number of people in the model, we
could not simulate all access types at once. We selected two access types that were
more interesting and ran a simple slicing reduction (not described in Sect. 4) that re-
moves transitions for the excluded access types.

Without reductions, this model is too large for the explicit-state model checker, but
the reductions are very effective (see Table 6). After reductions, we can prove safety
properties very efficiently. Note that the restrictions in the number of persons does not
apply to BMC that was run for an unbounded number of persons. This makes the BMC
approach especially appealing because the number of people in the model does not
directly affect the encoding size. The BMC implementation ran for an hour on the full
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Table 5. Size of reduced models and resource requirements to calculate the reduction. The mark-
ing (<) indicates something below the granularity of our measurements, while (*) indicates a
case where we fail to run Spin possibly because of the model size.

Model Reduction

Model Rooms Transitions Persons States Memory (MB) Time (s)

ECOT 8

no reductions 17 38 3 1603 N/A N/A
some reductions 6 16 3 37 < <
all reductions 4 6 3 20 < <

ECOT 7, 8

no reductions 50 120 3 20429 N/A N/A
some reductions 23 62 3 167 < 0.1
all reductions 4 6 3 20 4.1 0.6

ECOT 6, 7, 8

no reductions 92 222 3 93578 N/A N/A
some reductions 47 124 3 423 5.1 0.2
all reductions 4 6 3 20 5.1 4.5

ECOT 5, 6, 7, 8

no reductions 138 336 3 * N/A N/A
some reductions 74 194 3 859 5.1 0.4
all reductions 4 6 3 20 5.1 18.1

Table 6. Results of explicit-state model checking for real office building.

Model Rooms Transitions Persons States Memory (MB) Time (s)

before reductions 207 460 2 N/A N/A N/A
after reductions 10 15 2 25 13.9 1.7

model without reduction, searching up to depth 7, but was unable to find a violation.
The running time on the reduced model was significantly smaller (30s) for a depth 30.

6 Related Work

Sampemane et al.present a specification formalism for role-based access control to
physical spaces that allow novel uses of physical spaces, while ensuring that resources
in these spaces are not misused [23]. Similarly, Bauer et al.present a framework for
modeling and reasoning about personnel credentials and their delegation for physical
as well as cyber access control using theorem proving [3]. The previously cited works
present formalizations that support the addition, deletion, and modification of access
control policies. Our work is complementary: we focus on modeling the physical topol-
ogy of the building and reasoning about its interplay with access control mechanisms.
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Dynamical models of buildings have been investigated both at the macroscopic lev-
els, wherein, pedestrian flows are often modeled as continuous, without distinguishing
the behavior of each individual pedestrian [14] and at microscopic levels with an agent-
based model of individual actions. Applications of these simulations have included
techniques to predict the time to evacuate large and complex buildings [18,13,24,21].
These models inevitably use a graph-based representation to capture the building topol-
ogy. Our work offers a systematic model that also takes into account the different access
levels and the complex software-controlled access policies that are virtually standard in
modern buildings.

Model checking has also been applied in the past to check access control policy
for computer network systems. The model proposed here is similar to the role-based
access control (RBAC) model used for mediating access to electronic resources in an
organization [9]. The verification of access control policies for organizational systems
has been considered in the past. For instance, Jha et al. [17] present a formalization of
various RBAC models and characterize the computational complexity of some analy-
sis problems. Guelev et al.present a model-checking approach for verifying both the
permissivity as well as the security of access control policies [12].

Our work on physical spaces bears many similarities to role-based access control
policies. For instance, our model assumes that permissions are provided based on cer-
tain well-defined organizational roles, which can be finitely many and well-known a
priori. However, the verification problem is inherently different. Unlike network topolo-
gies, buildings have a non-trivial spatial layout, whose modeling at the appropriate level
of detail is critical. Furthermore, buildings tend to be larger with more rooms, doors,
passageways with a rich variety of access enforcement mechanisms. Building access
control rules vary with time unlike network access control rules. Finally, the need for
mandatory transitions is also quite unique. Nevertheless, as witnessed by the success
of our abstraction-based approaches, buildings also present large amount of regular-
ity that can be exploited through simple reduction schemes to significantly reduce the
complexity of property verification.

Our work makes use of a translation to existing model checking tools including
Spin for explicit state model checking [5,15], as well as a bounded model checker [4]
implemented using the SAT-modulo theory solver Yices [20,8]. Other fast SMT solvers
include solvers such as Z3 [7,2].

7 Conclusion

Although we have focused on reachability properties, we can consider ACCESS NETS
that model and verify other aspects of physical spaces. For example, other potential ap-
plications include checking for detectability of violations (e.g., by adding observability
to the semantics) or modeling evacuation plans for buildings. In summary, we have pre-
sented a formal model, ACCESS NETS, for analyzing access control policies for physical
spaces. The model can express many aspects that are relevant such as physical topol-
ogy, role-based access policies, and time-dependent access rules. Formal verification
techniques can be used on these models, thereby making computer-aided validation of
access control policies possible. Furthermore, we have demonstrated that although the
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state-space does explode, domain-specific state-space reduction techniques are quite
effective in reducing the complexity of the verification problem.
Acknowledgments. We thank the anonymous reviewers for their helpful comments.
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