Meeting 19

Today

Rest of Semester

Intervals & Widening (AI Wrap Up)

Reading Papers

- "Three Pass Process"
- Questions to Ask
 - What's the contribution?

Presenting Papers

- What's the contribution?
- Pass 1.5-2
 - Example

Writing Papers

- What's the contribution?
Abstract Interpretation

Review Recipe for Static Analysis Design

(1) What is your programming language/program/examples?

Concrete "world" / Concrete domain

n ∈ ℤ see String

§ : Var → Val

(2) Concrete Semantics

"God's Analysis"

collecting semantics
(3) Abstraction?

\[
\text{abstract store } \hat{\varphi} : \text{Var} \rightarrow \text{Sign}
\]

Is this good? Is it sound?

\[\rho : \hat{D} \rightarrow \text{POD}\]

Relationship between abstract store and concrete set

Gallàis' connection

(4) Abstract semantics?

\[\hat{\Gamma} \downarrow \text{ "How to interpret with abstract values?"} \]

\[\hat{\Gamma} \downarrow + \oplus + = + \quad \text{(example)}\]

Local Soundness

\[
\hat{\delta}(\hat{v}_1 \oplus \hat{v}_2) \supseteq \{v_1 + v_2 \mid v_1 \in \hat{\delta}(\hat{v}_1) \text{ and } v_2 \in \hat{\delta}(\hat{v}_2)\}
\]
Collecting Semantics

= a bunch of recursive equations
 (well-defined b/c of the fixed point theorem)

Abstract semantics =

a bunch of recursive equations

What's different

HOPE! (of computability)
Assume finite height lattice of height \(h \).

At each step, at least one program point has an element that goes up 1 step.

\(O(h \cdot n) \)

\(n = \text{size of CFG} \)
Concrete

$P(Z)$

Abstract

$\hat{\cdot} = \perp \downarrow |(n, m] \cap (-\infty, m]|$

$[n, \infty) | \top$

for $n, m \in \mathbb{Z}$

Application:

Array bounds checking
\[\mathcal{X} : \text{Interval} \rightarrow P(\mathbb{Z}) \]

\[\mathcal{X}(\mathbb{I}) \overset{\text{def}}{=} \{3\} \]

\[\mathcal{X}(\mathbb{Z}) \overset{\text{def}}{=} \mathbb{Z} \]

\[\mathcal{X}([n, m]) \overset{\text{def}}{=} \{ x \mid n \leq x \leq m \text{ and } x \in \mathbb{Z} \} \]

\[\mathcal{X}(\mathbb{I}) \overset{\text{def}}{=} \mathcal{X}(\mathbb{I}_1) \leq \mathcal{X}(\mathbb{I}_2) \]

Define judgmentally

\[\frac{n' \leq n \quad m \leq m'}{[n, m] \subseteq [n', m']} \]
\[[0, 1] \subseteq [0, 2] \subseteq [0, 3] \subseteq \ldots \]

\[
i = 0 \quad [0, 0] \\
\text{while } (i \leq n) \quad \exists \]

\[
i = i + 1 \quad [0, 0] \quad [0, 1] \quad [0, 2] \quad \ldots \quad [0, \infty) \\
\quad [1, 1] \quad [1, 2] \quad [1, 3] \quad \ldots \quad [1, \infty)
\]

\[\boxed{\text{Wider}}\] "Sound Inductive Invariant Guesse"
\[\nabla : \mathcal{D} \times \mathcal{D} \to \mathcal{D} \]

(1) upper bound
\[x \leq x \forall y \text{ and } y \leq x \forall y \]
for \(x, y \in \mathcal{D} \)

(2) "terminates" / "converges"

\[x_0 \leq x_1 \leq x_2 \leq \ldots \]

Then the chain

\[x_0 \leq (x_0 \nabla x_1) \leq (x_0 \nabla x_1 \nabla x_2) \leq \ldots \]

stabilizes