The ASTRÉE Analyzer

Xavier RIVAL

rival@di.ens.fr
Certification of embedded softwares

- Safety critical applications
 - avionic softwares but also automotive, space...
 - synchronous

- Properties to prove to guarantee safety:
 - absence of runtime errors
 - no crash, no violation of application specific constraints
 - synchronous requirement, i.e., time constraint
 - critical sections should take a bounded amount of time
 - i.e., the software must be responsive
 - recursion is forbidden
 - resource usage
 - no dynamic memory allocation
 - stack usage

The ASTRÉE Analyzer – p.2/36
What ASTRÉE is?

- A static analyzer
 - Inputs a C program (some restrictions, see later)
 - User-defined assumptions about the input values (ranges)
 - Computes an over-approximation of the reachable states
 - Produces an alarm when an operation is not proved safe
 - **Sound**: detects all errors
 - **Incomplete**: false alarms are possible
 - Detecting all errors exactly: undecidable!

- Developed in the École Normale Supérieure (Paris, France)
 Joint work with B. BLANCHET, P. COUSOT, R. COUSOT, J. FERET, L. MAUBORGNE, A. MINÉ, D. MONNIAUX

- ASTRÉE addresses:
 - Runtime errors
 - Non specified behaviors
What ASTRÉE is not?

- **Testing:**
 - ASTRÉE covers all executions, hence is **sound**; testing is **unsound**
 - ASTRÉE does sound approximation, hence **incompleteness**
 - **Cost** considerations:
 - Weeks of heavy test processes vs. a few hours of computation

- **Model checking:**
 - ASTRÉE is designed to implement the **C semantics**
 - No separate model extraction phase
 - ASTRÉE uses a **quasi-infinite predicate set**
 - ASTRÉE lagging for **automatic refinement** (work in progress)

- **User-assisted theorem proving:**
 - ASTRÉE is automatic with **little to no user interaction**
 - Cost efficient!
 - But ASTRÉE needs to infer indecidable properties; hence is **incomplete**
Development of ASTRÉE

- **Fall 2001:** Request for a precise and fast analyzer (Airbus)
 ASTRÉE project started:
 - **Scalability** = main goal
 (data structures, algorithms)
 - **Simple non-relational domains:** intervals + first refinements
 - Analysis of a 10 kLOCs software, few alarms (2002)

- **From 2003,** analysis of industrial softwares:
 - **Inspection of alarms:**
 ⇒ True error ?
 ⇒ Imprecision in the analysis ? if yes, **find origin of imprecisions**
 - Improve precision, with new abstractions,
 solving imprecisions, but preserving scalability
 - **Successful** analysis of two families of industrial applications

- **Commercial diffusion,** since 2009, by Absint
A Specialized Analyzer

- Specialization with respect to some families of embedded softwares:
 Synchronous, real-time programs:

```
declare and initialize state variables;
loop forever
  read volatile input variables,
  compute output and state variables,
  write to volatile output variables;
wait for next clock tick (10 ms)
end loop
```

- Properties to establish: Absence of runtime errors; broad definition
 - No fatal error as defined by the semantics of the C language
 - e.g., division by 0, out of segment access
 - No overflow in integer or floating point computations
 - User defined properties: e.g., no NaN!
 - Architecture dependant properties (data-type sizes)
Specific Features of ASTRÉE

- **Simplifications:**
 - Not all C: no malloc, no recursion
 - Mostly static data; a few local variables

- **Issues:**
 - Size of programs to analyze: > 100 kLOC, $> 10,000$ variables
 - More typically 1 MLOC, $> 50,000$ variables
 - Floating point computation should be analyzed precisely
 - DSP filetering, non linear control, retroactions, interpolation functions
 - Intricate dependencies between variables:
 - Stability of computation should be established
 - Relations between numerical and boolean data to infer
 - Long sequences of dependences between inputs and outputs
 - e.g., slicing ineffective
Outline

- Context

✓ Structure of the Analyzer
 - Abstract Domain
 - Results Overview
Principle of the Analyzer

Computation of an over-approximation of reachable states

- **Model of C**: operational semantics
 \[[P] = \text{set of executions (aka, traces) of } P \]
 - C-99 standard
 - IEEE 754-1985 norm (floating point computations)
 - Assumptions about the target architecture and the area of application:
 - size of integer data-types
 - initialization of static variables
 - ranges for inputs; duration of an execution

- **Abstraction** = approximation defined by an abstract domain

- **Systematic derivation of a sound and automatic analyzer**

- **Certification of a piece of code, in two automatic stages:**
 1. Computation of an approximation (99.9% of the work...)
 2. Checking of safety conditions
Abstraction

- **ASTRÉE computes** an invariant $I \in D^\#$ ($D^\#$: our abstract domain):
 - For each control point ℓ
 - For each context κ (e.g., calling stack)
 \Rightarrow an approximation $I(\ell, \kappa) \in D^\#_M$ of a set of stores
 $D^\#_M$ expresses a (usually infinite) set of predicates

- **Soundness**:
 - I should account for all executions in P
 - Meaning of I: $\gamma(I)$
 - Soundness statement: $[P] \subseteq \gamma(I)$
 where $[P]$ is a formal concrete semantics

- **Next question**: How to compute I?
 Definition of a generic interpretation scheme
Abstract Interpretation: Computing Invariants

Principle: run all computations in a unique abstract computation

- Analysis of an atomic statement $x = e$:
 - Use an abstract transfer function $\text{assign}(x = e) : D^\#_M \rightarrow D^\#_M$
 - $D^\#_M$ manages addition and removal of constraints
 - Soundness: this operation should over-approximate concrete executions

- Denotational form engine:
 - For each concrete, elementary step F, a sound approximation computed by an abstract store transformer $F^\#$:
 \[
 \forall \rho \in \mathbb{M}, \ d^\# \in D^\#_M, \ \rho \in \gamma(d^\#) \implies F(\rho) \subseteq \gamma(F^\#(d^\#))
 \]
 - $D^\#_M$ provides such sound transfer functions: guard, ...

- Control flow joins (after a conditional):
 - $D^\#_M$ provides a sound approximation \sqcup of \sqcup
Analysis of Loops

- **Loops** should require *infinitely many iterations*
- **Solution**: use a **widening** operator
 - A sound approximation ∇ of \sqcup;
 - Termination is enforced by the widening properties

```
while (...) { ... }
```

Program

Iterative invariant computation

- Memorized abstract invariants
- Propagated abstract invariants
Widening Operator

- Definition:
 - sound approximation of join: \(\forall x, y \in D^\#_M, \gamma(x) \cup \gamma(y) \subseteq x \nabla y \)
 - termination: for any increasing sequence \((y_n)_{n\in\mathbb{N}}\) of elements of \(D^\#_M\), the sequence \((x_n)_{n\in\mathbb{N}}\) of elements of \(D^\#_M\) defined by \(x_0 = y_0\) and \(\forall n \in \mathbb{N}, x_{n+1} = x_n \nabla y_n\) is not strictly increasing

- Widening:
 - Example, with intervals:
 \(I_0 : 0 \leq x \leq 10; \quad I_1 : 1 \leq x \leq 11; \quad I_0 \nabla I_1 : 0 \leq x\)
 - In practice: remove unstable constraints
 Convergence: ensured by the finiteness of the number of constraints at the first iteration

Though: analysis may still involve unbounded number of predicates
domain may still be infinite
widening chains are still unbounded
Widening Improvements

- “Unrolling” of the first iterations (better precision)
 - Idea: postpone widening to iteration 2 or 3
 - More precision in the first abstract join operations

- Thresholds:
 - Principle: when $x < 4$ is not stable, $x < 8$ may be stable
 - Threshold widening: ordered families of constraints T
 \[\n\n\]
 \[\n\n\]
 \[\n\n\]
 - Implementation based on strategies such as:
 - if $x == 4$ appears in the code, automatically add step 4 for x in \n

- Note:
 - Better precision \Rightarrow smaller state space
 - \Rightarrow shorter widening chains

 A precise analysis is NOT incompatible with efficiency

 Practical experience: imprecise analyses with many alarms are very slow
Outline

- Context
- Structure of the Analyzer

✓ Abstract Domain
✓ Generalities
 - A relational numerical domain: Octagons
 - A symbolic domain: Trace partitioning
 - Other domains
- Results Overview
Abstract Domain

- Abstractions of sets of states (e.g., stores)
- Usual transfer functions:
 - Guard: for conditions (if, while, assert, ...)
 - Assign
 - Variable creation, disposal...
- A widening operator, a lower upper bound
- Ordering: usually a sound approximation of the concrete ordering
 - If $\text{inf}^\#(x^\#, y^\#)$ returns TRUE, then $\gamma(x^\#) \subseteq \gamma(y^\#)$
 - But the test may fail! (decidability!)
- Support for communication with other abstract domains:
 - Dozens of domains implemented in ASTRÉE...
 - Need for information communication across domains
 Different domains typically establish complimentary properties
A Non-relational Abstraction: Intervals

• Simplification: contrived memory model:
 ♦ 1 abstract cell ≡ 1 or several concrete cells (\textit{smashed arrays})
 ♦ Information about pointers: points-to

• Interval-based approximation:
 ♦ Constraints $a \leq x \leq b$ (x: abstract cell)
 ♦ Not an expensive analysis
 ♦ Implementation: \textit{sound} approximation of floating point computations
 Should be ensured for \textit{all} numerical abstractions

• \textsc{Astrée}: started with an interval analysis
 ♦ Enough to express the absence of runtime errors
 Array bounds, overflows, division by 0
 ♦ Not expressive enough to \textit{infer/prove} precise invariants

• Next slides: imprecisions + new abstract domains
Outline

· Context

· Structure of the Analyzer

✓ **Abstract Domain**

· Generalities

✓ **A relational numerical domain: Octagons**

· A symbolic domain: Trace partitioning

· Other domains

· Results Overview
Octagons

\[
\text{assume}(x \in [-10, 10])
\]

\[
\text{if}(x < 0)\{y = -x; \}
\]

\[
\text{else}\{y = x; \}
\]

\[
\text{if}(y \leq 5)
\]

\[
\{\text{assert}(-5 \leq x \leq 5); \}
\]

- With an interval analysis:
 - At point ①: \(x \in [-10, 10]; \ y \in [0, 10] \)
 - At point ②: \(x \in [-10, 10]; \ y \in [0, 5] \)
 - Analyzer alarm (assert not proved)

- We need a relation between \(x \) and \(y \):
 \(\Rightarrow \) i.e., a relational abstraction: polyhedra?

- Octagons:
 - Express constraints of the form \(\pm x \pm y \leq c \).
 In the example:
 - At point ①, \(0 \leq y - x \leq 20; \ 0 \leq y + x \leq 20 \)
 - At point ②, \(y \in [0, 5]; \ 0 \leq y - x \leq 20; \ 0 \leq y + x \leq 20, \)
 hence \(x \in [-5, 5] \)
 - More reasonable cost: \(\mathcal{O}(n^2) \) space; \(\mathcal{O}(n^3) \) time (still high)

- Several issues to solve to integrate octagons: cost, floating points...
Preserving Scalability with Octagons

- Still too costly:
 - $O(n^3)$ time complexity per operation, if n variables
 - So if $n \equiv 10000$: will not work
- A remark: we will not need (or get) a relation between all pair (x, y)
- ⇒ Use several smaller octagons
 - Pack: small group of variables to relate
 - Strategy and heuristics used to choose packs
 - syntactic pre-analysis: variables “used together”
 - possibility to add user-defined packs (rarely needed)
 - Cost: linear in the number of packs
 - Size of packs: bounded by a fixed constant
 - Number of packs: linear in the size of the code
 - ⇒ linear cost
Soundness and Floating Point Computations

- Rounding errors in floating point concrete computations
 But the domain is defined with real numbers
 (same for all relational abstractions, such as polyhedra, linear equalities...)

- Approximation of expressions:
 bounded with linear combinations with ranges as coefficients
 Example:

 \[
 y \in [-10.5.] \\
 x := y \star z + c
 \]

 \[
 \implies x := [-10. - \epsilon_0, 5. + \epsilon_0] \star z + [c - \epsilon_2, c + \epsilon_2]
 \]

 - Linearized forms can be handled by an octagon transfer function
 - Interval constraints used to make the transformation

- Relational abstraction:
 - Semantics of octagons in terms of real numbers
 - Linearization bridges the gap with the floating point values
 Takes into account all possible rounding errors
Reduction

- **Intuition:** Use distinct predicates to improve precision
 - $D_M^\#, \gamma$ is reduced iff $\gamma(x^\#) = \gamma(y^\#) \Rightarrow x^\# = y^\#
 - most domains are not reduced;
 - this is source of imprecision
 - Reduction: should map $x^\#$ into a more precise $y^\#$
 - Non reduction may cause incompleteness of the ordering

- **Intra-domain reduction:**
 - Principle:
 - $x - y \leq a \land y - z \leq b \implies x - z \leq a + b$
 - Cost considerations: cubic cost, hence should be used sparsely
 - Equivalent to a graph shortest path problem (Floyd Warshall algorithm)

- **Extra-domain reduction:**
 - Use the more precise bounds found above, to refine interval constraints
 - Get more precise constraints from other domains (some described later)
Outline

· Context
· Structure of the Analyzer

✓ Abstract Domain
 · Generalities
 · A relational numerical domain: Octagons

✓ A symbolic domain: Trace partitioning
 · Other domains
· Results Overview
• Interval abstraction:
 ♦ At l_5, approximation: $sgn \in [-1, 1]$
 ♦ Consequence: the division is not proved safe (alarm at l_5)
 ♦ Clearly, $sgn \neq 0$ for any real execution (false alarm)

• If $D^\#$ is a domain such that $\forall x \in D^\#$, x stands for a convex set of concrete values: same result
 Hence, octagons will not fix this!
Disjunction-based Refinement

• Solution: perform a case analysis on x
in order to avoid considering the fictitious case $sgn = 0$

• Refined analysis:
 ♦ Invariant at l_5:

 $(x < 0 \land sgn = -1) \lor (x \geq 0 \land sgn = 1)$

 ♦ Results:
 ▶ The division is safe
 ▶ Invariant for y at l_6: $y \geq 0$

• Definition of the domain:
 ♦ We simply focus on the control history:
 ♦ Invariant at l_5:

 \[
 \begin{cases}
 \text{TRUE branch} & \implies x < 0 \land sgn = -1 \\
 \text{FALSE branch} & \implies x \geq 0 \land sgn = 1 \\
 \end{cases}
 \]
System Refinement

- **Refining the control structure:**

 We enrich control states l_i with tokens t_j (e.g., TRUE, FALSE)

 l_0 if($x < 0$)
 l_1 $sgn = -1$
 l_2 else
 l_3 $sgn = 1$
 l_4
 l_5 $y = x/sgn$
 l_6 ...

 P_0 (l_0) (l_1) (l_2) (l_3) (l_4) (l_5) (l_6)
 P_1 (l_0) (l_1) (l_2) (l_3) (l_4) (l_5) (l_6)

 - At the semantics level, we have a partition:

 $\llbracket P \rrbracket (l_0) = \llbracket P_0 \rrbracket (l_0, \text{TRUE}) \cup \llbracket P_0 \rrbracket (l_0, \text{FALSE})$

 - A hierarchy of refining control structures

 P_0 refines P
 P_1 refines P_0
Construction of the Partitioning Domain

- For each refined control structure P_i: a domain $D[P_i] = \mathbb{L} \times T_i \to D$
 - Concrete level function mapping partitions into sets of traces
 - Abstract level function mapping partitions into abstract invariants

- Overall structure, for a given D:

- A trace partitioning domain value:
 - A partition P_i + a semantic value $V \in D[P_i]$
Instantiation in ASTRÉE

- **Main criteria** for trace partitioning:
 - If statements: delayed abstract join
 - Loop unrolling: distinguish the n first iterations; delay the abstract join
 - Variable value: distinguish all possible values of a variable
 - do not partition if too many values
 - possible values are determined by the analysis
 Partitioning is **dynamic**, i.e. known only at analysis time

- **Partitioning strategies**:
 - Exhaustive application of the criteria would **not scale up**
 - huge number of partitions available
 - most partitions are of no interest or may play against widening
 - Strategies: determine which partitions to consider
 - where to distinguish flow paths
 - where to merge distinguished flow paths
A Realistic Example: Linear Interpolation

\[y = \begin{cases}
-1 & \text{if } x \leq -1 \\
-0.5 + 0.5 \times x & \text{if } -1 \leq x \leq 1 \\
-1 + x & \text{if } 1 \leq x \leq 3 \\
2 & \text{if } 3 \leq x
\end{cases} \]

- Without partitioning:
 - No relation between \(x \) and the slope (corresponding range \(i \))
 - Analysis, with input \(x > 0 \), output possibly unbounded (slope in blue)
- With partitioning of the loop: above issues are fixed, output in \([-1, 2]\)
- Strategy: partition loops computing variables used as array index after the loop exit
Outline

· Context
· Structure of the Analyzer
✓ Abstract Domain
 · Generalities
 · A relational numerical domain: Octagons
 · A symbolic domain: Trace partitioning
✓ Other domains
· Results Overview
Analyzing Digital Filters

Simplified 2nd order filter:

\[
X_n = \begin{cases}
\alpha X_{n-1} + \beta X_{n-2} + Y_n \\
I_n
\end{cases}
\]

• Computed sequence:

• Concrete computations are bounded
 Issue: how to infer an abstract bound?

• No stable octagon or interval

• A polyhedra with many faces?

• Most simple stable surface:
 an ellipsoid
(Un)Stability of Floating Point Computations

- Real numbers: $x = 1.0$ at ①

- Floating point numbers
 - Rounding errors (concrete semantics)

- Accumulation of rounding errors: may cause a (slow) divergence

- Solution: use arithmetico-geometric progressions to bound rounding errors with a function of the number of concrete iterates:
 - **Constraint** $|x| \leq A \cdot B^n + C$, where A, B, C are constants and n is the iteration number
 - **Number of iterations**: bounded by N: $|x| \leq A \cdot B^N + C$

- Ellipsoids, progressions:
 - **Domains using mathematical theorems** proved once for all (design of the analyzer)
 - **Beyond what automatic refinement can do!**
Binary Decision Trees

\[
\begin{align*}
bp &= x \leq 0.; \\
bn &= x \geq 0.; \\
\text{if}(bp \&\& bn) &\quad \Rightarrow \quad y = 0.0; \\
\text{else} &\quad y = 1.0/x;
\end{align*}
\]

- Non-relational analysis: Alarm at ② division by 0
- Relations needed at ①:
 - \(bp = \text{FALSE} \Rightarrow x \neq 0 \)
 - \(bn = \text{FALSE} \Rightarrow x \neq 0 \)
- Domain similar to BDDs:
 - Nodes labeled with boolean variables
 - Leaves: values in a numerical domain e.g., intervals in this example
- Scalability issues:
 - Same as in the case of octagons;
 - Also addressed with a variable packing strategy
Outline

· Context
· Structure of the Analyzer
· Abstract Domain
✓ Results Overview
Benchmarks

- 2 families of synchronous embedded programs
 A340 and A380 Airbus Aircraft fly-by-wire systems
- 2.2 GHz Bi-opteron, 1 processor used (64-bits arch)

<table>
<thead>
<tr>
<th>LOC</th>
<th>70 000</th>
<th>226 000</th>
<th>400 000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iterations</td>
<td>32</td>
<td>51</td>
<td>88</td>
</tr>
<tr>
<td>Memory used (Gb)</td>
<td>0.6</td>
<td>1.3</td>
<td>2.2</td>
</tr>
<tr>
<td>Time</td>
<td>46mn</td>
<td>3h57mn</td>
<td>11h48mn</td>
</tr>
<tr>
<td>False alarms</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Conclusion:

- Few or no false alarms: can be used to certify critical code
- Memory and time requirements are reasonable
- Due to the specialization of the analyzer
Recent and Future Extensions

- Extensions:
 - Memory model, to analyze low level features
 - Asynchronous softwares (ongoing)
 - Automatize alarm diagnostics...

- For More Information: