Lessons From Model Checking

- To find bugs, we need specifications
- To convert a program into a model, we need predicates/invariants and a theorem prover.
- Simple algorithms (e.g., depth first search, pushing facts along a CFG) can work well

The Big Lesson

To reason about a program (= “is it doing the right thing? the wrong thing?”), we must understand what the program means!

Semantics = “Meaning”

Syntax

- **Concrete syntax**: The rules by which programs can be expressed as strings of characters
 - Keywords, identifiers, statement separators vs. terminators / comments / indentation
- **Concrete syntax in practice**: For readability, speed, effectiveness of error recovery, clarity of error messages
- Well understood principles
 - Use finite automata and context-free grammars
 - Automatic lexer/parser generators

Semantics

We will focus on the basics and what we need for analysis. See CSCI 5535 for a more thorough treatment.
Abstract Syntax

• We ignore parsing issues and study programs given as abstract syntax trees.

• Abstract syntax tree is (a subset of) the parse tree of the program
 - Ignores issues like comment conventions
 - More convenient for formal and algorithmic manipulation
 - Research papers consider ASTs

Syntactic Entities

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>integer constants</td>
<td>n</td>
</tr>
<tr>
<td>boolean constants</td>
<td>true, false</td>
</tr>
<tr>
<td>variables</td>
<td>x, y, ...</td>
</tr>
<tr>
<td>arithmetic expressions</td>
<td>a</td>
</tr>
<tr>
<td>boolean expressions</td>
<td>b</td>
</tr>
<tr>
<td>commands</td>
<td>s</td>
</tr>
</tbody>
</table>

Set

Meta-Variable

Here, these also encode the types.

Abstract Syntax (AExp)

• Arithmetic expressions (AExp)
 \[a ::= n \quad \text{for } n \in \mathbb{Z} \]
 \[| x \quad \text{for } x \in \text{Var} \]
 \[| a_1 + a_2 \quad \text{for } a_1, a_2 \in \text{AExp} \]
 \[| a_1 - a_2 \quad \text{for } a_1, a_2 \in \text{AExp} \]
 \[| a_1 \times a_2 \quad \text{for } a_1, a_2 \in \text{AExp} \]

• Observations?

Abstract Syntax (AExp)

• Arithmetic expressions (AExp)
 \[a ::= n \quad \text{for } n \in \mathbb{Z} \]
 \[| x \quad \text{for } x \in \text{Var} \]
 \[| a_1 + a_2 \quad \text{for } a_1, a_2 \in \text{AExp} \]
 \[| a_1 - a_2 \quad \text{for } a_1, a_2 \in \text{AExp} \]
 \[| a_1 \times a_2 \quad \text{for } a_1, a_2 \in \text{AExp} \]

• Notes:
 - Variables are not declared
 - All variables have integer type
 - No side-effects (in expressions)

Abstract Syntax (BExp)

• Boolean expressions (BExp)
 \[b ::= \text{true} \]
 \[| \text{false} \]
 \[| a_1 = a_2 \quad \text{for } a_1, a_2 \in \text{AExp} \]
 \[| a_1 \leq a_2 \quad \text{for } a_1, a_2 \in \text{AExp} \]
 \[| \neg b \quad \text{for } b \in \text{BExp} \]
 \[| b_1 \land b_2 \quad \text{for } b_1, b_2 \in \text{BExp} \]
 \[| b_1 \lor b_2 \quad \text{for } b_1, b_2 \in \text{BExp} \]

“Boolean”

• George Boole
 - 1815-1864
Abstract Syntax (Stmt)

• Statements (Stmt)

\[s ::= \text{skip} \]
\[| x := a \quad \text{for } x \in \text{Var and } a \in \text{AExp} \]
\[| s_1 ; s_2 \quad \text{for } s_1, s_2 \in \text{Stmt} \]
\[| \text{if } b \text{ then } s_1 \text{ else } s_2 \quad \text{for } s_1, s_2 \in \text{Stmt}, b \in \text{BExp} \]
\[| \text{while } b \text{ do } s \quad \text{for } s \in \text{Stmt}, b \in \text{BExp} \]

• Observations?

Notes:
- The typing rules have been embedded in the syntax
- Other parts are not context-free and need to be checked separately (e.g., all variables are declared)
- Commands contain all the side-effects in the language

Now What?

• Questions to answer:
 - What is the "meaning" of a given expression/command?
 - How would we go about evaluating expressions and commands?
 - How are the evaluator and the meaning related?

14.20.2 Execution of try-catch-finally

• A try statement with a finally block is executed by first executing the try block. Then there is a choice:
 - If execution of the try block completes normally, then the finally block is executed, and then there is a choice:
 - If the finally block completes normally, then the try statement completes normally.
 - If the finally block completes abruptly for reason \(S \), then the try statement completes abruptly.
 - If execution of the try block completes abruptly because of a throw of a value \(V \), then there is a choice:
 - If the run-time type of \(V \) is assignable to the parameter of any catch clause of the try statement, then the first (leftmost) such catch clause is selected. The value \(V \) is assigned to the parameter of the selected catch clause, and the block of that catch clause is executed. Then there is a choice:
 • If the catch block completes normally, then the finally block is executed. Then there is a choice:
 • If the finally block completes normally, then the try statement completes normally.
 • If the finally block completes abruptly for reason \(S \), then the try statement completes abruptly.
 - If the run-time type of \(V \) is not assignable to the parameter of any catch clause of the try statement, then the try statement completes abruptly.

An Operational Semantics

• Specifies how expressions and commands should be evaluated
 - Depending on the form of the expression
 - 0, 1, 2, ... don’t evaluate any further.
 - They are normal forms or values.
 - \(e_1 + e_2 \) is evaluated by first evaluating \(e_1 \) to \(n_1 \), then evaluating \(e_2 \) to \(n_2 \).
 - The result is the literal representing \(n_1 + n_2 \).

Operational semantics abstracts the execution of a concrete interpreter
Operational Semantics

- The meanings of expressions depend on the values of variables
 - What does \(x + 5\) mean? It depends on \(x\)!
- The value of variables at a given moment is abstracted as a function from Var to \(\mathbb{Z}\) (a state)
 - If \(x = 8\) in our state, we expect \(x + 5\) to mean 13
- The set of all states is \(\Sigma = \text{Var} \rightarrow \mathbb{Z}\)
- We shall use \(\sigma\) to range over \(\Sigma\)
 - \(\sigma\), a state, maps variables to values

Program State

- The state \(\sigma\) is somewhat like "memory"
 - It holds the current values of all variables
 - Formally, \(\sigma : \text{Var} \rightarrow \mathbb{Z}\)

Notation: Evaluation Judgment

- We write: \(<a, \sigma> \Downarrow n\)
 - To mean that \(a\) evaluates to \(n\) in state \(\sigma\).
 - This is a judgment. It asserts a relation between \(a\), \(\sigma\) and \(n\).
 - In this case, we can view \(\Downarrow\) as a function with two arguments (\(a\) and \(\sigma\)).

Notation: Rules of Inference

- We express the evaluation rules as rules of inference for our judgment
 - called the derivation rules for the judgment
 - also called the evaluation rules (for operational semantics)
- In general, we have one rule for each language construct:
 \[
 \frac{<a_1, \sigma> \Downarrow n_1 \quad <a_2, \sigma> \Downarrow n_2}{<a_1 + a_2, \sigma> \Downarrow n_1 + n_2}
 \]
 This is the only rule for \(a_1 + a_2\)

Rules of Inference

Hypothesis\(_1\) ... Hypothesis\(_n\)

Conclusion

- \(A\) is true \quad \(B\) is true
- \(A \land B\) is true

- For any given proof system, a finite number of rules of inference (or schema) are listed somewhere

Evaluation Rules (for AExp)

- \(<n, \sigma> \Downarrow n\)
- \(<x, \sigma> \Downarrow\)
- \(<a_1, \sigma> \Downarrow n_1 \quad <a_2, \sigma> \Downarrow n_2\)
 \[
 \frac{<a_1 + a_2, \sigma> \Downarrow n_1 + n_2}{<a_1, \sigma> \Downarrow n_1 \quad <a_2, \sigma> \Downarrow n_2}
 \]
 \[
 \frac{<a_1 - a_2, \sigma> \Downarrow}{<a_1, \sigma> \Downarrow n_1 \quad <a_2, \sigma> \Downarrow n_2}
 \]
- This is called structural operational semantics
 - rules defined based on the structure of the expression
 - These rules do not impose an order of evaluation!
Evaluation Rules (for AExp)

- \(<n, \sigma> \Downarrow n \)
- \(<x, \sigma> \Downarrow \sigma(x) \)
- \(<a_1, \sigma> \Downarrow n_1 \) and \(<a_2, \sigma> \Downarrow n_2 \)
- \(<a_1 + a_2, \sigma> \Downarrow n_1 + n_2 \)
- \(<a_1 - a_2, \sigma> \Downarrow n_1 - n_2 \)
- \(<a_1 \ast a_2, \sigma> \Downarrow n_1 \ast n_2 \)

This is called structural operational semantics:
- rules defined based on the structure of the expression
- These rules do not impose an order of evaluation!

Derivation

- Apply inferences rules and put in a tree
- Provides proof of a judgment
- "witnesses an element in the relation"
- Conclusion is at the bottom and the leaves at the top are axioms (rules with no hypotheses)

Derivation (Example)

- "Show that 3 + (4 - 5) evaluates to 2"

\[<3 + (4 - 5), \sigma> \Downarrow 2 \]

Evaluation Rules (for BExp)

How to Read the Rules

- Forward (top-down) = inference rules
 - if we know that the hypothesis judgments hold then we can infer that the conclusion judgment also holds
 - If we know that \(<a_1, \sigma> \Downarrow 5 \) and \(<a_2, \sigma> \Downarrow 7 \), then we can infer that \(<a_1 + a_2, \sigma> \Downarrow 12 \)

How to Read the Rules

- Backward (bottom-up) = evaluation rules
 - Suppose we want to evaluate \(a_1 + a_2 \), i.e., find \(n \) s.t. \(a_1 + a_2 \Downarrow n \) is derivable using the previous rules
 - By inspection of the rules we notice that the last step in the derivation of \(a_1 + a_2 \Downarrow n \) must be the addition rule
 - the other rules have conclusions that would not match \(a_1 + a_2 \Downarrow n \)
Syntax-Directed Evaluation

- Thus we must find \(n_1 \) and \(n_2 \) such that \(a_1 \Downarrow n_1 \) and \(a_2 \Downarrow n_2 \) are derivable
 - This is done recursively
- If there is exactly one rule for each kind of expression we say that the rules are syntax-directed
 - At each step at most one rule applies
 - This allows a simple evaluation procedure as above (recursive tree-walk)

Where are we?

- Defined a big-step operational semantics for arithmetic and boolean expressions.
 - What's "big"?

What about statements?

Small-Step Operational Semantics

- We define a transition relation \(\langle s, \sigma \rangle \rightarrow \langle s', \sigma' \rangle \)
 - "\(s \) steps to \(s' \) via an atomic rewrite step"
 - Evaluation terminates when the program has been rewritten to a terminal program
 - one from which we cannot make further progress
- The terminal program is "skip"
 - As long as the statement is not "skip" we can make further progress
 - some statements never reduce to skip (e.g., "while true do skip")

Small-Step Operational Semantics

- Evaluation of a statement as a sequence of rewrites:

 \[
 \langle x := 3; x := 4, \sigma \rangle \\
 \rightarrow
 \]

Let's Define Together