Subtyping

Meeting 27, CSCI 5535, Spring 2010

Announcements

• Homework 6
 - 42.0 mean, 9.4 stddev
 - 44 median, 48.25 3rd quartile, 50 max

• Homework 7
 - 35.9 mean, 11.3 stddev
 - 38 median, 40.5 3rd quartile, 48 max

• Overall Homeworks
 - 81.0 mean, 20.3 stddev
 - 84.8 median, 90.1 3rd quartile, 94.5 max

Announcements

• FCQ This Thu!
 - Please come give me feedback
 - Volunteer to administer?

• CAETE students
 - Online FCQ

Poll: What do you want to discuss Thu?

• Continue with Types
 - Imperative Features: References 0
 - Exceptions and Continuations 2
 - Parametric Polymorphism / Generics / Universal Types 5
 - Data Abstraction / Modules / Existential Types and Dependent Types 4

• Shape Analysis
 - Precise program analysis for the heap 7

Review of Monomorphic Type Systems
General PL Feature Plan

- The general plan for language feature design
- You **invent** a new feature (e.g., sums)
- You **add** it to the **lambda calculus**
- You **invent** typing rules and opsem rules
- You **extend** the basic **proof of type safety**
- You declare moral victory, and milling throngs of cheering admirers wait to carry you on their shoulders to be knighted by the Queen, etc.

Sums (Tagged Unions)

- **We need disjoint union types** of the form:
 - either an int or a float
 - either 0 or a pointer
 - either a (binary tree node with two children) or a (leaf)
- **New expressions and types**

 \[
 e ::= \ldots \mid \text{injl } e \mid \text{injr } e \mid \tag
 \]

 \[
 \tau ::= \ldots \mid \tau_1 + \tau_2
 \]

 - A value of type \(\tau_1 + \tau_2\) is either \(\tau_1\) or \(\tau_2\)

Static Semantics of Sums

- **New typing rules**

 \[
 \begin{align*}
 & \Gamma \vdash e : \tau_1 \\
 & \Gamma \vdash \text{injl } e : \tau_1 + \tau_2 \\
 & \Gamma \vdash \text{injr } e : \tau_1 + \tau_2 \\
 & \Gamma, x : \tau_1 + \tau_2 \vdash e : \tau \\
 & \Gamma, y : \tau_1 + \tau_2 \vdash e : \tau \\
 & \Gamma \vdash \text{case } e \text{ of } \text{injl } x \Rightarrow e_1 \mid \text{injr } y \Rightarrow e_2
 \end{align*}
 \]

- **Types are not unique anymore**
 - \(\text{injl } 1 : \text{int + bool}\)
 - \(\text{injl } 1 : \text{int + (int \to int)}\)

 - this complicates type checking, but it is still doable

Dynamic Semantics of Sums

- **New values**

 \[
 v ::= \ldots \mid \text{injl } v \mid \text{injr } v
 \]

- **New evaluation rules**

 \[
 \begin{align*}
 & e \Downarrow v \\
 & \text{injl } e \Downarrow \text{injl } v \\
 & \text{injr } e \Downarrow \text{injr } v \\
 & e \Downarrow \text{injl } v \\
 & [v/x]e_l \Downarrow v' \\
 & \text{case } e \text{ of } \text{injl } x \Rightarrow e_l \mid \text{injr } y \Rightarrow e_r \Downarrow v' \\
 & e \Downarrow \text{injr } v \\
 & [v/y]e_r \Downarrow v' \\
 & \text{case } e \text{ of } \text{injl } x \Rightarrow e_l \mid \text{injr } y \Rightarrow e_r \Downarrow v'
 \end{align*}
 \]
Type Soundness for \(F_{\tau} \)

- Type soundness **still holds**
- No way to use a \(\tau_1 + \tau_2 \) inappropriately
- The key is that the **only way** to use a \(\tau_1 + \tau_2 \) is with case, which ensures that you are not using a \(\tau_1 \) as a \(\tau_2 \)
- In C or Pascal checking the tag is the responsibility of the programmer!
 - Unsafe

End of Review

On to Subtyping

What is subtyping?

- Subtyping: a relation between types induced by the subset relation between value sets
- Informal intuition:
 - If \(\tau \) is a subtype of \(\sigma \) then any expression with type \(\tau \) also has type \(\sigma \)
 - If \(\tau \) is a subtype of \(\sigma \) then any expression of type \(\tau \) can be used in a context that expects a \(\sigma \)
 - We write \(\tau \leq \sigma \) to say that \(\tau \) is a subtype of \(\sigma \)

One-Slide Summary

- If \(\tau \) is a subtype of \(\sigma \) then any expression of type \(\tau \) can be used in a context that expects a \(\sigma \); this is called **subsumption**.
- A **conversion** is a function that converts between types.
- A subtyping system should be **coherent**.

Introduction to Subtyping

- We can view types as denoting **sets of values**
- **Subtyping** is a relation between types induced by the subset relation between value sets
- Informal intuition:
 - If \(\tau \) is a subtype of \(\sigma \) then any expression with type \(\tau \) also has type \(\sigma \) (e.g., \(\mathbb{Z} \subseteq \mathbb{R}, 1 \in \mathbb{Z} \Rightarrow 1 \in \mathbb{R} \))
 - We write \(\tau \leq \sigma \) to say that \(\tau \) is a subtype of \(\sigma \)
- Subtyping is reflexive and transitive

Plan For Subtyping

- Formalize **Subtyping Requirements**
 - Subsumption
- Create **Safe Subtyping Rules**
 - Pairs, functions, references, etc.
 - Most easy thing we try will be wrong
- Subtyping **Coercions**
 - When is a subtyping system correct?
Subtyping Examples

- FORTRAN introduced \(\text{int} <: \text{real} \)
 - \(5 + 1.5 \) is well-typed in many languages
- PASCAL had \([1..10] <: [0..15] <: \text{int}\)
- Subtyping is a fundamental property of object-oriented languages
 - If \(S \) is a subclass of \(C \) then an instance of \(S \) can be used where an instance of \(C \) is expected
 - "subclassing ⇒ subtyping" philosophy

Subsumption

- Formalize the requirements on subtyping
- Rule of subsumption
 - If \(: \sigma \) then an expression of type \(\tau \) has type \(\sigma \)
 \[
 \Gamma \vdash e : \tau \\
 \tau <: \sigma \\
 \Gamma \vdash e : \sigma
 \]
 - But now type safety may be in danger:
 - If we say that \(\text{int} <: (\text{int} \to \text{int}) \)
 - Then we can prove that "11 8" is well-typed!
 - There is a way to construct the subtyping relation to preserve type safety

Defining Subtyping

- The formal definition of subtyping is by inference rules for the judgment \(\tau <: \sigma \)
- We start with subtyping on the base types
 - e.g. \(\text{int} <: \text{real} \) or \(\text{nat} <: \text{int} \)
 - These rules are language dependent and are typically based directly on types-as-sets arguments
- We then make subtyping a preorder (reflexive and transitive)
 \[
 \begin{align*}
 \tau & <: \tau \\
 \tau_1 & <: \tau_2 \\
 \tau_2 & <: \tau_3 \\
 \tau_1 & <: \tau_3
 \end{align*}
 \]
- Then we build-up subtyping for "larger" types

Subtyping for Pairs

- Why is it the case that whenever a \(\sigma \times \sigma' \) can be used, a \(\tau \times \tau' \) can also be used?
 - Consider the context \(H = H'(\text{fst} *) \) expecting a \(\sigma \times \sigma' \)
 - Then \(H' \) expects a \(\sigma \)
 - Because \(: \sigma \) then \(H' \) accepts a \(\tau \)
 - Take \(e : \tau \times \tau' \). Then \(\text{fst} e : \sigma \) so it works in \(H' \)
 - Thus \(e \) works in \(H \)
 - The case of "snd *" is similar

Subtyping for Records

- Thoughts?

\[
\begin{align*}
\xi, \eta : \tau_1, \ldots, \xi_m : \tau_m \quad \xi, \eta : \xi_1, \ldots, \xi_m : \xi_m \quad \xi_1 : \tau_1, \ldots, \xi_m : \tau_m
\end{align*}
\]
Subtyping for Records

- Several subtyping relations for records
 - **Depth** subtyping
 \[\{l_1 : \tau_1, \ldots, l_n : \tau_n\} < \{l_1 : \tau'_1, \ldots, l_n : \tau'_n\} \]
 - e.g., \{f1 : int, f2 : int\} < \{f1 : real, f2 : int\}
 - **Width** subtyping
 \[\{l_1 : \tau_1, \ldots, l_n : \tau_n\} < \{l_1 : \tau_1', \ldots, l_m : \tau_m\} \]
 - e.g., \{f1 : int, f2 : int\} < \{f2 : int\}
 - Models subclassing in OO languages
 - Or, a combination of the two

Subtyping for Functions

- Example Use:
 - `rounded_sqrt : R → Z`
 - `actual_sqrt : R → R`
 - Since \(Z <: R\), `rounded_sqrt <: actual_sqrt`
 - So if I have code like this:
 - `float result = rounded_sqrt(5); // 2`
 - ... I can replace it like this:
 - `float result = actual_sqrt(5); // 2.23`
 - ... and everything will be "fine".

Correct Function Subtyping

- We say that \(\rightarrow\) is **covariant** in the result type and **contravariant** in the argument type
- Informal correctness argument:
 - Pick \(f : \tau \rightarrow \tau'\)
 - \(f\) expects an argument of type \(\tau\)
 - It also accepts an argument of type \(\sigma <: \tau\)
 - \(f\) returns a value of type \(\tau'\)
 - Which can also be viewed as a \(\sigma'\) (since \(\tau' <: \sigma'\))
 - Hence \(f\) can be used as \(\sigma \rightarrow \sigma'\)

More on Contravariance

- Consider the subtype relationships
 \[
 \begin{array}{ccc}
 \text{int} & \rightarrow & \text{real} \\
 \text{real} & \rightarrow & \text{int} \\
 \text{int} & \rightarrow & \text{int}
 \end{array}
 \]
- In what sense \((f : \text{real} \rightarrow \text{int}) \Rightarrow (f : \text{int} \rightarrow \text{int})\)?
 - "real → int" has a larger domain
 - (recall the set theory (arg,result) pair encoding for functions)
- This suggests that "subtype-as-subset" interpretation is not straightforward
 - We'll return to this issue (after these commercial messages ...)
References

- Such types are used for mutable memory cells
- Syntax (as in ML)

 \[
 \begin{align*}
 e ::= & \ldots & | \text{ref} \; e :: \tau | e_1 := e_2 | ! e \\
 \tau ::= & \ldots & | \text{ref} \tau
 \end{align*}
 \]

 - ref e :: \tau evaluates e, allocates a new memory cell, stores the value of e in it and returns the address of the memory cell.
 - e_1 := e_2 evaluates e_1 to a memory cell and updates its value with the value of e_2.
 - ! e evaluates e to a memory cell and returns its contents.

 - Like malloc + initialization in C, or new in C++ and Java.

Subtyping References

Contravariance? \(\tau <: \sigma \) \[\sigma \text{ ref} \text{ ref} \) \[\text{Wrong!} \]

- Example: assume \(\tau <: \sigma \)
- The following holds (if we assume the above rule):

 \[
 \begin{align*}
 x : \sigma, y : \text{ref}, f : \tau \rightarrow \text{int} & \vdash y := x; f(y) : \text{int} \\
 \end{align*}
 \]

 - Unsound: f is called on a \(\sigma \) but is defined only on \(\tau \)
 - Java has covariant arrays!

 - If we want covariance of references we can recover type safety with a runtime check for each \(y := x \)

 - The actual type of x matches the actual type of y but this is generally considered a bad design.

Conversions

- Examples:

 - nat <: int with conversion \(\lambda x. x \)
 - int <: real with conversion \(2s \text{ comp} \rightarrow \text{IEEE} \)

 - The subset interpretation of types leads to an abstract modeling of the operational behavior.
 - For example, we say int <: real even though an int could not be directly used as a real in the concrete x86 implementation (cf. IEEE 754 bit patterns)
 - The int needs to be converted to a real

 - We can get closer to the "machine" with a conversion interpretation of subtyping.

 - We say that \(\tau <: \sigma \) when there is a conversion function that converts values of type \(\tau \) to values of type \(\sigma \)

 - Conversions also help explain issues such as contravariance.

 - But: must be careful with conversions.

Conversion Interpretation

- The subset interpretation of types leads to an abstract modeling of the operational behavior.
- E.g., we say int <: real even though an int could not be directly used as a real in the concrete x86 implementation (cf. IEEE 754 bit patterns).
- The int needs to be converted to a real.
- We can get closer to the "machine" with a conversion interpretation of subtyping.
- We say that \(\tau <: \sigma \) when there is a conversion function that converts values of type \(\tau \) to values of type \(\sigma \).
- Conversions also help explain issues such as contravariance.
- But: must be careful with conversions.

Subtyping References

- Example: assume \(\tau <: \sigma \)
- The following holds (if we assume the above rule):

 \[
 \begin{align*}
 x : \sigma, y : \text{ref}, f : \tau \rightarrow \text{int} & \vdash y := x; f(y) : \text{int} \\
 \end{align*}
 \]

 - Unsound: f is called on a \(\sigma \) but is defined only on \(\tau \)
 - Java has covariant arrays!

 - If we want covariance of references we can recover type safety with a runtime check for each \(y := x \)

 - The actual type of x matches the actual type of y but this is generally considered a bad design.

Conversions

- Examples:

 - nat <: int with conversion \(\lambda x. x \)
 - int <: real with conversion \(2s \text{ comp} \rightarrow \text{IEEE} \)

 - The subset interpretation is a special case when all conversions are identity functions.

 - Write \(\tau <: \sigma \Rightarrow C(\tau, \sigma) \) to say that \(C(\tau, \sigma) \) is the conversion function from subtype \(\tau \) to \(\sigma \).

 - If \(C(\tau, \sigma) \) is expressed in \(F_1 \) then \(C(\tau, \sigma) : \tau \rightarrow \sigma \)
Issues with Conversions

- Consider the expression "printreal 1" typed as follows:
 \[
 \text{printreal : real } \rightarrow \text{unit} \\
 \text{printreal 1 : unit}
 \]
 we convert 1 to real: printreal (C(int,real) 1)

- But we can also have another type derivation:
 \[
 \text{printreal : real } \rightarrow \text{unit} \rightarrow \text{unit} \\
 \text{printreal : int } \rightarrow \text{unit} \rightarrow \text{unit} \\
 \text{printreal 1 : unit}
 \]
 with conversion "(C(real → unit, int → unit) printreal) 1"

Which one is right? What do they mean?

Introducing Conversions

- We can compile a language with subtyping into one without subtyping by introducing conversions

- The process is similar to type checking

\[
\Gamma \vdash e : \tau \Rightarrow \xi
\]

- Expression e has type \(\tau \) and its conversion is \(\xi \)

- Rules for the conversion process:

\[
\begin{align*}
\Gamma \vdash e_1 : \tau_1 & \Rightarrow e_1 \\
\Gamma \vdash e_2 : \tau_2 & \Rightarrow e_2 \\
\Gamma \vdash e_1 e_2 : \tau & \Rightarrow e_1 e_2 \\
\Gamma \vdash e : \tau & \Rightarrow e \\
\tau & \ll \sigma \Rightarrow C(\tau, \sigma)
\end{align*}
\]

Coherence of Conversions

- Questions and Concerns:
 - Can we build arbitrary subtype relations just because we can write conversion functions?
 - Is \(\text{real <: int} \) just because the "floor" function is a conversion?
 - What is the conversion from "real→int" to "int→int"?
 - What are the restrictions on conversion functions?

Example of Coherence

- Consider the following subtyping relations:
 - \text{int <: real } \Rightarrow \lambda x : \text{int}. \text{toIEEE } x
 - \text{real <: int } \Rightarrow \lambda x : \text{real}. \text{floor } x

- For this system to be coherent we need
 - \(C(\text{int, real}) \circ C(\text{real, int}) = \lambda x : \text{real}. x \)
 - \(C(\text{real, int}) \circ C(\text{int, real}) = \lambda x : \text{real}. x \)

- This requires that

\[
\forall x : \text{real} \ (\text{toIEEE } (\text{floor } x) = x)
\]

- which is not true

Building Conversions

- We start from conversions on basic types

\[
\begin{align*}
\tau & \ll \tau \Rightarrow \lambda x : \tau. x \\
\tau_1 & \ll \tau_2 \Rightarrow \lambda x : \tau_1. \text{toIEEE } x \\
\tau_1 & \ll \tau_2 \Rightarrow \lambda x : \tau_1. \text{floor } x \\
\tau_1 \times \tau_2 & \ll \tau_1 \times \tau_2 \Rightarrow \lambda x : \tau_1 \times \tau_2. \text{floor}(x) \\
\tau_1 \times \tau_2 & \ll \tau_1 \times \tau_2 \Rightarrow \lambda x : \tau_1 \times \tau_2. \text{toIEEE}(x)
\end{align*}
\]
Comments

- With the conversion view we see why we do not necessarily want to impose anti-symmetry for subtyping.
 - Can have multiple representations of a type
 - We want to reserve type equality for representation equality
 - \(\tau < \tau \) and also \(\tau' < \tau \) (are interconvertible) but not necessarily \(\tau = \tau' \)

- We’ll encounter subtyping again for object-oriented languages
 - Serious difficulties there due to recursive types

Next Time

- How’s the project going?

Types for Imperative Features

- So far: types for pure functional languages
- Now: types for imperative features
- Such types are used to characterize non-local effects
 - assignments
 - exceptions
- Contextual semantics is useful here
 - Just when you thought it was safe to forget it …

References

- Such types are used for mutable memory cells
- Syntax (as in ML)

 \[
 e ::= \ldots | \text{ref } e :: \tau | e_1 := e_2 | ! e \\
 \tau ::= \ldots | \text{ref}
 \]

 - ref e :: \tau - evaluates e, allocates a new memory cell, stores the value of e in it and returns the address of the memory cell
 - like malloc + initialization in C, or new in C++ and Java
 - e_1 :: e_2, evaluates e_1 to a memory cell and updates its value with the value of e_2
 - ! e - evaluates e to a memory cell and returns its contents

Global Effects, Reference Cells

- A reference cell can escape the static scope where it was created
 \(\lambda f:\text{int} \to \text{int ref}. !(f 5) \) \(\lambda x:\text{int}. \text{ref } x : \text{int} \)
- The value stored in a reference cell must be visible from the entire program
- The "result" of an expression must now include the changes to the heap that it makes (cf. IMP’s opsem)
- To model reference cells we must extend the evaluation model
Modeling References

- A heap is a mapping from addresses to values
 \(h ::= \cdot | h, a \leftarrow v : \tau \)
- Addresses, tag the heap cells with their types
- Types are useful only for static semantics. They are not needed for the evaluation, that is, are not a part of the implementation

- We call a program an expression with a heap
 \(p ::= \text{heap } h \text{ in } e \)
- The initial program is “heap \(\cdot \) in e”
- Heap addresses act as bound variables in the expression
- This is a trick that allows easy reuse of properties of local variables for heap addresses
 - e.g., we can rename the address and its occurrences at will

Static Semantics of References

- Rules for expressions:
 \[\Gamma \vdash e : \tau \]
 \[\Gamma \vdash e : \tau \text{ ref} \]
 \[\Gamma \vdash (\text{ref } e : \tau) : \tau \text{ ref} \]
 \[\Gamma \vdash e_1 : \tau \text{ ref} \]
 \[\Gamma \vdash e_2 : \tau \]
- Rules for programs (new judgment):
 \[\Gamma \vdash v_i : \tau_i \text{ (i = 1 . . . n)} \]
 \[\Gamma \vdash e : \tau \]
 \[\vdash \text{heap } h \text{ in } e : \tau \]
 where \(\Gamma = a_1 : \tau_1 \text{ ref}, \ldots, a_n : \tau_n \text{ ref} \)
 and \(h = a_1 \leftarrow v_1 : \tau_1, \ldots, a_n \leftarrow v_n : \tau_n \)

Contextual Semantics for References

- Addresses are values:
 \(v ::= \ldots | a \)
- New contexts:
 \[H ::= \text{ref } H | H_1 ::= e_2 | a_2 ::= H_2 | H \]
- No new local reduction rules
- But some new global reduction rules
 - heap in \(H[\text{ref } v : \tau] \rightarrow \text{heap } h, a \leftarrow v : \tau \text{ in } H[a] \)
 - heap in \(H[v] \rightarrow \text{heap } h \text{ in } H[v] \)
 - where \(a \) is fresh (this models allocation - the heap is extended)
 - heap in \(H[a] \rightarrow \text{heap } h \text{ in } H[v] \)
 - where \(a \rightarrow v : \tau \text{ in } h \text{ is replaced by } a \leftarrow v : \tau \) (heap lookup - can we get stuck?)
 - heap in \(H[a] \rightarrow \text{heap } h \text{ in } H[v] \text{ in } H'[\tau] \)
 - where \(h[a \leftarrow v] \) means a heap like \(h \) except that the part \(a \leftarrow v : \tau \) in \(h \) is replaced by \(a \leftarrow v : \tau \) (memory update)
- Global rules are used to propagate the effects of a write to the entire program (eval order matters!)

Example with References

- Consider these (the redex is underlined)
 \[\text{heap } \text{ in } (\lambda f : \text{int } \rightarrow \text{int} \text{ ref } ((f 5)) \text{ ref } x : \text{int}) \]
 \[\rightarrow \text{heap } \text{ in } (((f \text{ ref } x : \text{int}) \text{ ref } 5)) \]
 \[\rightarrow \text{heap } \text{ in } (\text{ref } 5 : \text{int}) \]
 \[\rightarrow \text{heap } a = 5 : \text{int} \text{ in } H[a] \]
 \[\rightarrow \text{heap } a = 5 : \text{int} \text{ in } H[a] \]
- The resulting program has a useless memory cell
- An equivalent result would be
 \[\text{heap } \text{ in } 5 \]
- This is a simple way to model garbage collection