Monomorphic Type Systems

Meeting 26, CSCI 5535, Spring 2010

Homework Stats

- HW0 (out of 20)
 - mean 18.6, stddev 1.9, median 20, 3rd quartile 20, max 20
- HW1 (out of 50)
 - mean 46.5, stddev 5.6, median 49, 3rd quartile 50, max 50
- HW2 (out of 50)
 - mean 43.0, stddev 8.1, median 45, 3rd quartile 48, max 50
- HW3 (out of 50)
 - mean 41.3, stddev 10.8, median 44, 3rd quartile 50, max 50
- HW4 (out of 50)
 - mean 38.0, stddev 12.7, median 39, 3rd quartile 48, max 50
- HW5 (out of 48)
 - mean 39.7, stddev 7.0, median 41, 3rd quartile 44, max 48

Review of the Static Semantics of the Simply-Typed Lambda Calculus

Typing Judgments

- A common form of typing judgment:
 \[\Gamma \vdash e : \tau \] (\(e \) is an expression and \(\tau \) is a type)
- \(\Gamma \) (Gamma) is a set of type assignments for the free variables of \(e \)
 - Defined by the grammar \(\Gamma ::= \emptyset \mid \Gamma, x : \tau \)
 - “Assuming type assignments for variables in \(\Gamma \), expression \(e \) has type \(\tau \).”

Simply-Typed Lambda Calculus

- Syntax:
 - Terms: \(e ::= x \mid \lambda x : \tau . e \mid e_1 e_2 \mid n \mid e_1 + e_2 \mid \text{iszero } e \mid \text{true} \mid \text{false} \mid \text{not } e \mid \text{if } e \text{ then } e_1 \text{ else } e_3 \)
 - Types: \(\tau ::= \text{int} \mid \text{bool} \mid \tau_1 \rightarrow \tau_2 \)

- \(\tau_1 \rightarrow \tau_2 \) is the function type
- \(\rightarrow \) associates to the right
- This language is also called \(F_1 \)

Static Semantics of \(F_1 \)

- Function rules
 \[
 \begin{align*}
 e : \tau & \in \Gamma \\
 \Gamma, x : \tau \vdash e : \tau' \\
 \Gamma, \lambda x : \tau . e : \tau' \\
 \Gamma, e_1 : \tau_1 \rightarrow \tau, e_2 : \tau_2 \vdash e_1 e_2 : \tau
 \end{align*}
 \]
More Static Semantics of F_1

- **Base type rules**
 \[
 \frac{\Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int}}{\Gamma \vdash e_1 + e_2 : \text{int}}
 \]
 \[
 \frac{\Gamma \vdash e : \text{bool}}{\Gamma \vdash \text{true} : \text{bool}}
 \]
 \[
 \frac{\Gamma \vdash e_1 : \text{bool} \quad \Gamma \vdash e_2 : \tau \quad \Gamma \vdash e_3 : \tau}{\Gamma \vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : \tau}
 \]

Type Checking in F_1

- **Type checking is easy** because
 - Typing rules are *syntax directed*
 - Typing rules are *compositional*
 - All local variables are annotated with types
- In fact, *type inference is also easy* for F_1
- Without type annotations an expression may have *no unique type*

\[
\frac{}{\vdash \lambda x : \tau. e : \tau \rightarrow \tau}
\]

Formalizing a Language

1. **Syntax**
 - Of expressions (programs), of types
 - Issues of binding and scoping
2. **Static semantics (typing rules)**
 - Define the typing judgment and its derivation rules
3. **Dynamic Semantics (e.g., operational)**
 - Define the evaluation judgment and its derivation rules
4. **Type soundness**
 - Relates the static and dynamic semantics
 - State and prove the *soundness theorem*

Operational Semantics of F_1

- **Judgment:**
 \[
 e \Downarrow v
 \]
- **Values:**
 \[
 v ::= n \mid \text{true} \mid \text{false} \mid \lambda x : \tau. e
 \]
- **The evaluation rules**...
 - **Audience participation time:** give me an evaluation rule.
Operational Semantics of F₁

Call-by-value (sample)

\[
\begin{align*}
\lambda x: \tau. e & \downarrow \lambda x: \tau. e \\
\text{e}_1 \downarrow \lambda x: \tau. e' & \quad \text{e}_2 \downarrow \text{v}_2 \quad e_1[e_2/x] \downarrow \text{v} \\
\text{e}_1 \downarrow v & \quad \text{e}_2 \downarrow v \\
\frac{}{n \downarrow n} & \quad e_1 + e_2 \downarrow n \\
\frac{\text{if } e_1 \text{ then } e_2 \text{ else } e_3 \downarrow v}{e_1 \downarrow \text{true} \quad e_2 \downarrow v} & \quad \frac{e_1 \downarrow \text{false} \quad e_3 \downarrow v}{e_1 \downarrow \text{false} \quad e_2 \downarrow e_3 \downarrow v} \\
\end{align*}
\]

Evaluation undefined for ill-typed programs!

Type Soundness for F₁

- **Theorem:** If \(\vdash e : \tau \) and \(e \downarrow v \) then \(\vdash v : \tau \)
 - Also called, subject reduction theorem, type preservation theorem
 - This is one of the most important sorts of theorems in PL
 - Whenever you make up a new safe language you are expected to prove this
 - Examples: Vault, TAL, CCured, ...

How Might We Prove It?

If \(T :: \vdash e : \tau \) and \(E :: e \downarrow v \) then \(\vdash v : \tau \)
How Might We Prove It?

If \(T \vdash e : \tau \) and \(E \vdash e \Downarrow v \) then \(\Downarrow v : \tau \)

Proof Approaches to Type Safety

- By induction on \(e \)?
 - Won't work because \([v_2/x]e'_1\) in the eval of \(e_1 e_2 \)
 - Same problem with induction on \(T \)
- By induction on \(\tau \)?
 - Won't work because \(e_1 \) has a "bigger" type than \(e_1 e_2 \)
- By induction on \(E \)?
 - To address the issue of \([v_2/x]e'_1\)
 - This is it!

Type Soundness Proof

Consider the function application case

\[
E :: E_1 :: e_1 ::= \lambda x : \tau_2, e'_1 :: e_2 :: e_2 :: e_3 :: [v_2/x]e'_1 :: v \quad e_1 e_2 :: v
\]

...
Significance of Type Soundness

• The theorem says that the result of an evaluation has the same type as the initial expression
• The theorem does not say that
 - The evaluation never gets stuck (e.g., trying to apply a non-function, to add non-integers, etc.), nor that
 - The evaluation terminates
• Even though both of the above facts are true of F_1
• What formal system of semantics do we use to reason about programs that might not terminate?

Small-Step Contextual Semantics for F_1

• We define redexes
 $$r ::= n_1 + n_2 \mid \text{if} \ b \ \text{then} \ e_1 \ \text{else} \ e_2 \mid (\lambda x: \tau. e_1) \ v_2$$
• and contexts
 $$H ::= H_1 + e_2 \mid n_1 + H_2 \mid \text{if} \ H \ \text{then} \ e_1 \ \text{else} \ e_2 \mid H_1 e_2 \mid (\lambda x: \tau. e_1) H_2 \mid \bullet$$
• and local reduction rules
 $$n_1 + n_2 \rightarrow n_1 \text{ plus } n_2$$
 $$\text{if true then } e_1 \ \text{else} \ e_2 \rightarrow e_1$$
 $$\text{if false then } e_1 \ \text{else} \ e_2 \rightarrow e_2$$
 $$\frac{}{v_2/x} e_2$$
• and one global reduction rule
 $$H[r] \rightarrow H[e] \text{ if } r \rightarrow e$$

Decomposition Lemmas for F_1

- If $\vdash e : \tau$ and e is not a (final) value then there exist (unique) H and r such that $e = H[r]$
- Any well-typed expression can be decomposed
- Any well-typed non-value can make progress
- Furthermore, there exists c such that $\vdash r : c$
 - The redex is closed and well typed
- Furthermore, there exists e' such that $r \rightarrow e'$ and $\vdash e' : \tau$
 - Local reduction is type preserving
- Furthermore, for any e', $\vdash e' : \tau$ implies $\vdash H[e'] : \tau$
 - The expression preserves its type if we replace the redex with an expression of same type

Type Safety of F_1

• Type preservation theorem
 - If $\vdash e : \tau$ and $e \rightarrow e'$ then $\vdash e' : \tau$
 - Follows from the decomposition lemma
• Progress theorem
 - If $\vdash e : \tau$ and e is not a value then there exists e' such that e can make progress: $e \rightarrow e'$
• Progress theorem says that execution can make progress on a well typed expression
• From type preservation we know the execution of well typed expressions never gets stuck
 - This is a (very) common way to state and prove type safety of a language
What’s Next?
• We’ve got the basic simply-typed monomorphic lambda calculus
• Now let’s make it more complicated ...
• By adding features!

Products: Syntax and Static Semantics
• Extend the syntax with (binary) tuples
 \[e ::= ... \mid (e_1, e_2) \mid \text{fst } e \mid \text{snd } e \]
 \[\tau ::= ... \mid \tau_1 \times \tau_2 \]
 - This language is sometimes called F₁
• Same typing judgment
 \[\Gamma \vdash e : \tau \]
 \[\Gamma \vdash e_1 : \tau_1 \quad \Gamma \vdash e_2 : \tau_2 \]
 \[\Gamma \vdash (e_1, e_2) : \tau_1 \times \tau_2 \]
 \[\Gamma \vdash e : \tau_1 \times \tau_2 \quad \Gamma \vdash e : \tau_1 \times \tau_2 \]
 \[\Gamma \vdash \text{fst } e : \tau_1 \quad \Gamma \vdash \text{snd } e : \tau_2 \]

Products: Dynamic Sem. and Soundness
• New form of values: \[v ::= ... \mid (v_1, v_2) \]
• New (big step) evaluation rules:
 \[e_1 \Downarrow v_1 \quad e_2 \Downarrow v_2 \]
 \[(e_1, e_2) \Downarrow (v_1, v_2) \]
 \[e \Downarrow (v_1, v_2) \quad e \Downarrow (v_1, v_2) \]
 \[\text{fst } e \Downarrow v_1 \quad \text{snd } e \Downarrow v_2 \]
• New contexts:
 \[H ::= ... \mid (H_1, e_2) \mid (v_1, H_2) \mid \text{fst } H \mid \text{snd } H \]
• New redexes:
 \[\text{fst } (v_1, v_2) \rightarrow v_1 \]
 \[\text{snd } (v_1, v_2) \rightarrow v_2 \]
• Type soundness holds just as before

General PL Feature Plan
• The general plan for language feature design
 - You invent a new feature (tuples)
 - You add it to the lambda calculus
 - You invent typing rules and opsem rules
 - You extend the basic /proof of type safety
 - You declare moral victory, and milling throngs of cheering admirers wait to carry you on their shoulders to be knighted by the Queen, etc.

Two new features ...

Records
• Records are like tuples with labels
 - New form of expressions
 \[e ::= ... \mid (L_1 = e_1, ..., L_n = e_n) \mid e \cdot L \]
 - New form of values
 \[v ::= (L_1 = v_1, ..., L_n = v_n) \]
 - New form of types
 \[\tau ::= ... \mid (L_1 : \tau_1, ..., L_n : \tau_n) \]
 - ... follows the model of F₁
Sums

- We need **disjoint union types** of the form:
 - either an int or a float
 - either 0 or a pointer
 - either a (binary tree node with two children) or a (leaf)

- New expressions and types

 e ::= ... | injl e | injr e | case e of injl x → e₁ | injr y → e₂

 τ ::= ... | τ₁ + τ₂

- A value of type τ₁ + τ₂ is either a τ₁ or a τ₂
- Like union in C or Pascal, but safe
- distinguishing between components is under compiler control
- case is a binding operator (like "let"): x is bound in e₁ and y is bound in e₂ (like OCaml’s "match ... with")

Examples with Sums

- Consider the type **unit** with a single element called * or ()
- The type **integer option** defined as "unit + int"
 - Useful for optional arguments or return values
 - No argument: injl * (OCaml’s "None")
 - Argument is 5: injr 5 (OCaml’s "Some(5)"

 - To use the argument you must test the kind of argument
 - case arg of injl x ⇒ "no_arg_case" | injr y ⇒ "...y..."
 - injl and injr are tags and case is tag checking

- bool is the union type "unit + unit"
 - true is injl *
 - false is injr *
 - if e then e₁ else e₂ is case e of injl x ⇒ e₁ | injr y ⇒ e₂

Static and Dynamic Semantics for Records and Sums

- Try it on paper and then volunteer to come on down!
 - New typing rules for Γ ⊢ e : τ
 - New values v ::= ... | injl v | injr v
 - New evaluation rules for e ↓ v
 - (Extra) new contexts H ::= ...
 - (Extra) new redexes r ::= ...
 - (Extra) new local reduction rules r → e

Dynamic Semantics of Sums

- New values v ::= ... | injl v | injr v
- New evaluation rules

 \[
 \begin{align*}
 e & \downarrow v \\
 \text{injl } e & \downarrow \text{injl } v \\
 \text{injr } e & \downarrow \text{injr } v \\
 e & \downarrow \text{injl } v \quad \text{[v/x]} e₁ \downarrow v' \\
 \text{case } e & \text{ of injl } x ⇒ e₁ | \text{injr } y ⇒ e₂ \downarrow v' \\
 e & \downarrow \text{injr } v \quad \text{[v/y]} e₂ \downarrow v' \\
 \text{case } e & \text{ of injl } x ⇒ e₁ | \text{injr } y ⇒ e₂ \downarrow v'
 \end{align*}
\]

Type Soundness for F₁⁺

- Type soundness **still holds**
- No way to use a τ₁ + τ₂ inappropriately
- The key is that the **only way to use a τ₁ + τ₂ is with case**, which ensures that you are not using a τ₁ as a τ₂
- In C or Pascal checking the tag is the responsibility of the programmer!
- Unsafe
For Next Time

- Read Wright and Felleisen paper
 - that you might not have read for today 😊
- Work on projects