Simply-Typed Lambda Calculus

Meeting 25, CSCI 5535, Spring 2010

Announcements
• HW4 grades posted

Quick Review
• Tell me about \(\lambda \)-calculus

Quick Review
• \(\lambda \)-calculus is as expressive as a Turing machine
• We can encode a multitude of data types in the untyped \(\lambda \)-calculus
• To simplify programming it is useful to add types to the language
• We now start the study of type systems in the context of the typed \(\lambda \)-calculus

Today’s Plan
• Type System Overview
• First-Order Type Systems
• Typing Rules
• Typing Derivations
• Type Safety

Types
• A program variable can assume a range of values during the execution of a program
• An upper bound of such a range is called a type of the variable
 - A variable of type "bool" is supposed to assume only boolean values
 - If \(x \) has type "bool" then the boolean expression "not(\(x \))" has a sensible meaning during every run of the program
Typed and Untyped Languages

- **Untyped languages**
 - Do not restrict the range of values for a given variable
 - Operations might be applied to inappropriate arguments. The behavior in such cases might be unspecified
 - The pure \(\lambda \)-calculus is an extreme case of an untyped language (however, its behavior is completely specified)

- **(Statically) Typed languages**
 - Variables are assigned (non-trivial) types
 - A type system keeps track of types
 - Types might or might not appear in the program itself
 - Languages can be explicitly typed or implicitly typed

The Purpose Of Types

- The foremost **purpose of types is to prevent certain types of run-time execution errors**
- Traditional trapped execution errors
 - Cause the computation to stop immediately
 - And are thus well-specified behavior
 - Usually enforced by hardware
 - e.g., Division by zero, floating point op with a NaN
 - e.g., Dereferencing the address 0 (on most systems)
- Untrapped execution errors
 - Behavior is unspecified (depends on the state of the machine = this is very bad!)
 - e.g., accessing past the end of an array
 - e.g., jumping to an address in the data segment

Execution Errors

- A program is deemed **safe** if it does **not** cause untrapped errors
 - Languages in which all programs are safe are **safe languages**
- For a given language we can designate a set of **forbidden errors**
 - A superset of the untrapped errors, usually including some trapped errors as well
 - e.g., null pointer dereference
- Modern Type System Powers:
 - prevent race conditions (e.g., Flanagan TLDI '05)
 - prevent insecure information flow (e.g., Li POPL '05)
 - prevent resource leaks (e.g., Vault)
 - help with generic programming, probabilistic languages, ...
 - ... are often combined with dynamic analyses (e.g., CCured)

Preventing Forbidden Errors:

Static Checking

- Forbidden errors can be caught by a combination of static and run-time checking
- Static checking
 - Detects errors early, before testing
 - Types provide the necessary static information for static checking
 - e.g., ML, Modula-3, Java
 - Detecting certain errors statically is **undecidable** in most languages

Preventing Forbidden Errors:

Dynamic Checking

- Required when static checking is **undecidable**
 - e.g., array-bounds checking
- Run-time encodings of types are still used (e.g., Lisp)
- Should be limited since it delays the manifestation of errors
- Can be done in hardware (e.g. null-pointer)
Why Typed Languages?

- Development
 - Type checking catches early many mistakes
 - Reduced debugging time
 - Typed signatures are a powerful basis for design
 - Typed signatures enable separate compilation

- Maintenance
 - Types act as checked specifications
 - Types can enforce abstraction

- Execution
 - Static checking reduces the need for dynamic checking
 - Safe languages are easier to analyze statically
 - the compiler can generate better code

Why Not Typed Languages?

- Static type checking imposes constraints on the programmer
 - Some valid programs might be rejected
 - But often they can be made well-typed easily
 - Hard to step outside the language (e.g., OO programming in a non-OO language, but cf. OCaml, etc.)

- Dynamic safety checks can be costly
 - 50% is a possible cost of bounds-checking in a tight loop
 - In practice, the overall cost is much smaller
 - Memory management must be automatic — need a garbage collector with the associated run-time costs
 - Some applications are justified in using weakly-typed languages (e.g., by external safety proof)

Safe Languages

- There are typed languages that are not safe ("weakly typed languages")
- All safe languages use types (static or dynamic)

<table>
<thead>
<tr>
<th></th>
<th>Typed</th>
<th>Untyped</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Static</td>
<td>Dynamic</td>
</tr>
<tr>
<td>Safe</td>
<td>✔</td>
<td>☐</td>
</tr>
<tr>
<td>Unsafe</td>
<td>☐</td>
<td>✔</td>
</tr>
</tbody>
</table>

We focus on statically typed languages
Properties of Type Systems

- How do types differ from other program annotations?
 - Types are more precise than comments
 - Types are more easily mechanizable than program specifications
- Expected properties of type systems:
 - Types should be enforceable
 - Types should be checkable algorithmically
 - Typing rules should be transparent
 - Should be easy to see why a program is not well-typed

Why Formal Type Systems?

- Many typed languages have informal descriptions of the type systems (e.g., in language reference manuals)

Why Formal Type Systems?

- Many typed languages have informal descriptions of the type systems (e.g., in language reference manuals)
- A fair amount of careful analysis is required to avoid false claims of type safety
- A formal presentation of a type system is a precise specification of the type checker
 - And allows formal proofs of type safety
- But even informal knowledge of the principles of type systems help

Formalizing a Language

1. Syntax
 - Of expressions (programs), of types
 - Issues of binding and scoping
2. Static semantics (typing rules)
 - Define the typing judgment and its derivation rules
3. Dynamic Semantics (e.g., operational)
 - Define the evaluation judgment and its derivation rules
4. Type soundness
 - Relates the static and dynamic semantics
 - State and prove the soundness theorem

Typing Judgments

- Recall: judgment?

Typing Judgments

- Recall: judgment
 - A statement J about certain formal entities
 - A common form of typing judgment:
 \(\Gamma \vdash e : \tau \) (\(e \) is an expression and \(\tau \) is a type)
 - \(\Gamma \) (Gamma) is a set of type assignments for the free variables of \(e \)
 - Defined by the grammar \(\Gamma ::= \cdot | \Gamma, \tau \)
 - Type assignments for variables not free in \(e \) are not relevant
 - e.g., \(x : \text{int}, y : \text{int} \vdash x + y : \text{int} \)
Typing rules

- **Typing rules** are used to derive typing judgments

 \[\Gamma \vdash 1 : \text{int} \]

- Examples:

 \[\begin{align*}
 x : \tau & \in \Gamma \\
 \Gamma \vdash x : \tau \\
 \Gamma \vdash e_1 : \text{int} \quad \Gamma \vdash e_2 : \text{int} \\
 \Gamma \vdash e_1 + e_2 : \text{int}
 \end{align*} \]

Typing Derivations

- A **typing derivation** is a derivation of a typing judgment (big surprise)

 Example:

 \[\begin{align*}
 x : \text{int} & \vdash x : \text{int} \\
 x : \text{int} & \vdash x + 1 : \text{int} \\
 x : \text{int} \vdash x + (x + 1) : \text{int}
 \end{align*} \]

- **Type checking**: given \(\Gamma, e \) and \(\tau \), find a derivation

- **Type inference**: given \(\Gamma \) and \(e \), find \(\tau \) and a derivation

Proving Type Soundness: Intuition

- A typing judgment
- Define what it means for a **value** to have a type \(v \in \tau \) (e.g., \(5 \in \text{int} \) and \(\text{true} \in \text{bool} \))
- Define what it means for an **expression** to have a type \(e \in \tau \) if \(\forall v \cdot (e \downarrow v \Rightarrow v \in \tau) \)
- Prove **type soundness**: If \(\vdash e : \tau \) then \(e \in \tau \) or equivalently If \(\vdash e : \tau \) and \(e \downarrow v \) then \(v \in \tau \)
- This implies safe execution (since the result of an unsafe execution is not in \(\tau \) for any \(\tau \))

Simply-Typed Lambda Calculus

- **Syntax**:

 \[\begin{align*}
 \text{Terms} & ::= x \mid \lambda x : \tau. e \mid e_1 e_2 \\
 \text{Types} & ::= \text{int} \mid \text{bool} \mid \tau_1 \rightarrow \tau_2 \\
 \end{align*} \]

 Notice the \(: \tau \)

 \[\begin{align*}
 \text{Terms} & ::= x \mid \lambda x : \tau. e \mid e_1 e_2 \\
 & \mid n \mid e_1 + e_2 \mid \text{iszero} e \\
 & \mid \text{true} \mid \text{false} \mid \text{not} e \\
 & \mid \text{if} e_1 \text{then} e_2 \text{else} e_3
 \end{align*} \]

- \(\tau_1 \rightarrow \tau_2 \) is the function type
- \(\rightarrow \) associates to the right
- This language is also called \(F_1 \)

Static Semantics of \(F_1 \)

- **Function rules**

 \[\begin{align*}
 \Gamma \vdash x : \tau \\
 \Gamma \vdash \lambda x : \tau. e : \tau \rightarrow \tau'
 \end{align*} \]

 \[\Gamma \vdash e_1 e_2 : \tau \]

- Function rules

 \[\begin{align*}
 x : \tau & \in \Gamma \\
 \Gamma, x : \tau \vdash e : \tau' \\
 \Gamma \vdash \lambda x : \tau. e : \tau \rightarrow \tau'
 \end{align*} \]

 \[\Gamma \vdash e_1 : \tau_2 \rightarrow \tau \quad \Gamma \vdash e_2 : \tau_2 \\
 \Gamma \vdash e_1 e_2 : \tau \]
More Static Semantics of F₁

• Base type rules

\[\begin{align*}
\Gamma &\vdash n : \text{int} \\
\Gamma &\vdash e₁ + e₂ : \text{int} \\
\Gamma &\vdash e₁ : \text{int} \\
\Gamma &\vdash \text{true} : \text{bool} \\
\Gamma &\vdash \text{not } e : \text{bool} \\
\Gamma &\vdash e₁ : \text{bool} \\
\Gamma &\vdash e₂ : \tau \\
\Gamma &\vdash \text{if } e₁ \text{ then } e₂ \text{ else } e₃ : \tau \\
\end{align*} \]

Typing Derivation in F₁

• Consider the term

\[\lambda x : \text{int}. \lambda b : \text{bool}. \text{if } b \text{ then } f x \text{ else } x \]

- With the initial typing assignment \(f : \text{int} \rightarrow \text{int} \)

• Write the type derivation

Typing Derivation in F₁

• Consider the term

\[\lambda x : \text{int}. \lambda b : \text{bool}. \text{if } b \text{ then } f x \text{ else } x \]

- With the initial typing assignment \(f : \text{int} \rightarrow \text{int} \)

Type Checking in F₁

• Type checking is easy because
 - Typing rules are syntax directed
 - Typing rules are compositional
 - All local variables are annotated with types

• In fact, type inference is also easy for F₁

 - Without type annotations, an expression may have no unique type

Operational Semantics of F₁

• Judgment:

\[e \Downarrow v \]

• Values:

\[v ::= n \mid \text{true} \mid \text{false} \mid \lambda x : \tau. e \]

• The evaluation rules...

 - Audience participation time: give me an evaluation rule.
Operational Semantics of F_1

Call-by-value (sample)

\[
\begin{align*}
\lambda x : \tau . e & \Downarrow \tau . e \\
e_1 \Downarrow \lambda x : \tau . e' & \quad e_2 \Downarrow v_2 \quad [v_2/x]e'_1 \Downarrow v \\
& \quad e_1 \Downarrow e_1 \Downarrow v \\
n \Downarrow n & \quad e_1 \Downarrow n_1 \quad e_2 \Downarrow n_2 \quad n = n_1 + n_2 \\
& \quad e_1 \Downarrow \text{true} \quad e_2 \Downarrow v \\
& \quad \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \Downarrow v \\
& \quad e_1 \Downarrow \text{false} \quad e_3 \Downarrow v \\
& \quad \text{if } e_1 \text{ then } e_2 \text{ else } e_3 \Downarrow v
\end{align*}
\]

Type Soundness for F_1

- **Theorem:**
 - If $\vdash e : \tau$ and $e \Downarrow \nu$ then $\vdash \nu : \tau$
 - Also called, subject reduction theorem, type preservation theorem
- This is one of the most important sorts of theorems in PL
- Whenever you make up a new safe language you are expected to prove this
 - Examples: Vault, TAL, CCured, ...
- **Proof:** next time!