Announcements
- Homework 7 due Thu
- HW6 Time Spent:
 - 5.5 hrs mean, 4.2 hrs stddev, 4 hrs median

Review of Verification Conditions

- Axiomatic semantics: The meaning of a program is *putting properties on programs*
- Hoare triples
 - weakest precondition:
 - $\{A\} \implies \{B\}$
 - verification condition:
 - $A \implies \{B\}$

Not Quite Weakest Preconditions

- Recall what we are trying to do:
 - false \Rightarrow true
 - weakest precondition: $WP(c, B)$
 - verification condition: $VC(c, B)$
- Inv holds on entry
- Inv is preserved in an arbitrary iteration
- B holds when the loop terminates in an arbitrary iteration

VCGen for while

- $VC(while b \implies c \implies \{b \Rightarrow VC(c, Inv) \land \neg \neg \Rightarrow B)\} = Inv \land (x_1 \implies x_n \implies Inv = ((b \Rightarrow VC(c, Inv)) \land \neg \neg \Rightarrow B)))$
Forward VCGen

- Traditionally the VC is computed backwards
 - That’s how we’ve been doing it in class
 - It works well for structured code
- But it can also be computed forward
 - Works even for unstructured languages (e.g., assembly language)
 - Uses symbolic execution, a technique that has broad applications in program analysis
 - e.g., the PREfix tool (Intrinsa, Microsoft) works this way

End of Review
Questions?

Plan for Applying VCGen

- Symbolic Execution and Forward VCGen
- Handling Exponential Blowup
 - Invariants
 - Dropping Paths
- VCGen For Exceptions (double trouble)
- VCGen For Memory (McCarthyism)
- VCGen For Structures (have a field day)
- VCGen For “Semantic Checksum”

Simple Assembly Language

- Consider the language of instructions:
 I ::= x := e | f() | if e goto L | goto L | L: | return | inv e
- The “inv e” instruction is an annotation
 - Says that boolean expression e holds at that point
- Each function f() comes with Pre_f and Post_f annotations (pre- and post-conditions)
- New Notation (yay!): I_k is the instruction at address k

Symbolic Execution Symbolic State

- We set up a symbolic execution state:
 \[\Sigma : \text{Var} \rightarrow \text{SymbolicExpressions} \]
- \(\Sigma(x) = \text{the symbolic value of } x \text{ in state } \Sigma \)
- \(\Sigma[x:=e] = \text{a new state where } x \text{'s value is } e \)
- We use states as substitutions:
 \(\Sigma(e) \leftarrow e \text{ where } x \text{ replaced by } \Sigma(x) \text{ for any } x \)
- So far, much like operational semantics

Symbolic Execution Invariant State

- The symbolic executor keeps track of the encountered invariants
- A new part of symex state: Inv \(\subseteq \{1\ldots n\} \)
- If \(k \in \text{Inv} \) then \(I_k \) is an invariant instr. that we have already executed
- Basic idea: execute an inv instruction only twice:
 - The first time it is encountered
 - Once more time around an arbitrary iteration
Symbolic Execution Rules

• Define a VC function as an interpreter:
 \[VC : \text{Address} \times \text{SymbolicState} \times \text{InvariantState} \rightarrow \text{Assertion} \]

\[
\begin{align*}
VC(k, \Sigma, \text{Inv}) &= \Sigma(e) \quad \text{if } I_k = \text{return} \\
VC(k, \Sigma, \text{Inv}) &= \Sigma(\text{Pre}(f)) \land \\
& \quad \land \forall a_1, a_2, \ldots, a_m. \Sigma'(e) \\
& \quad \text{if } I_k = f() \\
VC(k, \Sigma, \text{Inv}) &= \Sigma(\text{Post}(f)) \\
& \quad \land \forall a_1, a_2, \ldots, a_m. \Sigma'(e) \\
& \quad \text{if } I_k = \text{return} \\
& \quad \text{and } a_1, a_2, \ldots, a_m \text{ are fresh parameters} \\
& \quad \text{and } \Sigma' = \Sigma(y_1 := a_1, \ldots, y_m := a_m) \\
& \quad \text{if } I_k = \text{return} \\
& \quad \text{and } a_1, a_2, \ldots, a_m \text{ are fresh parameters} \\
& \quad \text{and } \Sigma' = \Sigma(y_1 := a_1, \ldots, y_m := a_m) \\
& \quad \text{if } I_k = \text{return} \\
\end{align*}
\]

Symbolic Execution Invariants

1. We see the invariant for the first time
 - \(I_k = \text{inv e} \)
 - \(k \notin \text{Inv} \) ("not in the set of invariants we've seen")
 - Let \(y_1, y_2, \ldots, y_n \) be the variables that could be modified on a path from the invariant back to itself
 - Let \(a_1, a_2, \ldots, a_n \) be fresh new symbolic parameters
 - \(VC(k, \Sigma, \text{Inv}) = \Sigma(e) \land \forall a_1, a_2, \ldots, a_n. \Sigma'(e) \rightarrow VC(k+1, \Sigma', \text{Inv}) \)
 with \(\Sigma' = \Sigma(y_1 := a_1, \ldots, y_n := a_n) \)

2. We see the invariant for the second time
 - \(I_k = \text{inv E} \)
 - \(k \in \text{Inv} \)
 - \(VC(k, \Sigma, \text{Inv}) = \Sigma(e) \) (like a function return)

Symbolic Execution Top-Level

• Let \(x_1, \ldots, x_n \) be the variables and \(a_1, \ldots, a_n \) fresh params
• Let \(\Sigma_0 \) be the state \([x_1 := a_1, \ldots, x_n := a_n] \)
• Let \(\emptyset \) be the empty Inv set
• For all functions \(f \) in your program, prove:
 \[\forall a_1, a_2, \ldots, a_n. \Sigma_0(\text{Pre}(f)) \Rightarrow VC(f, a_1, a_2, \ldots, a_n) \]
 - If you start the program by invoking \(f \) in a state that satisfies \(\text{Pre}(f) \), then the program will execute such that
 - At all "inv e" the \(e \) holds, and
 - If the function returns then \(\text{Post}(f) \) holds
• Can be proved w.r.t. a real interpreter (operational semantics)
• Or via a proof technique called co-induction (or, assume-guarantee)

Forward VCGen Example

[Diagram showing a forward VCGen example with a precondition, loop, and postcondition]

• VC contains both proof obligations and assumptions about the control flow
Forward VCGen Example

Precondition: \(x \leq 0 \)

Loop: if \(x \leq 6 \)
- \(x \leftarrow -x \)
- goto Loop
End: \(x = 6 \)

For convenience, name fresh parameter “\(x' \)
(instead of “\(x \)"

\(\forall x. \quad x \leq 0 \Rightarrow x \leq 6 \land \sum_{i=0}^{6} G_i \leq 6 \)

- VC contains both proof obligations and assumptions about the control flow

VCs Can Be Large

- Consider the sequence of conditionals
 \((if \ x < 0 \ then \ x := -x) \); \((if \ x \leq 3 \ then \ x += 3) \)
 - With the postcondition \(P(x) \)
 - The VC is
 \[x < 0 \land x \leq 3 \Rightarrow P(x = 3) \land x \geq 0 \land x \leq 3 \Rightarrow P(x + 3) \land x = 0 \land x \leq 3 \Rightarrow P(x) \]
 - There is one conjunct for each path
 \(\Rightarrow \) exponential number of paths!
 - Conjuncts for infeasible paths have unsatisfiable guards!
 - Try with \(P(x) = x \geq 3 \)

VCs Can Be Exponential

- VCs are exponential in the size of the source because they attempt relative completeness:
 - Perhaps the correctness of the program must be argued independently for each path
 - Unlikely that the programmer wrote a program by considering an exponential number of cases
 - But possible. Any examples? Any solutions?

VCs Can Be Exponential. Solutions?

- VCs are exponential in the size of the source because they attempt relative completeness:
 - Perhaps the correctness of the program must be argued independently for each path
 - Unlikely that the programmer wrote a program by considering an exponential number of cases
 - But possible. Any examples? Any solutions?

 - Standard Solutions:
 - Allow invariants even in straight-line code
 - And thus do not consider all paths independently!
Invariants in Straight-Line Code

• Purpose: modularize the verification task
• Add the command "after c establish Inv"
 - Same semantics as c (Inv is only for VC purposes)
 \[VC(\text{after c establish Inv}, P) = \text{def} \]

Dropping Paths

• Without annotations, we can drop some paths

\[VC(\text{if } E \text{ then } c_1 \text{ else } c_2, P) = \text{choose one of} \]
 - \[E \Rightarrow VC(c_1, P) \land \neg E \Rightarrow VC(c_2, P) \] (drop no paths)
 - \[E \Rightarrow VC(c_1, P) \] (drops "else" path!)
 - \[\neg E \Rightarrow VC(c_2, P) \] (drops "then" path!)

• We sacrifice soundness! (we are now unsound)
 - No more guarantees
 - Possibly still a good debugging aid

VCGen for Exceptions

• Extend the language with exceptions without arguments (cf. HW2):
 - throw throws an exception
 - try \(c_1 \) catch \(c_2 \) executes \(c_2 \) if \(c_1 \) throws

• Problem:
 - We have non-local transfer of control
 - What is \(VC(\text{throw}, P) \) ?

• Solutions?

VCGen for Exceptions

• Extend the language with exceptions without arguments (cf. HW2):
 - throw throws an exception
 - try \(c_1 \) catch \(c_2 \) executes \(c_2 \) if \(c_1 \) throws

• Problem:
 - We have non-local transfer of control
 - What is \(VC(\text{throw}, P) \) ?

• Standard Solution: use 2 postconditions
 - One for normal termination
 - One for exceptional termination
VCGen for Exceptions

- **VC(c, P, Q)** is a precondition that makes c either not terminate, or terminate normally with P or throw an exception with Q.

- **Rules**
 - \(VC(\text{skip}, P, Q) = P\)
 - \(VC(c_1; c_2, P, Q) = VC(c_1, VC(c_2, P, Q), Q)\)
 - \(VC(\text{throw}, P, Q) = Q\)
 - \(VC(\text{try } c_1 \text{ catch } c_2, P, Q) = VC(c_1, P, VC(c_2, P, Q))\)
 - \(VC(\text{try } c_1 \text{ finally } c_2, P, Q) = ?\)

VCGen Try-Finally

- **Given these:**
 - \(VC(c_1; c_2, P, Q) = VC(c_1, VC(c_2, P, Q), Q)\)
 - \(VC(\text{try } c_1 \text{ catch } c_2, P, Q) = VC(c_1, P, VC(c_2, P, Q))\)

- **Finally is somewhat like "if":**
 - \(VC(\text{try } c_1 \text{ finally } c_2, P, Q) =
 \begin{align*}
 VC(c_1, & \text{ VC(c}_2 \text{, P, Q), true }) \\
 & \lor VC(c_1, \text{ VC(c}_2 \text{, Q, Q})
 \end{align*}\)

- **Which reduces to:**
 - \(VC(c_1, VC(c_2, P, Q), VC(c_2, Q, Q))\)

Hoare Rules and the Heap

- **When is the following Hoare triple valid?**
 - \(\{ A \} \ast x := 5 \{ \ast x + \ast y = 10 \}\)
 - **A should be \(\ast y = 5 \text{ or } x = y\)**

- **The Hoare rule for assignment would give us:**
 - \(5/\ast x)(\ast x + \ast y = 10) = 5 + \ast y = 10 = \ast y = 5\) (we lost one case)

- **Why didn't this work?**
Handling The Heap

• We do not yet have a way to talk about memory (the heap, pointers) in assertions
• Model the state of memory as a symbolic mapping from addresses to values:
 - If \(A \) denotes an address and \(M \) is a memory state then:
 - \(\text{sel}(M, A) \) denotes the contents of the memory cell
 - \(\text{upd}(M, A, V) \) denotes a new memory state obtained from \(M \) by writing \(V \) at address \(A \)

More on Memory

• Allow variables to range over memory states
 - Can quantify over all possible memory states
• Use the special pseudo-variable \(\mu \) (mu) in assertions to refer to the current memory
• Example:
 \[\forall i. i \geq 0 \land i < 5 \Rightarrow \text{sel}(\mu, A + i) > 0 \]
says that entries 0..4 in array \(A \) are positive

Hoare Rules: Side-Effects

• To model writes we use memory expressions
 - A memory write changes the value of memory

\[
\{ E_1 : E_2 \} \; (B[\text{upd}(\mu, E_1, E_2/\mu)])
\]

More on Memory

• The addresses of two distinct globals are \(\neq \)
• The address of a global and one of a local are \(\neq \)
• "PREfix" and GCC use such schemes

Memory Aliasing

• Consider again: \(\{ A \} \; *x := 5 \; (\; *x + *y = 10 \) \)
• We obtain:
 \[A = [\text{upd}(\mu, x, 5)/\mu] \;(*x + *y = 10) \]
 \[= [\text{upd}(\mu, x, 5)/\mu] \; (\text{sel}(\mu, x) + \text{sel}(\mu, y) = 10) \]
 \[(1) \; \text{sel}(\text{upd}(\mu, x, 5), x) + \text{sel}(\text{upd}(\mu, x, 5), y) = 10 \]
 \[= 5 + \text{sel}(\text{upd}(\mu, x, 5), y) = 10 \]
 \[= \text{if } x = y \text{ then } 5 + 5 = 10 \text{ else } 5 + \text{sel}(\mu, y) = 10 \]
 \[(2) \; \text{if } x = y \text{ or } *y = 5 \]
• Up to (1) is theorem generation
• From (1) to (2) is theorem proving

Alternative Handling for Memory

• Reasoning about aliasing can be expensive
 - It is NP-hard (and/or undecidable)
• Sometimes completeness is sacrificed with the following (approximate) rule:
 \[\text{sel}(\text{upd}(M, A_1, V), A_2) = \begin{cases}
 V & \text{if } A_1 = A_2 \\
 \text{sel}(M, A_2) & \text{if } A_1 \neq A_2 \\
 p & \text{otherwise (p is a fresh new parameter)}
\end{cases} \]
• The meaning of "obvious" varies:
 - The addresses of two distinct globals are \(\neq \)
 - The address of a global and one of a local are \(\neq \)
 - "PREfix" and GCC use such schemes
VCGen Overarching Example

- Consider the program
 - Precondition: \(B : \text{bool} \land A : \text{array(bool, L)} \)
 1: \(I := 0 \)
 \(R := B \)
 3: \(\text{inv } I \geq 0 \land R : \text{bool} \)
 - if \(I \geq L \) goto 9
 - assert \(\text{saferd}(A + I) \)
 \(T := *(A + I) \)
 \(I := I + 1 \)
 \(R := T \)
 goto 3
 9: return \(R \)
 - Postcondition: \(R : \text{bool} \)

VCGen Overarching Example

\(\forall A, B, L, \mu. \forall I. B : \text{bool} \land A : \text{array(bool, L)} \Rightarrow \)
\(0 \geq 0 \land B : \text{bool} \land \)
\(\forall I. \forall R. I \geq 0 \land R : \text{bool} \Rightarrow \)
\(I \geq L \Rightarrow R : \text{bool} \land \)
\(I < L \Rightarrow \text{saferd}(A + I) \land \)
\(I + 1 \geq 0 \land \)
\(\text{sel}(\mu, A + I) : \text{bool} \)

- VC contains both proof obligations and assumptions about the control flow

Mutable Records - Two Models

- Let \(r : \text{RECORD \{ f1 : T1; f2 : T2 \} END} \)
- For us, records are reference types
- Method 1: one "memory" for each record
 - One index constant for each field
 - \(r.f1 \) is \(\text{sel}(r,f1) \) and \(r.f1 := E \) is \(r := \text{upd}(r,f1,E) \)
- Method 2: one "memory" for each field
 - The record address is the index
 - \(r.f1 \) is \(\text{sel}(f1,r) \) and \(r.f1 := E \) is \(f1 := \text{upd}(f1,r,E) \)
- Only works in strongly-typed languages like Java
 - Fails in C where \&\&\& r.f2 = \&\&\& r + sizeof(T1)

VC as a "Semantic Checksum"

- Weakest preconditions are an expression of the program’s semantics:
 - Two equivalent programs have logically equivalent WPs
 - No matter how different their syntax is!
- VC are almost as powerful

VC as a "Semantic Checksum"

- Consider the "assembly language" program to the right
 \(x := 4 \)
 \(x := (x == 5) \)
 \(\text{assert } x : \text{bool} \)
 \(x := \text{not } x \)
 \(\text{assert } x \)

- High-level type checking is not appropriate here
- The VC is: \((4 == 5) : \text{bool}) \land (\text{not } (4 == 5))\)
- No confusion from reuse of \(x \) with diff. types
Invariance of VC Across Optimizations

• VC is so good at abstracting syntactic details that it is syntactically preserved by many common optimizations
 - Register allocation, instruction scheduling
 - Common subexp elim, constant and copy propagation
 - Dead code elimination
• We have identical VCs whether or not an optimization has been performed
 - Preserves syntactic form, not just semantic meaning!
• This can be used to verify correctness of compiler optimizations (Translation Validation)

VC Characterize a Safe Interpreter

• Consider a fictitious “safe” interpreter
 - As it goes along it performs checks (e.g. “safe to read from this memory addr”, “this is a null-terminated string”, “I have not already acquired this lock”)
 - Some of these would actually be hard to implement
• The VC describes all of the checks to be performed
 - Along with their context (assumptions from conditionals)
 - Invariants and pre/postconditions are used to obtain a finite expression (through induction)
• VC is valid ⇒ interpreter never fails
 - We enforce same level of “correctness”
 - But better (static + more powerful checks)

VC Big Picture

• Verification conditions
 - Capture the semantics of code + specifications
 - Language independent
 - Can be computed backward/forward on structured/unstructured code
 - Make Axiomatic Semantics practical

Invariants Are Not Easy

• Consider the following code from QuickSort
 int partition(int *a, int L, int H, int pivot) {
 int L = L, H = H;
 while(L < H) {
 while(a[L] < pivot) L ++;
 while(a[H] > pivot) H --;
 if(L < H) { swap a[L] and a[H] }
 }
 return L
 }
• Consider verifying only memory safety
• What is the loop invariant for the outer loop?

Questions?

One-Slide Summary

• Verification conditions make axiomatic semantics practical. We can compute verification conditions forward for use on unstructured code (= assembly language). This is sometimes called symbolic execution.
• We can add extra invariants or drop paths (dropping is unsound) to help verification condition generation scale.
• We can model exceptions, memory operations and data structures using verification condition generation.