Announcements

- Homework 3 due Thu at 11:55pm

Questions?

Review of Induction

Induction on the Structure of Derivations

- To prove that for all derivations D of a judgment, property P holds

 - For each derivation rule of the form
 \[\frac{H_1, H_2}{C} \]

 - Assume P holds for derivations of H_i ($i = 1..n$)

- Prove the property holds for the derivation obtained from the derivations of H_i using the given rule
Notation: Naming Derivations

- Write $D :: \text{Judgment}$ to mean "D is the derivation that proves \text{Judgment}"
- Example: $D :: \langle e_1 + e_2, \sigma \vdash n_1 + n_2 \rangle$

Proving Com Evaluation is Deterministic

If $D :: \langle c, \sigma \cup \alpha' \rangle$ and $D :: \langle c, \sigma \cup \alpha'' \rangle$, then $\alpha' = \alpha''$.

- Case $D :: \langle \text{skip}, \sigma \cup \alpha \rangle$

 - This means that $c = \text{skip}$ and $\alpha' = \alpha$.
 - By inversion, $D :: \langle c, \sigma \cup \alpha' \rangle$ uses the rule for \text{skip}.
 - Thus, $\alpha' = \alpha$.

This is a base case in the induction.

Proof: By induction on the structure of derivation D.

Proving Com Evaluation is Deterministic

If $D :: \langle c, \sigma \cup \alpha' \rangle$ and $D :: \langle c, \sigma \cup \alpha'' \rangle$, then $\alpha' = \alpha''$.

- Case $D :: \langle \text{while} b \text{ do } c, \sigma \cup \alpha \rangle$

 - By inversion, $D :: \langle \text{while} b \text{ do } c, \sigma \cup \alpha' \rangle$ uses the rule for \text{while}.

This is a simple inductive case.
Proving Com Evaluation is Deterministic

If \(D :: c, a \Downarrow a' \) and \(D' :: c, a \Downarrow a'' \), then \(a' = a'' \).

- Case
 - \(D :: b, \sigma \Downarrow \text{true} \)
 - \(D_1 :: c, \sigma \Downarrow \sigma' \)
 - \(D_2 :: c, \sigma \Downarrow \sigma'' \)
 - \(\sigma' = \sigma'' \)

Try to do this on a piece of paper. In a moment, we'll have some lucky winners come on down!

Summary: Induction on Derivations

- If you must prove \(\forall x \in A. P(x) \Rightarrow Q(x) \)
 - with \(A \) inductively defined and \(P(x) \) rule-defined
 - we pick arbitrary \(x \in A \) and \(D :: P(x) \)
 - we could do induction on both facts
 - \(x \in A \) leads to induction on the structure of \(x \)
 - \(D :: P(x) \) leads to induction on the structure of \(D \)
 - Generally, the induction on the structure of the derivation is more powerful and a safer bet
 - Sometimes there are many choices for induction
 - choosing the right one is a trial-and-error process
 - a bit of practice can help a lot

Summary: Operational Semantics

- Precise specification of dynamic semantics
 - order of evaluation (or that it doesn't matter)
 - error conditions (sometimes implicitly by rule applicability: "no applicable rule" = "get stuck")
- Simple and abstract (vs. implementations)
 - no low-level details such as stack and memory management, data layout, etc.
- Often not compositional (see while)
- Basis for many proofs about a language
 - Especially when combined with type systems!
- Basis for much reasoning about programs
- Point of reference for other semantics

Survey

- What is the most important thing you learned in today's class?
- What question about today's material is foremost in your mind?
- What feedback do you have about the course so far? What is going/not going well?