Contextual Operational Semantics

Meeting 8, CSCI 5535, Spring 2010

Announcements

• Homework 1 is due tonight
 - How’s it going?

• Office hours
 - Move earlier to after class today?

Questions?

Key Ideas

• Small-step operational semantics
 - Value, Normal form, Terminal program
• Contextual small-step operational sem.
 - Redex
 - Local reduction rules
 - Context
 - Global reduction rule
• What are these things about?
Local Reduction Rules for IMP

One for each redex: \(\langle r, \sigma \rangle \rightarrow \langle e, \sigma' \rangle \)

- \(\langle x, \sigma \rangle \rightarrow \langle \sigma(x), \sigma \rangle \)
- \(\langle n_1 + n_2, \sigma \rangle \rightarrow \langle n, \sigma \rangle \) where \(n = n_1 + n_2 \)
- \(\langle n_1 = n_2, \sigma \rangle \rightarrow \langle \text{true}, \sigma \rangle \) if \(n_1 = n_2 \)
- \(\langle n_1 = n_2, \sigma \rangle \rightarrow \langle \text{false}, \sigma \rangle \) if \(n_1 \neq n_2 \)

Global reduction rule

- \(\langle x := n, \sigma \rangle \rightarrow \langle \text{skip}, \sigma[x := n] \rangle \)
- \(\langle \text{skip}; c, \sigma \rangle \rightarrow \langle c, \sigma \rangle \)
- \(\langle \text{if true then } c_1 \text{ else } c_2, \sigma \rangle \rightarrow \langle c_1, \sigma \rangle \)
- \(\langle \text{if false then } c_1 \text{ else } c_2, \sigma \rangle \rightarrow \langle c_2, \sigma \rangle \)
- \(\langle \text{while } b \text{ do } c, \sigma \rangle \rightarrow \langle \text{if } b \text{ then } c; \text{while } b \text{ do } c \text{ else } \text{skip}, \sigma \rangle \)
Contextual Semantics Example

- \(x := 1 \); \(x := x + 1 \) with initial state \([x:=0]\)

<table>
<thead>
<tr>
<th><Comm, State></th>
<th>Redux •</th>
<th>Context</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x := 1; x := x + 1, [x := 0])</td>
<td>(x := 1)</td>
<td>(x := x + 1)</td>
</tr>
<tr>
<td>(\text{skip}; x := x + 1, [x := 1])</td>
<td>(\text{skip}; x := x + 1)</td>
<td>•</td>
</tr>
<tr>
<td>(x := x + 1, [x := 1])</td>
<td>(x)</td>
<td>(x := x + 1)</td>
</tr>
<tr>
<td>(x := 1 + 1, [x := 1])</td>
<td>(1 + 1)</td>
<td>(x := x + 1)</td>
</tr>
<tr>
<td>(x := 2, [x := 1])</td>
<td>(x := 2)</td>
<td>•</td>
</tr>
<tr>
<td>(\text{skip}, [x := 2])</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Defining Contexts

- **Contexts** are defined by a grammar:

 \[
 H ::= • | n + H \\
 | H + e | ... \\
 | x := H \\
 | \text{if } H \text{ then } c_1 \text{ else } c_2 \\
 | H; c
 \]

- A context has **exactly one** • marker
- Does this say something about order of evaluation?

What’s in a context?

- **Contexts** specify precisely how to find the next redex
 - Consider \((e_1, e_2)\) and its decomposition as \(H[r]\)
 - What are all the ways that \((e_1, e_2)\) could be split into \(H\) and \(r\)?
What's in a context?

• Contexts specify precisely how to find the next redex
 - Consider $e_1 + e_2$ and its decomposition as $H[r]
 - If e_1 is n_1 and e_2 is n_2 then $H = \cdot$ and $r = n_1 + n_2$.
 - If e_1 is n_1 and e_2 is not n_2 then $H = n_1 + H_2$ and $e_2 = H_2[r]$.
 - If e_1 is not n_1 then $H = H_1 + e_2$ and $e_1 = H_1[r]$.
 - In the last two cases the decomposition is done recursively.
 - Check that in each case the solution is unique.

Unique Next Redex: “Proof” By Handwaving Examples

• e.g., $c = \text{“} c_1; c_2 \text{”}$ – either
 - $c_1 = \text{skip}$ and then $c = H[\text{skip}; c_2]$ with $H = \cdot$
 - or $c_1 \neq \text{skip}$ and then $c_1 = H[r]$; so $c = H[r]$ with $H = H_1; c_2$

• e.g., $c = \text{“} \text{if } b \text{ then } c_1 \text{ else } c_2 \text{”}$
 - either $b = \text{true}$ or $b = \text{false}$ and then $c = H[r]$ with $H = \cdot$
 - or b is not a value and $b = H[r]$; so $c = H[r]$ with $H = \text{if } H \text{ then } c_1 \text{ else } c_2$

Context Decomposition Theorem

• If c is not “skip” then there exist unique H and r such that $c = H[r]$
 - “Exist” means progress.
 - “Unique” means determinism.

What if we want short-circuit evaluation of \land?

• Define the following contexts, redexes and local reduction rules:

 $H ::= \ldots |$
 $r ::= \ldots |$
 $<\ldots, \sigma> \rightarrow <\ldots, \sigma> |$
 $<\ldots, \sigma> \rightarrow <\ldots, \sigma> |$

 - the local reduction kicks in before b_2 is evaluated.

Summary: Contextual Operational Semantics

• Can view \cdot as representing the program counter.
• The advancement rules for \cdot are non-trivial.
 - At each step the entire command is decomposed.
 - This makes contextual semantics inefficient to implement directly.
• The major advantage of contextual semantics:
 allows a mix of local and global reduction rules.
 - For IMP we have only local reduction rules: only the redex is reduced.
 - Sometimes it is useful to work on the context too.

Reading Real-World Examples

• Cobbe and Felleisen, POPL 2005
• Small-step contextual op. sem. for Java
• Their rule for object field access:
 $P \vdash E[\text{obj.fd}], S \rightarrow E[F(fd)].S$
 where $F = \text{fields}(S(\text{obj}))$ and $fd \in \text{dom}(F)$
• They use “E“ for context, we use “H“.
• They use “S“ for state, we use “σ“.

Lost In Translation

• \(P \vdash <H[\text{obj.fd}], \sigma> \rightarrow <H[F(fd)], \sigma> \)
 where \(F = \text{fields}(\sigma(\text{obj})) \) and \(fd \in \text{dom}(F) \)

• They have "\(P \vdash \)" but that just means "it can be proved in our system given \(P \)"

• \(<H[\text{obj.fd}], \sigma> \rightarrow <H[F(fd)], \sigma> \)
 where \(F = \text{fields}(\sigma(\text{obj})) \) and \(fd \in \text{dom}(F) \)

• They model objects (like \(\text{obj} \)), but we do not (yet); let's just make \(fd \) a variable:

• \(<H[fd], \sigma> \rightarrow <H[F(fd)], \sigma> \)
 where \(F = \sigma \) and \(fd \in L \)

• That's just our variable-lookup rule:

• \(<H[fd], \sigma> \rightarrow <H[\sigma(fd)], \sigma> \) (when \(fd \in L \))