Runtime Error Analysis
- A Machine Learning Perspective

Praful Mangalath

University of Colorado, Boulder
Center for Computational Language and EducAtion Research (CLEAR)

April 29th, 2009
Project Summary

- Runtime Error Analysis
- 5535 Deliverables
 - developed developing* a bug finding toolkit for C
 - Benchmarks on Siemens Test Suite
- Applied machine learning techniques to detect runtime errors
Outline of this talk

- Setup background and explain the problem
- Demo
- Details of Implementation
- Experimental data
Finding Errors in Code - Static Properties

- Check for syntactic and static semantic rules
- Errors to Warnings ratio low
- Cheap and easy to use
- Tools: FindBugs, Splint
Finding Errors in Code - Dynamic Properties

- Code verification with Abstract Interpretation.
- Without executing program investigate program behavior
- Derive dynamic properties from source code
- mature and sound mathematical basis
- Tools: BLAST, SLAM (Static Driver Verifier)
Finding Errors in Code - Dynamic Properties

- Test driven code verification
- Identifies only symptoms not cause of error
- Tracing anomaly to root cause manual time-consuming process
- Effectiveness limited to test case coverage
Verifying Dynamic Properties - Analogy

- **Goal** - predict the trajectory of a projectile mid-air
- **Abstract Interpretation**
 - laws of physics (gravity, initial speed, air braking coeff)
 - transform problem into set of equations
 - solve by mathematical rules, formal or numeric
- **Test driven**
 - launch many projectiles and record observations
 - derive empirical laws of motion and error margins
 - estimate trajectory and report a confidence parameter
- **Mathworks White Paper:** ‘Verifying Code When Software Reliability is Critical.’, Paul Barnard, Marc Lalo, & Jim Tung. 2008
Cooperative Bug Isolation (CBI) Project

- "Scalable Statistical Bug Isolation" Ben Liblit, Mayur Naik, Alice Zheng, Alex Aiken & Michael Jordan (PLDI 2005)
- bug-finding post-deployment
- application in the wild >> writing test cases
- "Interesting program behavior is expressible as a predicate on a state at a particular program point"
- Sample predicates from users running these applications \(\approx \) Yields best test case coverage
Cooperative Bug Isolation (CBI) Project - Architecture

Source Code → Predicates → Sampler → Compiler → Instrumented Application

BUGS → Statistical Debugging → predicate log reports
Modeling Program Behavior with Predicates

```c
upward_preferred = Inhibit_Biased_Climb() > Down_Separation;

if (upward_preferred)
{
    result = !(Own_Below_Threat()) ||
             ((Own_Below_Threat()) &&
             (!(Down_Separation >= ALIM())));
}
else
```
Modeling Program Behavior with Predicates

\[\text{upward_preferred} = \text{Inhibit_Biased_Climb()} > \text{Down_Separation}; \]

\[\text{if (upward_preferred)} \]
\[\{ \]
\[\text{result} = !\text{(Own_Below_Threat()) ||}
\[\text{((Own_Below_Threat()) &&}
\[\text{!(Down_Separation >= ALIM())));} \]
\[\} \]
\[\text{else} \]

\[\text{tca.s} \]

Figure: For each conditional, count how many times the branch predicate is false or true. Each branch induces one instrumentation point with a pair of counters.
Modeling Program Behavior - Execution Profiles

- Instrumentation sites
 - branches - pair of counters ($\text{branch}_{false}, \text{branch}_{true}$)
 - bounds - at each assignment site we record max and min values
 - function-calls - count function entries

- Collect predicate values with some sampling period

- Collect execution profile

- A set of execution profiles (failed & successful runs) is the input to the machine learning component
Machine Learning Components

predicate
log
reports

Classifier
Support
Vector
Machine

Component
Mixture Model
Nested
Chinese
Restaurant
Process

Heuristics

BUGS
Demo
Classifier Design - Support Vector Machine

- Goal to use predicates as features to determine failed/successful execution profiles
- Linear algorithm in feature space is equivalent to non-linear algorithm in input space
- Ranks predicate features that were significant in making fail/pass decision
Hierarchical Mixture Model - Nested Chinese Restaurant Process

- Goal to enable predicates to share clusters
- Number of clusters varies for each report and needs to be inferred automatically
- For complex source code with library dependencies clusters could be hierarchical
Data

- Siemens Test Suite
- 132 known expert induced bugs
- supporting test cases
Conclusion

- Machine learning approach to runtime error analysis
- Tool requires no specialized annotation or expertise to tune/run
- More data \Rightarrow better performance in ML
- Instrument real-world application