High-Level Hints

• Ex 2: Language is like IMP and like λ-calculus in ways
• Ex 3: Did "preservation" in class with big-step semantics
• Ex 4: Try an example derivation in ⊢ and "convert it" to ⊢₀
• Ex5: Think about using references: storing and reading

Exercise 4

• Consider the simply-typed lambda calculus with subtyping:

 \[e ::= x \mid \lambda x. e \mid e_1 e_2 \]

 \[\tau ::= \tau_1 \rightarrow \tau_2 \mid \ldots \]

• Typing rule for λ-expression:

 \[\Gamma, x : \tau \vdash e : \tau' \]
 \[\Gamma \vdash \lambda x. e : \tau \rightarrow \tau' \]
Exercise 4

1. **Standard subsumption**

 \[\Gamma \Downarrow e : \tau \quad \tau \Rightarrow \tau' \]

 \[\Gamma \Downarrow e : \tau' \]

2. **Replaced with restricted variable-only subsumption**

 \[\Gamma(x) = \tau \quad \tau \Rightarrow \tau' \]

 \[\Gamma \Downarrow 0 x : \tau' \]

Exercise 4

- Prove "completeness of variable-only subsumption typing"

 \[\text{If } T :: \vdash e : \tau, \text{ then } \vdash 0 e : \tau. \]

Exercise 4

If \(T :: \vdash e : \tau \), then \(\vdash 0 e : \tau \).

- Try proof by induction on \(T \).
- Case \(T :: \vdash \lambda x. e : \tau' \)

 Need generalization!

Exercise 4

Corollary: If \(T :: \vdash e : \tau \), then \(\vdash 0 e : \tau \).

- Try

 Theorem: If \(T :: \Gamma \vdash e : \tau \), then \(\Gamma \vdash 0 e : \tau \).

 - Resolves issue with \(\lambda \)-expression
 - If we can prove the theorem, then that (trivially) implies the corollary we want
 - Think about: The case where \(T \) ends in the subsumption rule.

Need generalization!

- Resolves issue with \(\lambda \)-expression
- If we can prove the theorem, then that (trivially) implies the corollary we want
- Think about: The case where \(T \) ends in the subsumption rule.