Announcements

- I have commented on most of your proposals

Quick Review

- λ-calculus is as expressive as a Turing machine
- We can encode a multitude of data types in the untyped λ-calculus
- To simplify programming it is useful to add types to the language
- We now start the study of type systems in the context of the typed λ-calculus

Today's Plan

- Type System Overview
- First-Order Type Systems
- Typing Rules
- Typing Derivations
- Type Safety

Types

- A program variable can assume a range of values during the execution of a program
- An upper bound of such a range is called a type of the variable
 - A variable of type "bool" is supposed to assume only boolean values
 - If x has type "bool" then the boolean expression "not(x)" has a sensible meaning during every run of the program
Typed and Untyped Languages

• Untyped languages
 – Do not restrict the range of values for a given variable
 – Operations might be applied to inappropriate arguments. The behavior in such cases might be unspecified
 – The pure λ-calculus is an extreme case of an untyped language (however, its behavior is completely specified)

• (Statically) Typed languages
 – Variables are assigned (non-trivial) types
 – A type system keeps track of types
 – Types might or might not appear in the program itself
 – Languages can be explicitly typed or implicitly typed

The Purpose Of Types

• The foremost purpose of types is to prevent certain types of run-time execution errors
 – Traditional trapped execution errors
 – Cause the computation to stop immediately
 – And are thus well-specified behavior
 – Usually enforced by hardware
 – e.g., Division by zero, floating point with a NaN
 – e.g., Dereferencing the address 0 (on most systems)

• Untrapped execution errors
 – Behavior is unspecified
 – e.g., accessing past the end of an array
 – e.g., jumping to an address in the data segment

Execution Errors

• A program is deemed safe if it does not cause untrapped errors
 – Languages in which all programs are safe are safe languages

• For a given language we can designate a set of forbidden errors
 – A superset of the untrapped errors, usually including some trapped errors as well
 – For a given program language we can designate a set of forbidden errors
 – Usually enforced by hardware (e.g., ML, Modula-3, Java)

Preventing Forbidden Errors:

• Static Checking
 – Detects errors early, before testing
 – Types provide the necessary static information for static checking
 – e.g., ML, Modula-3, Java
 – Detecting certain errors statically is undecidable in most languages

• Dynamic Checking
 – Run-time checking of types are still required
 – Should be limited since it delays the manifestation of errors
 – e.g., array-bounds checking
 – Can be done in hardware (e.g., null-pointer)

Preventing Forbidden Errors:

• Static Checking
 – Detects errors early, before testing
 – Types provide the necessary static information for static checking
 – e.g., ML, Modula-3, Java

• Dynamic Checking
 – Run-time checking of types are still required
 – Should be limited since it delays the manifestation of errors
 – e.g., array-bounds checking
 – Can be done in hardware (e.g., null-pointer)
Why Typed Languages?

• Development
 - Type checking catches early many mistakes
 - Reduced debugging time
 - Typed signatures are a powerful basis for design
 - Typed signatures enable separate compilation
• Maintenance
 - Types act as checked specifications
 - Types can enforce abstraction
• Execution
 - Static checking reduces the need for dynamic checking
 - Safe languages are easier to analyze statically
 - the compiler can generate better code

Why Not Typed Languages?

• Static type checking imposes constraints on the programmer
 - Some valid programs might be rejected
 - But often they can be made well-typed easily
 - Hard to step outside the language (e.g. OO programming in a non-OO language, but cf. OCaml, etc.)
• Dynamic safety checks can be costly
 - 50% is a possible cost of bounds-checking in a tight loop
 - In practice, the overall cost is much smaller
 - Memory management must be automatic → need a garbage collector with the associated run-time costs
 - Some applications are justified in using weakly-typed languages (e.g., by external safety proof)

Safe Languages

• There are typed languages that are not safe ("weakly typed languages")
• All safe languages use types (static or dynamic)

<table>
<thead>
<tr>
<th></th>
<th>Typed</th>
<th>Untyped</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>Java, ML</td>
<td>Python, Perl, Ruby, Bash, Lisp</td>
</tr>
<tr>
<td>Dynamic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unsafe</td>
<td>C, C++, Pascal, ...</td>
<td>Assembly</td>
</tr>
</tbody>
</table>

• We focus on statically typed languages
Properties of Type Systems

• How do types differ from other program annotations?
 - Types are more precise than comments
 - Types are more easily mechanizable than program specifications
• Expected properties of type systems:
 - Types should be enforceable
 - Types should be checkable algorithmically
 - Typing rules should be transparent
 - Should be easy to see why a program is not well-typed

Why Formal Type Systems?

• Many typed languages have informal descriptions of the type systems (e.g., in language reference manuals)

Why Formal Type Systems?

• Many typed languages have informal descriptions of the type systems (e.g., in language reference manuals)
• A fair amount of careful analysis is required to avoid false claims of type safety
• A formal presentation of a type system is a precise specification of the type checker
 - And allows formal proofs of type safety
• But even informal knowledge of the principles of type systems help

Formalizing a Language

1. Syntax
 • Of expressions (programs), of types
 • Issues of binding and scoping
2. Static semantics (typing rules)
 • Define the typing judgment and its derivation rules
3. Dynamic Semantics (e.g., operational)
 • Define the evaluation judgment and its derivation rules
4. Type soundness
 • Relates the static and dynamic semantics
 • State and prove the soundness theorem

Typing Judgments

• Recall: judgment?
 - A statement about the world
 - A statement that can be proven
• A common form of typing judgment:
 \(\Gamma \vdash e : \tau \) (e is an expression and \(\tau \) is a type)
• \(\Gamma \) (Gamma) is a set of type assignments for the free variables of \(e \)
 - Defined by the grammar \(\Gamma ::= \cdot | \Gamma, x : \tau \)
 - Type assignments for variables not free in \(e \) are not relevant
 - e.g., \(x : \text{int}, y : \text{int} \vdash x + y : \text{int} \)
Typing rules

- Typing rules are used to derive typing judgments

\[\Gamma \vdash 1 : \text{int} \]

- Examples:

\[\vdash x : \tau \]

\[\Gamma, x : \tau \vdash e : \tau' \]

\[\Gamma \vdash e_1 : \tau \quad \Gamma \vdash e_2 : \tau' \]

\[\Gamma \vdash e_1 \downarrow e_2 \]

Typing Derivations

- A typing derivation is a derivation of a typing judgment (big surprise)

\[\Gamma \vdash e : \tau \]

\[\Gamma \vdash \lambda x : \tau. e : \tau \rightarrow \tau' \]

\[\Gamma \vdash e_1 : \tau_2 \rightarrow \tau \quad \Gamma \vdash e_2 : \tau_2 \]

\[\Gamma \vdash e_1 e_2 : \tau \]

Proving Type Soundness: Intuition

- A typing judgment
- Define what it means for a value to have a type \(v \in \tau \) (e.g. \(5 \in \text{int} \) and \(\text{true} \in \text{bool} \))
- Define what it means for an expression to have a type \(e \in \tau \) iff \(\forall v. (e \Downarrow v \Rightarrow v \in \tau) \)
- Prove type soundness
 - If \(\Gamma \vdash e : \tau \) then \(e \in \tau \)
 - or equivalently
 - If \(\Gamma \vdash e : \tau \) and \(e \Downarrow v \) then \(v \in \tau \)
- This implies safe execution (since the result of an unsafe execution is not in \(\tau \) for any \(\tau \))

Simply-Typed Lambda Calculus

- Syntax:

 \[e ::= x | \lambda x: \tau. e | e_1 e_2 | n | e_1 + e_2 | \text{iszero } e | \text{true} | \text{false} | \text{if } e \text{ then } e_1 \text{ else } e_3 \]

 \[\tau ::= \text{int} \mid \text{bool} \mid \tau \rightarrow \tau \]

- Notice the \(: \)

Static Semantics of \(F_1 \)

- Function rules

\[\vdash x : \tau \quad \Gamma, x : \tau \vdash e : \tau' \]

\[\Gamma \vdash e_1 : \tau_2 \quad \Gamma \vdash e_2 : \tau_2 \]

\[\Gamma \vdash e_1 e_2 : \tau \]
More Static Semantics of F_1

- Base type rules

\[
\begin{align*}
\Gamma &\vdash n : \text{int} & \Gamma &\vdash e_1 + e_2 : \text{int} \\
\Gamma &\vdash e_1 : \text{int} & \Gamma &\vdash e_2 : \text{int} \\
\Gamma &\vdash \text{true} : \text{bool} & \Gamma &\vdash \text{not } e : \text{bool} \\
\Gamma &\vdash e_1 : \text{bool} & \Gamma &\vdash e_2 : \tau & \Gamma &\vdash e_3 : \tau \\
\Gamma &\vdash \text{if } e_1 \text{ then } e_2 \text{ else } e_3 : \tau
\end{align*}
\]

Typing Derivation in F_1

- Consider the term $\lambda x : \text{int}. \lambda b : \text{bool}. \text{if } b \text{ then } f x \text{ else } x$
 - With the initial typing assignment $f : \text{int} \rightarrow \text{int}$

- Write the type derivation