Announcements

- Homework 2 is due today
- Thanks for the feedback and keep it coming!
 - MW class, reading posts after class

Questions?

Review of Denotational Semantics

Denotational Semantics of Arithmetic Expressions

- We inductively define a function
 \[A[\cdot] : \text{Aexp} \rightarrow (\Sigma \rightarrow \Sigma) \]

- \[A[n] \sigma = \text{the integer denoted by literal } n \]
- \[A[x] \sigma = \sigma(x) \]
- \[A[e_1+e_2] \sigma = A[e_1]\sigma + A[e_2]\sigma \]
- \[A[e_1-e_2] \sigma = A[e_1]\sigma - A[e_2]\sigma \]
- \[A[e_1\cdot e_2] \sigma = A[e_1]\sigma \cdot A[e_2]\sigma \]

- This is a total function (= defined for all expressions)
Denotational Semantics of Boolean Expressions

- We inductively define a function
 \(B[] : \text{Bexp} \rightarrow (\Sigma \rightarrow \{\text{true}, \text{false}\}) \)

- \(B[\text{true}] \sigma = \text{true} \)
- \(B[\text{false}] \sigma = \text{false} \)
- \(B[b_1 \land b_2] \sigma = B[b_1] \sigma \land B[b_2] \sigma \)
- \(B[e_1 = e_2] \sigma = \text{if } A[e_1] \sigma = A[e_2] \sigma \text{ then true else false} \)

Seems Easy So Far

\[[\text{carrot}] = \text{carrot} \]
\[[\text{bowling pin}] = \text{bowling pin} \]

Denotational Semantics of Commands

- We try:
 \(C[] : \text{Com} \rightarrow (\Sigma \rightarrow \Sigma_\perp) \)

- \(C[\text{skip}] \sigma = \sigma \)
- \(C[x := e] \sigma = \sigma[x := A[e] \sigma] \)
- \(C[c_1; c_2] \sigma = C[c_2] (C[c_1] \sigma) \)
- \(C[\text{if } b \text{ then } c_1 \text{ else } c_2] \sigma = \text{if } B[b] \sigma \text{ then } C[c_1] \sigma \text{ else } C[c_2][\sigma] \)

Denotational Semantics of Commands

- Can’t use the same tricks as in operational semantics (directly)

Start from the Unwinding Equation

- What’s the unwinding equation?
 \(W(\sigma) = C[\text{while } b \text{ do } c] \sigma \)
 \(W(\sigma) = \text{if } B[b] \sigma \text{ then } W(C[c] \sigma) \text{ else } \sigma \)

DS of While: Unwinding

- Notation: \(W = C[\text{while } b \text{ do } c] \)
- Idea: rely on the equivalence (justification?)
 \(\text{while } b \text{ do } c = \text{if } b \text{ then } c; \text{ while } b \text{ do } c \text{ else skip} \)
- Try
 \(W(\sigma) = \text{if } B[b] \sigma \text{ then } W(C[c] \sigma) \text{ else } \sigma \)

- This is called the unwinding equation
- It is not a good denotation of \(W \) because:
 - It defines \(W \) in terms of itself
 - It is not evident that such a \(W \) exists
 - It does not describe \(W \) uniquely
 - It is not compositional
Preview: while k-steps Semantics

- Define $W_k : \Sigma \rightarrow \Sigma_\perp$ (for $k \in \mathbb{N}$) such that

 \[
 W_k(\sigma) = \begin{cases}
 \sigma' & \text{if "while } b \text{ do } c \text{" in state } \sigma \text{ terminates in fewer than } k \text{ iterations in state } \sigma' \\
 \perp & \text{otherwise}
 \end{cases}
 \]

- We can define the W_k functions as follows:

 \[
 W_0(\sigma) = \perp
 \]

 \[
 W_k(\sigma) = \begin{cases}
 W_{k-1}(\text{C}[c];\sigma) & \text{if } B[b];\sigma \text{ for } k \geq 1 \\
 \sigma & \text{otherwise}
 \end{cases}
 \]

while Semantics

- How do we get W from W_k?

 \[
 W(\sigma) = \begin{cases}
 \sigma' & \text{if } \exists k. W_k(\sigma) = \sigma' \neq \perp \\
 \perp & \text{otherwise}
 \end{cases}
 \]

- This is a **compositional definition** of W
 - Depends only on $C[c]$ and $B[b]$

It Works, But ...

- This solution is _not quite satisfactory_ because
 - It has an _operational flavor_ (= "run the loop")
 - It _does not generalize_ easily to more complicated semantics (e.g., higher-order functions)

End of Review

On to Domain Theory

Recall: Denotational Game Plan

- Since while is _recursive_
 - always have something like: $W(\sigma) = F(W(\sigma))$
- Admits _many possible values_ for $W(\sigma)$
- We will _order_ them
 - With respect to non-termination = "least"
- And then find the _least fixed point_

\[
\text{LFP } W(\sigma) = F(W(\sigma)) \Rightarrow \text{meaning of "while"}
\]

Simple Domain Theory

- Consider programs in an eager, deterministic language with one variable called "x"
 - All these restrictions are just to simplify the examples
- A state σ is just the value of x
 - Thus we can use \mathbb{Z} instead of Σ
- The semantics of a command give the value of final x as a function of input x

\[
C[\ c \]: \mathbb{Z} \rightarrow \mathbb{Z}_\perp
\]
Examples Revisited

- Take C[while true do skip]
 - Unwinding equation reduces to $W(x) = W(x)$
 - Any function satisfies the unwinding equation
 - Desired solution is $W(x) = \bot$

- Take C[while $x \neq 0$ do $x := x - 2$]
 - Unwinding equation:
 $W(x) = \begin{cases} W(x - 2) & \text{if } x \neq 0 \\ x & \text{if } x \text{ even} \land x \geq 0 \\ \bot & \text{else} \end{cases}$
 - Solutions (for all values $n, m \in \mathbb{Z}$):
 $W(x) = \begin{cases} \bot & \text{if } x \geq 0 \\ n & \text{if } x \text{ even} \\ m & \text{else} \end{cases}$
 - Desired solution: $W(x) = \begin{cases} 0 & \text{if } x \text{ even} \\ \bot & \text{else} \end{cases}$

What is the Desired Solution?

- Returns or \bot value if loop terminates
- Eliminate arbitrary return values when non-terminating

An Ordering of Solutions

- The desired solution is the one in which all the arbitrariness is replaced with non-termination
 - The arbitrary values in a solution are not uniquely determined by the semantics of the code
- We introduce an ordering of semantic functions
 - Let $f, g : \mathbb{Z} \rightarrow \mathbb{Z}$
 - Define $f \sqsubseteq g$ as
 $\forall x \in \mathbb{Z}, f(x) = \bot \lor f(x) = g(x)$
 - A “smaller” function terminates at most as often, and when it terminates it produces the same result

Alternative Views of Function Ordering

- A semantic function $f : \mathbb{Z} \rightarrow \mathbb{Z}$ can be written as $S_f \subseteq \mathbb{Z} \times \mathbb{Z}$ as follows:
 $S_f = \{(x, y) : x \in \mathbb{Z}, f(x) = y \neq \bot\}$
 - set of “terminating” values for the function
- If $f \sqsubseteq g$ then
 - $S_f \subseteq S_g$ (refinement)
 - We say that g refines f
 - We say that f approximates g
 - We say that g provides more information than f

The "Best" Solution

- Consider again C[while $x \neq 0$ do $x := x - 2$]
 - Unwinding equation:
 $W(x) = \begin{cases} W(x - 2) & \text{if } x \neq 0 \\ x & \text{if } x \text{ even} \land x \geq 0 \\ \bot & \text{else} \end{cases}$
- Not all solutions are comparable:
 $W(x) = \begin{cases} \bot & \text{if } x \geq 0 \land x \text{ even} \\ 1 & \text{else 1} \\ 2 & \text{else 2} \end{cases}$
 $W(x) = \begin{cases} \bot & \text{if } x \geq 0 \land x \text{ even} \\ \bot & \text{else \bot} \end{cases}$
 $W(x) = \begin{cases} \bot & \text{if } x \geq 0 \land x \text{ even} \\ \bot & \text{else \bot} \end{cases}$
 (last one is least and best)

Any questions that come to mind?

- Fixed points?
- How do get f, g?
Any questions that come to mind?

- Is there always a least solution?
- How do we find it?
- If only we had a general framework for answering these questions …

A Recursive Labyrinth

...Okay, we get it. You win.

Fixed-Point Equations

- Consider the general unwinding equation for while

 \[
 \text{while } b \text{ do } c = \text{if } b \text{ then } c \text{; while } b \text{ do } c \text{ else skip}
 \]
- We define a context \(K \) (command with a hole)

 \[
 K = \text{if } b \text{ then } c \text{; else skip}
 \]
- The grammar for \(K \) does not contain "while b do c"

Fixed-Point Equations

- We can find such a (recursive) context for any looping construct

 \[
 \text{Consider: } \text{fact } n = \text{if } n = 0 \text{ then } 1 \text{ else } n * \text{ fact } (n - 1)
 \]

 \[
 K(n) = \text{if } n = 0 \text{ then } 1 \text{ else } n * (n - 1)
 \]

 \[
 \text{fact } = \text{K[fact]}
 \]

Fixed-Point Equations

- We can find such a (recursive) context for any looping construct

 \[
 \text{Consider: } \text{fact } n = \text{if } n = 0 \text{ then } 1 \text{ else } n * \text{ fact } (n - 1)
 \]

 \[
 K(n) = \text{if } n = 0 \text{ then } 1 \text{ else } n * (n - 1)
 \]

 \[
 \text{fact } = \text{K[fact]}
 \]

Fixed-Point Equations

- The meaning of a context is a semantic functional
 \[
 F : (\mathbb{Z} \to \mathbb{Z}) \to (\mathbb{Z} \to \mathbb{Z}) \text{ such that }
 \]

 \[
 F[K[w]] = F[w]
 \]

- For "while": \(K = \text{if } b \text{ then } c \text{; else skip} \)
 \[
 F[w] x = \text{if } b[x] \text{ then } w[(c) x] \text{ else } x
 \]

 \[
 - F \text{ depends only on } [c] \text{ and } [b].
 - We can rewrite the unwinding equation for while
 \[
 W(x) = \text{if } b[x] \text{ then } W(c) x \text{ else } x
 \]

 \[
 - \text{or, } W x = F W x \text{ for all } x,
 \]

 \[
 - \text{or, } W = F W \text{ (by function equality)}
 \]
Fixed-Point Equations

- The meaning of "while" is a solution for $W = F W$
- Such a W is called a fixed point of F
- We want the least fixed point
 - We need a general way to find least fixed points
- Whether such a least fixed point exists depends on the properties of function F
 - Counterexample: $F w x = \text{if } w x = \perp \text{ then 0 else } \perp$
- Assume W is a fixed point
 - Pick an x, then if $W x = \perp$ then $W x = 0$ else $W x = \perp$
- Contradiction. This F has no fixed point!

Can We Solve This?

- Good news: the functions F that correspond to contexts in our language have least fixed points!
- The only way $F w x$ uses w is by invoking it
- If any such invocation diverges, then $F w x$ diverges!
- It turns out: F is monotonic, continuous
 - Not shown here!

New Notation: λ

- $\lambda x. e$
 - an anonymous function with body e and argument x
- Example: $\text{double}(x) = x + x$
 $\text{double} = \lambda x. x + x$
- Example: $\text{allFalse}(x) = \text{false}$
 $\text{allFalse} = \lambda x. \text{false}$
- Example: $\text{multiply}(x,y) = x * y$
 $\text{multiply} = \lambda x. \lambda y. x * y$

The Fixed-Point Theorem

- If F is a semantic function corresponding to a context in our language
 - F is monotonic and continuous (we assert)
 - For any fixed-point G of F and $k \in \mathbb{N}$
 $F^k(\lambda x. \perp) \sqsubseteq G$
- The least of all fixed points is $\sqcup_k F^k(\lambda x. \perp)$
- Proof (not detailed in the lecture):
 1. By mathematical induction on k.
 - Base: $F^0(\lambda x. \perp) = \lambda x. \perp \sqsubseteq G$
 - Inductive: $F^{k+1}(\lambda x. \perp) = F(F^k(\lambda x. \perp)) \sqsubseteq F(G) = G$
 - Suffices to show that $\sqcup_k F^k(\lambda x. \perp)$ is a fixed-point
 $F(\sqcup_k F^k(\lambda x. \perp)) = \sqcup_k F^{k+1}(\lambda x. \perp)$
 by continuity

Denotational Semantics for while

- We can use the fixed-point theorem to write the denotational semantics of while:
 $\text{while } b \text{ do } c = \sqcup_k F^k(\lambda x. \perp)$
 where $F f x = \text{if } b \text{ then } f (\sqcup_k F^k(\lambda x. \perp)) \text{ else } x$

Examples: DS for while

- $\text{while } b \text{ do } c = \sqcup_k F^k(\lambda x. \perp)$
 where $F f x = \text{if } [b] x \text{ then } f (\sqcup_k F^k(\lambda x. \perp)) \text{ else } x$
- $\text{while } b \text{ do } \text{skip} = \langle x, \perp \rangle$
- $\text{while } x \neq 0 \text{ then } x \leftarrow x - 1$
 $F (\lambda x. \perp) x = \langle x = 0 \text{ then } x \leftarrow x - 1 \text{ else } \perp \rangle$
 $F^2 (\lambda x. \perp) x = \langle x = 0 \text{ then } x \leftarrow x - 1 \text{ else } \perp \rangle$
 $F^3 (\lambda x. \perp) x = \langle x = 0 \text{ then } x \leftarrow x - 1 \text{ else } \perp \rangle$
 $\text{LFP}_F = \langle x = 0 \text{ then } 0 \text{ else } \perp \rangle$
- Not easy to find the closed form for general LFPs!
Examples: DS for while

\[[\text{while } b \text{ do } c] = \bot_k F^k (\lambda x. \bot) \]
where \(F f x = \text{if } [b] x \text{ then } f ([c] x) \text{ else } x \)

- \([\text{while true do skip}] = \lambda x. \bot\]
- \([\text{while } x \neq 0 \text{ then } x := x - 1] \]
 - \(F^1 (\lambda x. \bot) x = \text{if } x = 0 \text{ then } x \text{ else } \bot \)
 - \(F^2 (\lambda x. \bot) x = \text{if } x = 0 \text{ then } x \text{ else } \)
 \[\begin{cases} x \text{ if } x \leq 1 \text{ else } \bot \end{cases} \]
 - \(F^3 (\lambda x. \bot) x = \text{if } 2 \geq x \geq 0 \text{ then } 0 \text{ else } \bot \)
 - \(\text{LFP}_F = \text{if } x \geq 0 \text{ then } 0 \text{ else } \bot \)
- Not easy to find the closed form for general LFPs!

Discussion: Denotational Semantics

- We can write the denotational semantics but we cannot always compute it.
- Otherwise, we could decide the halting problem
- \(H \) is halting for input 0 iff \([H] 0 \neq \bot\)
- We have derived this for programs with one variable
- Generalize to multiple variables, even to variables ranging over richer data types, even higher-order functions: domain theory

Domain Theory

- A set \(D \) is a domain if
 - It has a partial order \(x \sqsubseteq y \)
 - Reflexive, transitive, and anti-symmetric
 - There is a least element \(\bot \) called bottom
 - Any chain \(x_1 \sqsubseteq \ldots \sqsubseteq x_n \sqsubseteq \ldots \) has a least-upper bound \(\sqcup_i x_i \)
 - For all \(i, x_i \sqsubseteq \sqcup_i x_i \) (is an upper bound)
 - For any \(y \) such that \(\forall i. x_i \sqsubseteq y \), we have \(\sqcup_i x_i \sqsubseteq y \) (least upper bound)
- Usual sets of semantic values are domains

Congratulations!

You just survived the hardest lectures in 5535.
It's all downhill from here.

Recall: Learning Goals

- Key features of denotational semantics
 - Compositional
 - Meaning is a "math object"
 - When to use DS?
- DS uses \(\bot \) ("bottom") to mean non-termination
- DS uses fixed points and domains to handle while
 - This is the tricky bit
 - Remember SLAM and BLAST?

For Next Time

- Homework 3 out tonight, due Mon Feb 16
Bonus: Monotonicity, Continuity, and Domains

Monotonicity

- Consider \(f_0 \sqsubseteq f_1 \). What can we say about the relationship between \(F f_0 x \) and \(F f_1 x \), for any \(x \)?
 - Assume \(F f_0 x = n \neq \perp \). Show that \(F f_1 x = n \) of \(F f_0 x \) is invoked a finite number of times
 - All those invocations terminate with some values
 - The value of \(f_0 \) at other points does not matter!
 - But \(f_1 \) terminates with same results everywhere \(f_0 \) terminates
 - Thus \(F f_1 x = n \) (determinism of \(F \))
- If \(F f_0 x = \perp \), it could be that \(F f_1 x \neq \perp
- Take \(F f_0 x = f_0 x \), \(f_0(0) = \perp \) and \(f_1(0) = 0 \)
- In general, if \(f_0 \sqsubseteq f_1 \) then \(F f_0 \sqsubseteq F f_1 \)
- We say that \(F \) must be **monotone**

Monotonicity of Contexts

- If we replace the sub-command with one that terminates more often, the host command will terminate more often
- The following \(F \) is not monotonic:
 \[F w x = \text{if } w x = \perp \text{ then } 0 \text{ else } \perp \]
 - This function does not correspond to a computable context
 - The semantics of computable contexts are monotonic
 - Can be proved by induction on the structure of context

Continuity

- Consider \(F \) corresponding to a context in our language
- Consider a chain \(g_0 \sqsubseteq \ldots \sqsubseteq g_k \) with \(\bigvee k g_k = G \)
 - Note that \(F g_k \) form a chain also, because \(F \) is monotonic
- We'll show that, for any \(x \), \(F G x = (\bigvee k (F g_k)) x \)
 - We say that such functions \(F \) are **continuous**
- If \(F G x = n \neq \perp \), then \(G \) was invoked a finite number of times, and terminated each time
 - For each such invocation, there is a \(j \), such that \(g_j \) terminates with the same result
 - Let \(\max j \) be the maximum such \(j \) for all invocations
 - Thus \(F g_{\max j} x = n \), and \((\bigvee k (F g_k)) x = n \)
- Similar reasoning for \(F G x = \perp \)

Monotonicity and Continuity

- A function \(f : D_1 \rightarrow D_2 \) is **monotone** iff for all \(x, y \in D_1 : x \sqsubseteq y \Rightarrow f x \sqsubseteq f y \)
- A function \(F : D_1 \rightarrow D_2 \) is **continuous** iff for all chains \(x \), in \(D_1 : F (\bigvee i x_i) = \bigvee i (F x_i) \)
- We can show that functions corresponding to usual language constructs are monotonic and continuous
 - Show that \(F f x = f (f_0 x) \) is monotonic and continuous, for any \(f_0 \) that is monotonic and continuous

Example of Domains

- Example: \(D = \mathbb{Z} \rightarrow \mathbb{Z} \)
 - \(f \sqsubseteq g \) iff for all \(n \in \mathbb{Z} : f n = \perp \text{ or } f n = g n \)
 - \(\perp = \lambda n. \perp \)
 - For a chain \(f \), the LUB = \(\lambda n. \text{if } \exists k : f_k x = m \text{ then } m \text{ else } \perp \)
- Example: Take a set \(A \) and a special element \(\perp \), then \(A \sqsubseteq A \cup \{ \perp \} \) is a **flat domain**:
 - \(a \sqsubseteq b \text{ iff } a = \perp \text{ or } a = b \)
 - For a chain \(a_n \), LUB = \(\text{if } \exists k : a_k \neq \perp \text{ then } a_k \text{ else } \perp \)
- Exercise: If \(D_1 \) and \(D_2 \) are domains, then \(D_1 \rightarrow D_2 \) is a domain, and so is \(D_1 \times D_2 \)