Announcements

- Homework 0 (“Preliminaries”) out, due Friday Saturday

- This Week
 - Dive into research motivating CSCI 5535

- Next Week
 - Begin foundations
Course Summary

Course At-A-Glance

• Part I: Language Specification
 - Semantics = Describing programs
 - Evaluation strategies, imperative languages

• Part II: Language Design
 - Types = Classifying programs
 - Typed \(\lambda\)-calculus, functional languages

• Part III: Applications
Core Topics

- Semantics
 - Operational semantics
 - rules for execution on an abstract machine
 - useful for implementing a compiler or interpreter
 - Axiomatic semantics
 - logical rules for reasoning about the behavior of a program
 - useful for proving program correctness
 - Abstract interpretation
 - application: program analysis

- Types
 - λ-calculus
 - tiny language to study core issues in isolation

But first ...
First Topic: Model Checking

- Verify properties or find bugs in software
- Take an important program (e.g., a device driver)
- Merge it with a property (e.g., no deadlocks)
- Transform the result into a boolean program
- Use a model checker to exhaustively explore the resulting state space
 - Result 1: program provably satisfies property
 - Result 2: program violates property “right here on line 92,376”!

Who are we again?

- We’re going to find critical bugs in important bits of software
 - using PL techniques!
- You’ll be enthusiastic about this
 - and thus want to learn the gritty details
Overarching Plan

Model Checking (today)
- Transition systems (i.e., models)
- Temporal properties
- Temporal logics: LTL and CTL
- Explicit-state model checking
- Symbolic model checking

Counterexample Guided Abstraction Refinement
- Safety properties
- Predicate abstraction
- Software model checking
- Counterexample feasibility
- Abstraction refinement weakest pre, thrm p unauthorized

Take-Home Message

- Model checking is the exhaustive exploration of the state space of a system, typically to see if an error state is reachable. It produces concrete counterexamples.
- The state explosion problem refers to the large number of states in the model.
- Temporal logic allows you to specify properties with concepts like “eventually” and “always”.

Spoiler

- This stuff really works!

- **Symbolic model checking** is a massive success in the model-checking field
- SLAM took the PL world by storm
 - Spawned multiple copycat projects
 - Launched Microsoft's Static Driver Verifier (released in the Windows DDK)

Model Checking

There are complete courses in model checking (see ECEN 5139, Prof. Cerny).

Model Checking by Edmund M. Clarke, Orna Grumberg, and Doron A. Peled.

Symbolic Model Checking by Ken McMillan.

We will skim.
What is Model Checking? Keywords?

David: Specification = what you want a program to do

Sound → Verifier

Ok, your program is “good” = satisfies satisfaction
(a.e., no deadlocks)

“I think there is a bug”

How we approximate

Abstraction

- exhaustive exploration of a state space
- error paths = counterexamples

What is Model Checking?

“state space explosion problem” = “everything is exponential”

Large number of states in the model

“temporal logic” concepts:

- eventually
- always
- until

“transition system” transitions
Keywords

Model checking is an automated technique
Model checking verifies transition systems
Model checking verifies temporal properties
Model checking falsifies by generating counterexamples

A model checker is a program that checks if a (transition) system satisfies a (temporal) property

Verification vs. Falsification

• What is verification?
 prove that a property of a system holds

• What is falsification?
 disprove that a property of a system holds
Verification vs. Falsification

- An automated verification tool
 - can report that the system is verified (with a proof);
 - or that the system was not verified.

- When the system was not verified, it would be helpful to explain why.
 - Model checkers can output an error counterexample: a concrete execution scenario that demonstrates the error.

- Can view a model checker as a falsification tool
 - The main goal is to find bugs

- So what can we verify or falsify?

Temporal Properties

Temporal Property
A property with time-related operators such as “invariant” or “eventually”

- **Invariant**(p)
 is true in a state if property p is true in every state on all execution paths starting at that state

 \[G, AG, \Box \text{ ("globally" or "box" or "forall")} \quad AG(\neg p \equiv 0) \]

- **Eventually**(p)
 is true in a state if property p is true at some state on every execution path starting from that state

 \[F, AF, \Diamond \text{ ("future" or "diamond" or "exists")} \quad F(p \equiv 45) \]
An Example Concurrent Program

- A simple concurrent mutual exclusion program
- Two processes execute asynchronously
- There is a shared variable turn
- Two processes use the shared variable to ensure that they are not in the critical section at the same time
- Can be viewed as a "fundamental" program: any bigger concurrent one would include this one

10: while (true) {
 11: wait(turn == 0);
 // critical section
 12: work(); turn = 1;
 13: }

11: // concurrently with

20: while (true) {
 21: wait(turn == 1);
 // critical section
 22: work(); turn = 0;
 23: }

Next: formalize this intuition ...

Reachable States of the Example Program

Each state is a valuation of all the variables: turn and the two program counters for two processes
Analyzed System is a Transition System

- Labeled transition system $T = (S, I, R, L)$
 - S = Set of states // standard FSM
 - $I \subseteq S$ = Set of initial states // standard FSM
 - $R \subseteq S \times S$ = Transition relation // standard FSM
 - $L: S \to 2^{\text{AP}}$ = Labeling function // this is new!

- **AP**: Set of atomic propositions (e.g., “x=5” $\in \text{AP}$)
 - Atomic propositions capture basic properties
 - For software, atomic props depend on variable values
 - The labeling function labels each state with the set of propositions true in that state

Example Properties of the Program

- “In all the reachable states (configurations) of the system, the two processes are never in the critical section at the same time”
 - “pc1=12”, “pc2=22” are atomic properties for being in the critical section

- “Eventually the first process enters the critical section”
Example Properties of the Program

- “In all the reachable states (configurations) of the system, the two processes are never in the critical section at the same time”
 - "pc1=12", "pc2=22" are atomic properties for being in the critical section

\[\text{Invariant}(\neg(pc1=12 \land pc2=22)) \]

- “Eventually the first process enters the critical section”

\[\text{Eventually}(pc1=12) \]

Temporal Logics

There are four basic temporal operators:

- \(X \ p \)
 - \(\text{Next} \ p \), \(p \) holds in the next state
- \(G \ p \)
 - \(\text{Globally} \ p \), \(p \) holds in every state, \(p \) is an invariant
- \(F \ p \)
 - \(\text{Future} \ p \), \(p \) will hold in a future state, \(p \) holds eventually
- \(p \ U \ q \)
 - \(\text{Until} \ q \), assertion \(p \) will hold until \(q \) holds

- Precise meaning of these temporal operators are defined on execution paths
Execution Paths

- A **path** in a transition system is an infinite sequence of states
 \((s_0, s_1, s_2, \ldots)\), such that \(\forall i \geq 0. (s_i, s_{i+1}) \in R\)
- A path \((s_0, s_1, s_2, \ldots)\) is an **execution path** if \(s_0 \in I\)
- Given a path \(h = (s_0, s_1, s_2, \ldots)\)
 - \(h_i\) denotes the \(i^{th}\) state: \(s_i\)
 - \(h^i\) denotes the \(i^{th}\) suffix: \((s_i, s_{i+1}, s_{i+2}, \ldots)\)

- In some temporal logics one can quantify paths starting from a state using **path quantifiers**
 - \(A\) : for all paths (e.g., \(A\ h. \ldots\))
 - \(E\) : there exists a path (e.g., \(E\ h. \ldots\))

Paths and Predicates

- We write
 \[h \models p \]
 “the path \(h\) makes the predicate \(p\) true”
 - \(h\) is a path in a transition system
 - \(p\) is a temporal logic predicate

- Example:
 \[A \ h. \quad h \models G (\neg(pc1=12 \land pc2=22)) \]
 Mean thread 1 and thread 2 in the critical section at the same time
Linear Time Logic (LTL)

- LTL properties are constructed from atomic propositions in AP; logical operators \land, \lor, \neg; and temporal operators X, G, F, U.
- The semantics of LTL is defined on paths.

Given a path h:

$$h \models p$$

LTL Semantics

- $h \models \text{ap}$ iff $L(h_0, \text{ap})$ where $L : S \rightarrow 2^{AP}$ is the labelling function.
- $h \models \text{X } p$ iff $h^1 \models p$ where h^1 denotes the next suffix.
- $h \models \text{F } p$ iff $h^i \models p$ for some $i \geq 0$.
- $h \models \text{G } p$ iff $h^i \models p$ for all $i \geq 0$.
- $h \models p \text{ U } q$ iff $h^i \models q$ for some $i \geq 0$ and $h^j \models p$ for all $j < i$.
Linear Time Logic (LTL)

- LTL properties are constructed from atomic propositions in AP; logical operators \wedge, \lor, \neg; and temporal operators X, G, F, U.
- The semantics of LTL is defined on paths:

 Given a path h:

 \[
 h \models p \iff L(h_0, \text{ap}) \quad \text{atomic prop}
 \]

 \[
 h \models X p \iff h^1 \models p \quad \text{next}
 \]

 \[
 h \models F p \iff \exists i \geq 0. \ h^i \models p \quad \text{future}
 \]

 \[
 h \models G p \iff \forall i \geq 0. \ h^i \models p \quad \text{globally}
 \]

 \[
 h \models p \cup q \iff \exists i \geq 0. \ h^i \models q \text{ and } \forall j<i. \ h^j \not\models p \quad \text{until}
 \]

Satisfying Linear Time Logic

- Given a transition system $T = (S, I, R, L)$ and an LTL property p, T satisfies p if all paths starting from all initial states I satisfy p.
Computation Tree Logic (CTL)

- In CTL temporal properties use path quantifiers: \(A : \) for all paths, \(E : \) there exists a path
- The semantics of CTL is defined on states:
 Given a state \(s \)
 \[s \models ap \iff L(s, ap) \]
 \[s_0 \models EX p \iff \exists \text{ a path } (s_0, s_1, s_2, ...). s_1 \models p \]
 \[s_0 \models AX p \iff \forall \text{ paths } (s_0, s_1, s_2, ...). s_1 \models p \]
 \[s_0 \models EG p \iff \exists \text{ a path } (s_0, s_1, s_2, ...). \forall i \geq 0. s_i \models p \]
 \[s_0 \models AG p \iff \forall \text{ paths } (s_0, s_1, s_2, ...). \forall i \geq 0. s_i \models p \]

Linear vs. Branching Time

- LTL is a linear time logic
 - When determining if a path satisfies an LTL formula we are only concerned with a single path
- CTL is a branching time logic
 - When determining if a state satisfies a CTL formula we are concerned with multiple paths
 - In CTL the computation is instead viewed as a computation tree which contains all the paths

The expressive powers of CTL and LTL are incomparable (\(LTL \subseteq CTL^*, CTL \subseteq CTL^* \))
- Basic temporal properties can be expressed in both logics
- Not in this lecture, sorry! (Take a class on Modal Logics)
Recall the Example

This is a labeled transition system

Linear vs. Branching Time

A computation tree starting at state (turn=0,pc1=10,pc2=20)

One path starting at state (turn=0,pc1=10,pc2=20)
LTL Satisfiability Examples

On this path:

Holds

Does Not Hold
LTL Satisfiability Examples

○ p does not hold ● p holds

On this path: F p holds, G p does not hold, p does not hold, X p does not hold, X (X p) holds, X (X (X p)) does not hold

CTL Satisfiability Examples

○ p does not hold ● p holds

At state s:

Holds Does Not Hold
CTL Satisfiability Examples

At state s:
- EF p, EX (EX p), AF (p), p holds
- AF p, AG p, AG (p), EX p, EG p, p does not hold

At state s:
- EF p, AF p, EX (EX p), EX p, EG p, p holds
- AG p, AG (p), AF (p) does not hold

At state s:
- EF p, AF p, AG (p), EX p, EG p, p holds
- EG (p), EF (p) does not hold
Model Checking Complexity

- Given a transition system $T = (S, I, R, L)$ and a CTL formula f
 - One can check if a state of the transition system satisfies the formula f in $O(|f| \times (|S| + |R|))$ time
 - Multiple depth first searches (one for each temporal operator)
 - explicit-state model checking
State Space Explosion

- The complexity of model checking increases linearly with respect to the size of the transition system \(|S| + |R|\).
- However, the size of the transition system \(|S| + |R|\) is exponential in the number of variables and number of concurrent processes.
- This exponential increase in the state space is called the **state space explosion**.
 - Dealing with it is one of the major challenges in model checking research.

Algorithm:

Temporal Properties = Fixpoints

- States that satisfy \(AG(p)\) are all the states which are not in \(EF(\neg p)\) (= the states that can reach \(\neg p\)).
- Compute \(EF(\neg p)\) as the **fixed point** of \(Func: 2^S \rightarrow 2^S\).
- Given \(Z \subseteq S\),
 - \(Func(Z) = \neg p \cup \text{reach-in-one-step}(Z)\) \(\text{Called the inverse image of } Z\)
- Actually, \(EF(\neg p)\) is the **least-fixed point** of \(Func\).
 - smallest set \(Z\) such that \(Z = Func(Z)\).
 - to compute the least fixed point, start the iteration from \(Z=\emptyset\), and apply the \(Func\) until you reach a fixed point.
 - This can be **computed** (unlike most other fixed points).
Pictorial Backward Fixed Point

\[\text{(Inverse Image of } \neg p) = \text{EX}(\neg p) \]

\[\text{(initial states that violate } AG(p)) \]
\[= (\text{initial states that satisfy } EF(\neg p)) \]
\[= (\text{states that can reach } \neg p = EF(\neg p)) \]
\[= (\text{states that violate } AG(p)) \]

This fixed point computation can be used for:
- verification of EF(\neg p)
- or falsification of AG(p)

... and similar fixed points handle the other cases

Symbolic Model Checking

- Symbolic model checking represent state sets and the transition relation as Boolean logic formulas
 - Fixed point computations manipulate sets of states rather than individual states
 - Recall: we needed to compute reach-in-one-step(Z), but \(Z \subseteq S \)
- Fixed points can be computed by iteratively manipulating these formulas
- Use an efficient data structure for manipulation of Boolean logic formulas
 - Binary Decision Diagrams (BDDs)
- SMV (Symbolic Model Verifier) was the first CTL model checker to use BDDs
Binary Decision Diagrams (BDDs)

- Efficient representation for boolean functions (a set can be viewed as a function)
- Disjunction, conjunction complexity: at most quadratic
- Negation complexity: constant
- Equivalence checking complexity: constant or linear
- Image computation complexity: can be exponential

Building Up To

Software Model Checking via Counterexample Guided Abstraction Refinement

There are easily dozens of papers.

We will skim.
Key Terms

• **Counterexample guided abstraction refinement (CEGAR)**
 - A successful software model-checking approach. Sometimes called “Iterative Abstraction Refinement”.

• **SLAM = The first CEGAR project/tool.**
 - Developed at MSR

• **Lazy Abstraction = CEGAR optimization**
 - Used in the BLAST tool from Berkeley.

What is Counterexample Guided Abstraction Refinement (CEGAR)?

Verification by ...

Model Checking?

Theorem Proving?

Dataflow Analysis or Program Analysis?
Verification

Example () {
 1: do{
 lock();
 old = new;
 q = q->next;
 }
 if (q != NULL){
 2: q->data = new;
 unlock();
 new ++;
 }
 } while(new != old);
 5: unlock();
 return;
}

Is this program correct?

What does correct mean?

How do we determine if a program is correct?

Verification by Model Checking

Example () {
 1: do{
 lock();
 old = new;
 q = q->next;
 }
 if (q != NULL){
 2: q->data = new;
 unlock();
 new ++;
 }
 } while(new != old);
 5: unlock();
 return;
}

1. (Finite State) Program
2. State Transition Graph
3. Reachability
 - Program→Finite state model
 - State explosion
 + State exploration
 + Counterexamples

Precise [SPIN,SMV,Bandera,JPF]

51

52
Verification by Theorem Proving

Example () {
 1: do{
 lock();
 old = new;
 q = q->next;
 2: if (q != NULL){
 q->data = new;
 unlock();
 new ++;
 }
 4: } while(new != old);
 5: unlock();
 return;
}

1. Loop Invariants
2. Logical Formulas
3. Check Validity

Invariant:

$\neg \text{lock} \land \text{new} = \text{old}$
\lor
$\neg \text{lock} \land \text{new} \neq \text{old}$

Verification by Theorem Proving

Example () {
 1: do{
 lock();
 old = new;
 q = q->next;
 2: if (q != NULL){
 q->data = new;
 unlock();
 new ++;
 }
 4: } while(new != old);
 5: unlock();
 return;
}

1. Loop Invariants
2. Logical Formulas
3. Check Validity

- Loop invariants
- Multithreaded programs
+ Behaviors encoded in logic
+ Decision procedures

Precise [ESC,PCC]
Verification by **Program Analysis**

Example

```c
Example ( ) {
1:  do{
    lock(); /*
        old = new;
>next;  q = q-
2:   if (q != NULL){
  3:     q->data = new;
        unlock();
  new ++;
    }
4:  } while(new != old);
5:  unlock();
   return;
}
```

1. **Dataflow Facts**
2. **Constraint System**
3. **Solve Constraints**
 - Imprecision: fixed facts
 + Abstraction
 + Type/Flow analyses

Scalable [Cqual,ESP]

Combining Strengths

- **Theorem Proving**
 - Need loop invariants
 (will find automatically)
 + Behaviors encoded in logic
 (used to refine abstraction)
 + Theorem provers
 (used to compute successors, refine abstraction)

- **Program Analysis**
 - Imprecise
 (will be precise)
 + Abstraction
 (will shrink the state space we must explore)

- **Model Checking**
 - Finite-state model, state explosion
 (will find small good model)
 + State space exploration
 (used to get a path sensitive analysis)
 + Counterexamples
 (used to find relevant facts, refine abstraction)
For Next Time

• Post about today’s class and reading
• Read “Lazy Abstraction”
 - for the main ideas, ok to skim Sec. 7