Meeting 08: Structural Induction

Questions

1. Concrete vs. Abstract Syntax
 - Ambiguity

3. Precedence

2. Proving ambiguity (Brad)

Concrete

11

strings

Abstract

4

trees

Show a grammar is ambiguous to give two parse trees for the same string

\[e ::= 1 | e + e | e \cdot e \]

\[e ::= 1 | + (e, e) \]
Abstract Syntax Trees

\[
\begin{align*}
\text{e ::= } & \ 1 \mid e + e \mid e \times e \\
\text{treat } + & \text{ as left associative} \\
\text{treat } \times & \text{ as left associative} \\
(1 + 1) + 1 & \\
\text{(1} \times 1\text{) } & \text{x has higher precedence than +} \\
\text{Still ambiguous} & \\
\end{align*}
\]
sealed abstract class MyOption[T]
case class MySome[T](v: T) extends MyOption[T]

Case class My None extends MyOption[T]

f(): Option[Int]

x: Option[Int] match {
 case None => ... error handling ...
 case Some(v) => v
}
def deref(x: Option[Int]): T =
x match {
 case None => throw new NoneException
 case Some(v) => v
}
\[
\begin{array}{c}
\text{Node (Node (EC, 2, EC), 1, Node (EC, 3, EC))} \\
\Rightarrow \text{List(2, 1, 3)}
\end{array}
\]

Structural Induction
Program Correctness

factorial

TOTAL CORRECTNESS

Theorem: For any integer n, $n \neq 0$

$$\text{factorial}(Ln) \rightarrow *2n!0.$$

PARTIAL CORRECTNESS

Like to prove the first half

"it does what it is supposed"

"assuming it terminates"

Theorem: For any integer n,
if
$\text{factorial}(Ln) \rightarrow *$
then $n = h n!$.
A list \(l \) is a list \([T]\) value (for some \(T \))

\[l = \text{Nil} \]

or \(l = h :: e \) where \(h \) is a value for type \(T \) and \(e \)

is a value of type \([T]\)

For any list value \(l \), something about \(l \)

Method: Proof by structural induction \(P(l) \)

Base Case: \(l = \text{Nil} \) on \(l \).

Show \(P(\text{Nil}) \)

Inductive Case: \(l = h :: e \) for some \(h, e \)

Assume \(P(e) \)

To show \(P(h :: e) \)
Natural Numbers
= Unary Number

sealed abstract class Nat
case class Zero extends Nat
case class Succ(n: Nat) extends Nat