Meeting 10: Operational Semantics

RECALL:

What is the purpose of a language specification?
"To give a clear idea of what operations are supposed to do" or "evaluate to"

What is the difference between syntax and semantics?
Syntax = "form of string"

Grammar = BNF = "what you can write down in the language"

Semantics = "meaning"
Operational Semantics = Judges

("interpreter in "math" judgments"

Evaluation Judgment Form

"is a relation between an expression e and its value v and an value env E

E ⊨ e iff v In env E, expression e evaluates to value v
Define judgment forms via inference rules

\[e ::= n \mid e_1 + e_2 \mid b \mid e_1 \& e_2 \]

\[v ::= n \mid b \]

Eval Val

\[E \vdash v \Downarrow v \]

Eval Plus

\[E \vdash e_1 \Downarrow n_1 \quad E \vdash e_2 \Downarrow n_2 \]

\[E \vdash e_1 + e_2 \Downarrow n_1 + n_2 \]

Bad rule (Incomplete)

\[E \vdash n_1 + n_2 \Downarrow n_1 + n_2 \]

Binary (Plus, \(e_1, e_2 \))

Plus is the meta-level plus ("math plus")

3 3+4 3+4+5

\[\text{x} \]
Work out evaluating \&\&
- both arguments must evaluate boolean
- short-circuiting \&\&
- "right-to-left"

\[
e_1 \&\& e_2
\]

\[
\frac{E e_1 \equiv n_1}{E e_1 \&\& e_2 \equiv n_1 \& n_2}
\]

Eval And False

\[
\frac{E e_2 \equiv \text{false}}{E e_1 \&\& e_2 \equiv \text{false}}
\]

Eval And True

\[
\frac{E e_1 \equiv \text{true} \land E e_2 \equiv \text{true}}{E e_1 \&\& e_2 \equiv \text{true} \land b_1}
\]

\[
(\text{true} \&\& \text{true}) \&\& (\text{false} \&\& \text{true})
\]
Constructing a derivation = test execution

AST & &
 & &
 true true false

Eval Val
 Eval And
 Eval And False
 Eval And False
 true & false & false

Eval Val
 Eval And False
 Eval And False
 Eval And False
 Eval And False
 Eval And False

Eval Val
 Eval And False
 Eval And False
((true && true) && true) && false

&&

false

true

true && true