skip to main content
Department of Computer Science University of Colorado Boulder
cu: home | engineering | mycuinfo | about | cu a-z | search cu | contact cu cs: about | calendar | directory | catalog | schedules | mobile | contact cs
home · events · colloquia · 2008-2009 · 

Colloquium - Molnar

ECCR 265

Theory Plus Practice in Computer Security: Radio Frequency Identification and Whitebox Fuzzing
University of California, Berkeley

I will describe two areas in computer security that demonstrate the wide range of techniques, from both theory and practice, we need to make impact. First, I treat privacy and security in Radio Frequency Identification (RFID). RFID refers to a range of technologies where a small device with an antenna, or "tag" is attached to an item and can be queried later wirelessly by a reader. While proponents of RFID promise security and efficiency benefits, the technology also raises serious security concerns. I will describe my work on practical security analysis of RFID in library books and the United States e-passport deployments. These deployments in turn uncover a new theoretical problem, that of "scalable private authentication." I will describe the first solution to this problem that scales sub-linearly in the number of RFID tags.

Second, I describe recent work in "whitebox fuzz testing," a new approach to finding security bugs. Security bugs cost millions of dollars to patch after the fact, so we want to find and fix them as early in the deployment cycle as possible. I review previous fuzz testing work, how fuzzing has been responsible for serious security bugs, and classic fuzz testing's inability to deal with "unlikely" code paths. I then show how marrying the idea of dynamic test generation with fuzz testing overcomes these shortcomings, but raises significant scaling problems. Two recent tools, SAGE at Microsoft Research, and SmartFuzz at Berkeley, overcome these scaling problems; I present results on the effectiveness of these tools on commodity Windows and Linux media playing software. Finally, I close with directions for leveraging cloud computing to improve developers' testing and debugging experience.

The talk describes joint work with Ari Juels and David Wagner (RFID), and with Patrice Godefroid, Michael Levin, and Xue Cong Li and David Wagner (Whitebox Fuzzing).

David Molnar is a PhD candidate at the University of California, Berkeley, degree expected Spring 2009. His work centers on privacy, cryptography, and computer security, advised by David Wagner. Most recently, he has been interested in RFID privacy, and in applying constraint solvers to finding software bugs at scale. He is a previous National Science Foundation Graduate Fellow and Intel Open Collaboration Research Graduate Fellow.

Hosted by Dirk Grunwald.

The Department holds colloquia throughout the Fall and Spring semesters. These colloquia, open to the public, are typically held on Thursday afternoons, but sometimes occur at other times as well. If you would like to receive email notification of upcoming colloquia, subscribe to our Colloquia Mailing List. If you would like to schedule a colloquium, see Colloquium Scheduling.

Sign language interpreters are available upon request. Please contact Stephanie Morris at least five days prior to the colloquium.

See also:
Department of Computer Science
College of Engineering and Applied Science
University of Colorado Boulder
Boulder, CO 80309-0430 USA
Send email to

Engineering Center Office Tower
ECOT 717
FAX +1-303-492-2844
XHTML 1.0/CSS2 ©2012 Regents of the University of Colorado
Privacy · Legal · Trademarks
May 5, 2012 (13:29)