Software for a New Modified Cholesky Factorization*

Robert B. Schnabel and Elizabeth Eskow

CU-CS-443-89 August 1989

University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE

* This research was supported by ARO grant DAAL-03-88-0086, NSF grant CCR-8702403, and NSF cooperative agreement DCR-8420944.
ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE ACKNOWLEDGMENTS SECTION.
Abstract

This paper describes the software for a new modified Cholesky factorization recently proposed by the authors. Given a symmetric but not necessarily positive definite matrix A, the modified Cholesky factorization computes a Cholesky factorization of $A + E$, where $E = 0$ if A is safely positive definite, and E is a diagonal matrix chosen to make $A + E$ positive definite otherwise. The modified Cholesky factorization was introduced by Gill and Murray and refined by Gill, Murray and Wright, and is commonly used in optimization algorithms. Our version, which is based upon new techniques, has a considerably smaller a priori upper bound on the size of E than the Gill, Murray and Wright factorization, and appears to generally produce a smaller E, and a well-conditioned $A + E$, in practice. Its cost, like the Gill, Murray and Wright version, is only a small multiple of n^2 operations greater than the standard Cholesky factorization. Thus it may be useful in optimization algorithms. We summarize our algorithm and describe the code and its use.
1 Introduction

This paper describes the software for a new modified Cholesky factorization algorithm presented in Schnabel and Eskow [1988]. The modified Cholesky factorization is intended for matrices that are symmetric but not necessarily positive definite. Given a matrix \(A \in \mathbb{R}^{n \times n} \), the modified Cholesky factorization computes

\[
P^T(A + E)P = LL^T (\text{or } LDL^T),
\]

where \(P \) is a permutation matrix, and \(E \in \mathbb{R}^{n \times n} \) is 0 if \(A \) is safely positive definite, otherwise \(E \) is a nonnegative diagonal matrix chosen such that \(A + E \) is safely positive definite. This type of factorization was introduced by Gill and Murray [1974] and subsequently refined by Gill, Murray, and Wright [1981]. It has become important in solving problems in optimization, and is used in many line search methods for unconstrained and constrained optimization problems (Gill, Murray, and Wright [1981]) as well as in some trust region methods (Dennis and Schnabel [1983]).

The modified Cholesky factorization of Schnabel and Eskow has superior theoretical properties to the method of Gill, Murray, and Wright, and appears to have computational advantages as well. The upper bound on \(||E||_\infty \) for Schnabel and Eskow's method is at worst about \(2n\alpha \), where \(\alpha = \max_{1 \leq i, j \leq n} |A_{ij}| \), as opposed to roughly \(n^2\alpha \) for the method of Gill, Murray, and Wright. In addition, extensive computational testing of the software described in this paper was performed by Schnabel and Eskow [1988], on a set of randomly generated indefinite matrices with \(n = 25, 50 \) and 75. The norm of the matrix \(E \) and condition number of the \((A + E) \) computed by this algorithm were compared to those produced by the Gill, Murray, and Wright [1981] factorization. In almost all cases, \(||E||_\infty \) for the new algorithm was significantly smaller, while both methods consistently produced acceptably conditioned matrices. In addition, the \(||E||_\infty \) produced by the Schnabel and Eskow algorithm almost always was within a factor of 2 of the magnitude of the most negative eigenvalue of \(A \), and often much closer. Another nice property of the new factorization (Gould [1989]) is that in applications like multifrontal methods, where \(A \) is large and sparse and no pivoting is performed, the matrix \(A \) may be generated and processed incrementally, as the factorization proceeds, whereas the Gill, Murray, and Wright method requires the entire matrix to be known, and processed, in its initialization stage. Thus, the new factorization may be useful in optimization and other contexts.

In Section 2, we give a brief description of the algorithm. Section 3 demonstrates the use of the algorithm on a small \((4 \times 4)\) example matrix and section 4 explains the parameters and organization of
the code. Appendices A and B provide a sample driver and its output, respectively, and Appendix C contains the code for the modified Cholesky factorization.

2 The Modified Cholesky Factorization Algorithm

This section briefly describes the modified Cholesky factorization algorithm presented in Schnabel and Eskow[1988]. Some detail concerning the techniques used to prevent an ill-conditioned result is included because the user has the option of adjusting two tolerances related to this. The cost of the factorization is also described. For a more detailed explanation of the entire algorithm, see the original paper.

The new modified Cholesky factorization uses a two phase approach to compute $P^T(A+E)P = LL^T$, where $A \in \mathbb{R}^{n \times n}$ is symmetric, E is a nonnegative diagonal matrix or 0, L is a lower triangular matrix and P is a permutation matrix. Phase 1 computes the standard Cholesky factorization, and ends when the next iteration of the standard factorization would cause some diagonal element in the remaining submatrix to become non-positive. It performs diagonal pivoting based on the maximum diagonal element of the submatrix remaining to be factored. Schnabel and Eskow show that at the end of this phase, no element in the submatrix that remains to be factored is larger, in magnitude, than the sum of the magnitudes of the largest diagonal and off-diagonal elements in that submatrix originally.

Phase 2 does a modified Cholesky factorization, meaning that at each iteration, an amount $E_{jj} \geq 0$ is added to the pivot A_{jj} before the elimination step. A diagonal pivoting strategy is also used, but in this phase the pivot row is chosen to be the one with the maximum lower Gerschgorin bound estimate (see below). The amount E_{jj} added to the pivot element at each iteration is determined from the actual lower Gerschgorin bound of the pivot row. Schnabel and Eskow show that due to the choice of E_{jj}, the Gerschgorin bounds of the next remaining submatrix (after elimination) do not grow. In turn, this implies that $\|E\|_{\infty}$ is bounded above by the magnitude of the most negative lower Gerschgorin bound of the submatrix that remained to be factored at the start of phase 2. This, combined with the growth bound for phase 1 leads to the theoretical result mentioned in Section 1.

The entire algorithm is outlined in Algorithm 2.1 below.
Algorithm 2.1 – Modified Cholesky Decomposition

Given $A \in \mathbb{R}^{n \times n}$ symmetric and τ_1 and τ_2 (e.g. $\tau_1 = \tau_2 = macheps^{1}$), find factorization LL^T of $A + E$, $E \geq 0$

$\gamma := \max_{1 \leq i \leq n} |A_{ii}|; \quad j := 1$

(* Phase One, A potentially positive definite *)

While $j \leq n$

Pivot on maximum diagonal of remaining submatrix

If $\min_{j+1 \leq i \leq n} \{A_{ii} - \frac{A_{jj}^2}{A_{jj}}\} < \tau_1 \gamma$

then go to Phase Two

else perform j^{th} iteration of standard Cholesky factorization

and increment j

(* Phase Two, A not positive definite *)

$k := j - 1$ (* $k =$ number of iterations performed in Phase One *)

Calculate lower Gerschgorin bounds of A_{k+1}

For $j := k + 1$ to $n - 2$

Pivot on maximum lower Gerschgorin bound estimate

Calculate E_{jj} and add E_{jj} to A_{jj}

(* $E_{jj} = \max\{0, -A_{jj} + \max\{\sum_{i=j+1}^{n} |A_{ij}|, \tau_2 \gamma, E_{j-1,j-1}\}\} *$)

update Gerschgorin bound estimates

perform j^{th} iteration of Cholesky factorization

complete factorization of final 2×2 submatrix using its eigenvalues

In order to prevent $A + E$ from being singular or very ill-conditioned, the algorithm includes the following details. Let γ be the maximum diagonal element of A, and τ_1 and τ_2 be some small constants (our default choice is $\tau_1 = \tau_2 = macheps^{1}$). The switch to phase 2 is made when some diagonal element in the remaining submatrix would become less than $\tau_1 \gamma$, implying that only an indefinite matrix or a positive definite matrix with condition number greater than $\frac{1}{\tau_1}$ may be perturbed. During phase 2, the amount E_{jj} to add to A_{jj} is

$$E_{jj} = \max\{0, -A_{jj} + \max\{\sum_{i=j+1}^{n} |A_{ij}|, \tau_2 \gamma, E_{j-1,j-1}\}\}$$

where $E_{j-1,j-1}$ is the amount added to $A_{j-1,j-1}$ in the previous iteration. The $\tau_2 \gamma$ term in the above computation allows the condition number of $A + E$ to be bounded above. The final place in the algorithm
where the conditioning of the resultant matrix is addressed is in the final \((n-1)^{\text{st}}\) iteration of the factorization. Eigenvalues \(\lambda_{i0}\) and \(\lambda_{hi}\) of the remaining \(2 \times 2\) submatrix are computed, which are then used to calculate

\[
E_{n-1,n-1} = E_{n,n} = \max\{0, E_{n-2,n-2}, -\lambda_{i0} + \tau_2 * \max\{1 - \frac{\lambda_{hi}}{\lambda_{i0}}, \gamma\}\}.
\]

This causes the \(l_2\) norm of the resultant final \(2 \times 2\) submatrix to be no greater than \(\frac{1}{\tau_2}\), and in practice usually results in \(E_{n-1,n-1}\) having a smaller value than would otherwise be obtained using Gerschgorin bounds. The analysis in Schnabel and Eskow [1988] includes these details. In practice, the condition number of \(A + E\) is usually no greater than \(10/\min\{\tau_1, \tau_2\}\), although this bound does not hold in theory.

Phase 2 of the algorithm pivots on an estimate of the lower Gerschgorin bounds of the remaining submatrix. Let \(G_i, (j \leq i \leq n)\) denote the lower Gerschgorin bound estimates used during the \(j^{\text{th}}\) iteration. The actual lower Gerschgorin Circle Theorem bounds are computed once at the start of phase 2, giving

\[
G_i = A_{ii} - \sum_{k=j}^{i-1} |A_{ik}| - \sum_{k=i+1}^{n} |A_{ki}|, \quad i = j, \ldots, n,
\]

where \(j\) is the iteration in which the algorithm switches to phase 2. Thereafter, at each iteration \(j\) the bounds are estimated by

\[
G_i = G_i + |A_{ij}| - \frac{\sum_{i=j+1}^{n} |A_{ij}|}{A_{jj}}, \quad i = j, \ldots, n.
\]

Since in the calculation of the estimates of the bounds, the sum \(\sum_{i=j+1}^{n} |A_{ij}|\) needs only to be computed once at each iteration, the cost of computing the bound estimates is at most \(n^2/2\) each additions and multiplications over the entire algorithm, whereas it would be \(O(n^3)\) if the actual Gerschgorin bounds were used. The cost of the entire modified Cholesky factorization is at most \(2n^2\) additions and \(n^2/2\) multiplications greater than the \(n^3/6 + O(n)\) each multiplications and additions for the standard Cholesky factorization of positive definite matrices. If \(A\) is safely positive definite, there is no extra cost.
3 Example using the Modified Cholesky Factorization

The following discussion shows how the modified Cholesky factorization works on an example matrix of size \(n = 4 \). Consider the matrix

\[
A = \begin{bmatrix}
0.3571 & -0.1030 & 0.0274 & -0.0459 \\
-0.1030 & 0.2525 & 0.0736 & -0.3845 \\
0.0274 & 0.0736 & 0.2340 & -0.2878 \\
-0.0459 & -0.3845 & -0.2878 & 0.5549
\end{bmatrix}
\]

The eigenvalues of this matrix are \(-0.0767, 0.1442, 0.4004\), and \(0.9307\) and the maximum diagonal element, \(\gamma\), is \(0.5549\). Let \(\tau_1 = \tau_2 = 6.0555e-06\), which is the value of \(\text{macheps}^{\frac{1}{3}}\) on a Sun 3/75, using double precision.

In the first iteration, \(A_{44}\) is the maximum diagonal element, therefore row and column 4 are interchanged with row and column 1. In performing the test of whether or not the

\[
\min_{j+1 \leq i \leq n} \{ A_{ij} - \frac{A_{jj}}{A_{ii}} \} < \tau_1 \gamma,
\]

the minimum occurs at \(A_{22} - \frac{A_{22}^2}{A_{11}}\), which is \(< 0\), and consequently the algorithm switches to phase 2.

The actual lower Gershgorin bounds for the start of phase 2 are \([-1.633, -0.3086, -0.1548, 0.1808]\). The maximum bound is the bound for row 4, hence row and column 1 are again interchanged with row and column 4, and because this bound is greater than 0, \(E_{11} = 0\).

Prior to the start of iteration 2, the updated lower Gershgorin bound estimates become

\([-0.2564, -0.1410, -0.1401]\) for rows 2 through 4. The maximum of these is the estimate for row 4, resulting in a diagonal pivot of rows 2 and columns 2 and 4. The actual lower Gershgorin bound for row 2 is \(-1.330\), therefore \(E_{22} = 1.330\).

In the final iteration, the eigenvalues of the remaining 2 \(\times\) 2 submatrix are \(0.156329\) and \(-0.052115\), or \(\lambda_{lo}\) and \(\lambda_{hi}\), respectively. The value \(-\lambda_{lo} + \frac{\tau_2}{1-\tau_2}(\lambda_{hi} - \lambda_{lo})\) is \(0.052119\), which is less than \(E_{22}\), therefore the algorithm sets both \(E_{33}\) and \(E_{44}\) to the value added to \(A_{22}\) in the previous iteration, or \(1.330\).

The Cholesky factors and pivot vector are

\[
L = \begin{bmatrix}
0.5976 \\
-0.0769 & 0.8259 \\
0.0458 & -0.3442 & 0.4964 \\
-0.1724 & -0.4816 & -0.1697 & 0.3082
\end{bmatrix},
E = \begin{bmatrix}
0.0 \\
0.1330 \\
0.1330 \\
0.1330
\end{bmatrix}
\text{ and } \mathcal{P} = \begin{bmatrix}
1 \\
4 \\
3 \\
2
\end{bmatrix},
\]

where \(P^TAP + E = LL^T\), and \(P\) is \(I\) permuted by the transformations recorded in \(\mathcal{P}\).
The ratio $\|E\|_\infty / - \lambda_1(A)$, where $\lambda_1(A)$ is the most negative eigenvalue of A, is 1.73, and the condition number of $(A + E)$ is 21.8. In comparison, for the Gill, Murray, and Wright [1981] algorithm, $\|E\|_\infty / - \lambda_1(A)$ is 6.48, and the condition number of $(A + E)$ is 39.2.

4 Software for the Modified Cholesky Factorization

The code for the modified Cholesky factorization is a straightforward implementation of the algorithm detailed in Appendix 1 of Schnabel and Eskow [1988]. It is organized into one main user-callable subprogram containing three smaller subroutines, each of which are called only once. These three smaller subroutines serve to initialize variables at the start of the algorithm, initialize the actual Gerschgorin bounds at the start of phase 2, and compute the factorization of the final 2×2 submatrix in phase 2. The remainder of the factorization is performed by the main subroutine. In particular, while the code for pivoting in phase 1 and phase 2 is similar, it has been left in-line to prevent the necessity of having $O(n)$ function calls. Because the row and column pivoting must affect only the lower triangle of the input matrix, this code is lengthy in comparison to the remainder of the algorithm. All non-integer variables in the code are double precision.

The main subprogram is called by \textit{modcholesky}(ndim, n, A, g, macheps, \tau_1, \tau_2, pivot, E). The input parameters to this subroutine are:

- \textit{ndim} is the dimension of matrix that contains A in the calling program.
- \textit{n} is the dimension of the input matrix A.
- A is an $n \times n$ symmetric matrix (only the lower triangular portion of A, including the diagonal, is used, and it is overwritten by L).
- g is an n dimensional work vector.
- \textit{macheps} is machine epsilon.
- τ_1 is the reciprocal of the tolerance used for determining when to switch to phase 2, i.e. $1/\tau_1$ is the minimum condition number of a positive definite input matrix which may be perturbed by the algorithm.
- τ_2 is the tolerance used for determining the maximum condition number of the final 2×2 submatrix and in the equation for E_{jj}.
The output parameters are:

- L is stored in the matrix A (in the lower triangular portion, including the main diagonal).

- \textit{pivot} is a record of how the rows and columns of the matrix were permuted during the factorization. That is, each P_i is initialized to i, and at each iteration, if rows and columns i and j are switched, then P_i and P_j are swapped.

- E is an n-vector, whose i^{th} element is the amount added to the diagonal of A at the i^{th} iteration of the factorization.

A simpler driver, called by $\textit{modchol}(\textit{ndim, n, A, G, macheps, pivot, E})$ is also available. This driver sets the parameters τ_1 and τ_2 to $\textit{macheps}\frac{1}{3}$, and the remaining input and output parameters are identical to those for $\textit{modcholesky}$.

A sample driver program, $\textit{choldriver.f}$, and its output are included with the code for the modified Cholesky factorization. The driver calls a function $\textit{macheps}$ to compute machine epsilon for double precision arithmetic. It can not be guaranteed that this function will return the correct value of $\textit{macheps}$ on every computer, so the user may want to check this and, if necessary, replace the call to $\textit{macheps}$ with a statement that assigns the actual value of machine epsilon for that computer to \textit{eps}. The driver program also calls a separate subprogram, $\textit{mkmatrix.f}$, to generate random test matrices with eigenvalues within a specified range. Calls to both $\textit{modcholesky}$ and $\textit{modchol}$ are demonstrated in the driver.

Appendices A and B contain the sample driver and sample output, respectively. Appendix C contains the modified Cholesky factorization code.

Note that if one wishes to process a sparse matrix A incrementally as mentioned in Section 1, the code must be simplified so that all pivoting is eliminated. In this case the calculation of Gershgorin bound estimates is also unnecessary so the code is quite simple. The diagonal elements must still be known throughout the factorization, but the rest of the matrix can then be processed incrementally, with only the part involved in the current elimination step needed at any given iteration.
References

A Sample driver

Driver for new modified cholesky factorization algorithm.

integer n, ndim
double precision A(100,100)
double precision Atwo(100,100)
double precision g(100)
double precision maxadd
integer pivot(100)
double precision E(100)
double precision eps,tau1,tau2
integer z
double precision high, low
ndim=100

macheps subroutine computes machine epsilon,
the following line may be replaced by assignment to eps
of correct machine epsilon constant for your machine

call macheps(eps)

Tolerances used by modcholesky subroutine,
tau1 is used in determining when to switch to phase 2 and
tau2 is used in determining the amount to add to the diagonal
of the final 2x2 submatrix.
The default values for these tolerances can be used
by calling modchol subroutine instead of modcholesky.
The default values for tau1 and tau2 in modchol are : eps ** 1/3.

tau1 = eps ** (1/3.)
tau2 = eps ** (1/3.)

Initial seed for random number generator used to generate test
matrices
z = 1000

high and low are the ranges of the eigenvalues for the test matrix
to be generated.

high = 1.0
low = -1.0

The first test problem will have dimension n=4, so that the entire
problem can be printed out.
n = 4

print *, "TEST PROBLEM #1"
print *, "Test Matrix of size", n
print *, "with eigenvalues within the range of ", low, " to ", high

call mkmatrix(ndim,n,z,A,high,low,Atwo,g)

print *, ""
print *, "Original 4X4 matrix"

do 25 i=1,n
 print (26),(A(i,j),j=1,n)
26 format (4f20.8)

call modchol(ndim,n,A,g,eps,pivot,E)

print *, ""
print *, "Matrix after factorization with l in the lower triangle"

do 50 i=1,n
 print (26),(A(i,j),j=1,n)
50 format (26),(A(i,j),j=1,n)

print *, ""
print *, "Iteration Pivot Amt added to Aii"

do 75 i=1,n
 print (76),i,pivot(i),e(i)
75 format (2i2,10x,i2,10x,f12.8)

maxadd = E(n)

print *, ""
print *, "Maximum amount added to the diagonal is ", maxadd

C The next 3 test problems have sizes n=25, 50, & 75,
C with eigenvalue ranges [-1,1], [-1,10000], & [-10000,-1] respectively.

n = 25

print *, ""
print *, "TEST PROBLEM #2"
print *, "Test Matrix of size", n
print *, "with eigenvalues in the range of ", low, " to ", high

call mkmatrix(ndim,n,z,A,high,low,Atwo,g)

call modchol(ndim,n,A,g,eps,pivot,E)
maxadd = E(n)

print *,"Maximum amount added to the diagonal is",maxadd

high = 10000.0
low = -1.0
n = 50

call mkmatrix(ndim,n,z,A,high,low,Atwo,g)

print *,"
print *,"TEST PROBLEM #3"
print *,"Test Matrix of size",n
print *,"with eigenvalues in the range of ",low," to ",high

call modcholesky(ndim,n,A,g,eps,tau1,tau2,pivot,E)

maxadd = E(n)

print *,"Maximum amount added to the diagonal is",maxadd

high = -1.0
low = -10000.0
n = 75

print *,"
print *,"TEST PROBLEM #4"
print *,"Test Matrix of size",n
print *,"with eigenvalues in the range of ",low," to ",high

call mkmatrix(ndim,n,z,A,high,low,Atwo,g)

call modchol(ndim,n,A,g,eps,pivot,E)

maxadd = E(n)

print *,"Maximum amount added to the diagonal is",maxadd

stop
end

subroutine macheps(eps)

double precision eps

double precision temp

temp = 1.0

20 continue
 temp = temp / 2.0
 if ((1.0 + temp) .ne. 1.0) goto 20

 eps = temp * 2.0

 return
end
B Sample Driver Output

TEST PROBLEM #1
Test Matrix of size 4
with eigenvalues within the range of -1.000000000000 to 1.000000000000

Original 4X4 matrix

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.35711021</td>
<td>-0.10302945</td>
<td>0.02737268</td>
<td>-0.04594879</td>
</tr>
<tr>
<td>-0.10302945</td>
<td>0.25254612</td>
<td>0.07358379</td>
<td>-0.38451624</td>
</tr>
<tr>
<td>0.02737268</td>
<td>0.07358379</td>
<td>0.23396662</td>
<td>-0.28782367</td>
</tr>
<tr>
<td>-0.04594879</td>
<td>-0.38451624</td>
<td>-0.28782367</td>
<td>0.55494709</td>
</tr>
</tbody>
</table>

Matrix after factorization with 1 in the lower triangle

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.59758699</td>
<td>-0.10302945</td>
<td>0.02737268</td>
<td>-0.04594879</td>
</tr>
<tr>
<td>-0.07689054</td>
<td>0.82587804</td>
<td>0.07358379</td>
<td>-0.38451624</td>
</tr>
<tr>
<td>0.04586054</td>
<td>-0.34424172</td>
<td>0.49639272</td>
<td>-0.28782367</td>
</tr>
<tr>
<td>-0.17240912</td>
<td>-0.48163633</td>
<td>-0.16986202</td>
<td>0.30827612</td>
</tr>
</tbody>
</table>

Iteration	Pivot	Amt added to Aii
 1 | 1 | 0.00000000 |
 2 | 4 | 0.13303961 |
 3 | 3 | 0.13303961 |
 4 | 2 | 0.13303961 |

Maximum amount added to the diagonal is 0.13303960618874

TEST PROBLEM #2
Test Matrix of size 25
with eigenvalues in the range of -1.000000000000 to 1.000000000000

Maximum amount added to the diagonal is 1.2576119845957

TEST PROBLEM #3
Test Matrix of size 50
with eigenvalues in the range of -1.000000000000 to 10000.0000000000

Maximum amount added to the diagonal is 1.1271617927026

TEST PROBLEM #4
Test Matrix of size 75
with eigenvalues in the range of -10000.0000000000 to -1.000000000000

Maximum amount added to the diagonal is 11618.452621394
subroutine name: modcholesky

authors : Elizabeth Eskow and Robert B. Schnabel

date : December, 1988

purpose : perform a modified cholesky factorization
of the form (Ptranspose)AP + E = L(Ltranspose),
where L is stored in the lower triangle of the
original matrix A.
The factorization has 2 phases:
phase 1: Pivot on the maximum diagonal element.
 Check that the normal cholesky update
 would result in a positive diagonal
 at the current iteration, and
 if so, do the normal cholesky update,
 otherwise switch to phase 2.
phase 2: Pivot on the minimum of the negatives
of the lower gerschgorin bound estimates.
 Compute the amount to add to the
 pivot element and add this
 to the pivot element.
 Do the cholesky update.
 Update the estimates of the
 gerschgorin bounds.

input : ndim — largest dimension of matrix that will be used
n — dimension of matrix A
A — n*n symmetric matrix (only lower triangular
 portion of A, including the main diagonal, is used)
g — n*1 work array
macheps — machine epsilon
tau1 — tolerance used for determining when to switch to
 phase 2
tau2 — tolerance used for determining the maximum
 condition number of the final 2X2 submatrix.

output : L — stored in the matrix A (in lower triangular
portion of A, including the main diagonal)
pivot — a record of how the rows and columns
of the matrix were permuted while
performing the decomposition

E — n*1 array, the ith element is the
amount added to the diagonal of A
at the ith iteration

subroutine modcholesky(ndim,n,A,g,macheps,tau1,tau2,pivot,E) modcholesky

integer n, ndim
double precision A(ndim,n),g(n),macheps,tau1,tau2
integer pivot(n)
double precision E(n)

j — current iteration number
ining — index of the row with the min. of the
neg. lower Gersch. bounds
imaxd — index of the row with the maximum diag.
 element
i, i temp, jpl, k — temporary integer variables
delta — amount to add to Ajj at the jth iteration
gamma — the maximum diagonal element of the original
 matrix A.
normj — the 1 norm of A(colj), rows j+1 ---> n.
ming — the minimum of the neg. lower Gersch. bounds
maxd — the maximum diagonal element
taugamma — tau1 * gamma
phase1 — logical, true if in phase1, otherwise false
delta1, temp, jdmin, tdmin — temporary double precision vars.

integer j, ining, i, imaxd, temp, jpl, k
double precision delta, gamma
double precision normj, ming, maxd
double precision delta1, temp, jdmin, tdmin, taugamma
logical phase1

call init(n, ndim, A, phase1, delta, pivot, g, E,
 ming, tau1, gamma, taugamma)

* do 10 j = 1, n-1

 PHASE 1
if (phase1) then

find index of maximum diagonal element $A(i,i)$ where $i \geq j$

maxd = $A(j,j)$
imaxd = j

do 20 i = j+1, n
 if (maxd .lt. A(i,i)) then
 maxd = A(i,i)
 imaxd = i
 end if
 continue
20

pivot to the top the row and column with the max diag

if (imaxd .ne. j) then

swap row j with row of max diag

do 30 i = 1, j-1
 temp = A(j,i)
 A(j,i) = A(imaxd,i)
 A(imaxd,i) = temp
 continue
30

swap colj and row maxdiag between j and maxdiag

do 35 i = j+1,imaxd-1
 temp = A(i,j)
 A(i,j) = A(imaxd,i)
 A(imaxd,i) = temp
 continue
35

swap column j with column of max diag

do 40 i = imaxd+1, n
 temp = A(i,j)
 A(i,j) = A(i,imaxd)
 A(i,imaxd) = temp
 continue
40

swap diag elements

temp = A(j,j)
A(j,j) = A(imaxd,imaxd)
A(imaxd,imaxd) = temp

swap elements of the pivot vector
itemp = pivot(j)
pivot(j) = pivot(imaxd)
pivot(imaxd) = itemp

end if

C Check to see whether the normal cholesky update for this
C iteration would result in a positive diagonal,
C and if not then switch to phase 2.

jp1 = j+1

if (A(i,j).gt.0) then
 do 60 i = jp1, n
 temp = A(i,j) * A(i,j) / A(jj)
 tDMIN = A(i,i) - temp
 if (i .ne. jp1) then
 jDMIN = min(jDMIN, tDMIN)
 else
 jDMIN = tDMIN
 end if
 continue
 if (jDMIN .lt. taugamma) phase1 = .false.
else
 phase1 = .false.
end if

if (phase1) then
 C do the normal cholesky update if still in phase 1
 C
 A(jj) = dsqrt(A(jj))
 do 70 i = j+1, n
 A(i,i) = A(i,i) / A(jj)
 continue
 do 75 i = j+1, n
 do 80 k = j+1, i
 A(i,k) = A(i,k) - (A(i,j) * A(k,j))
 continue
 continue
 if (j .eq. n-1) A(n,n) = dsqrt(A(n,n))
else
calculate the negatives of the lower gershgorin bounds

 call calschers(ndl,n,n,A,j,g)

 end if

 end if

 PHASE 2

 if (.not. phase1) then
 if (j .ne. n-1) then

 find the minimum negative gershgorin bound

 do 90 i = j,n
 if (i .ne. j) then
 if (ming .gt. g(i)) then
 ming = g(i)
 iming = i
 end if
 else
 iming = j
 ming = g(j)
 end if
 continue

 pivot to the top the row and column with the
 minimum negative gershgorin bound

 if (iming .ne. j) then

 swap row j with row of min gersh bound

 do 100 i = 1, j-1
 temp = A(j,i)
 A(j,i) = A(iming,i)
 A(iming,i) = temp
 continue

 swap colj with row iming from j to iming

 do 105 i = j+1, iming-1
 temp = A(i,j)
 A(i,j) = A(iming,i)
A(iming,i) = temp
continue

swap column j with column of min gersch bound

do 110 i = iming+1, n
 temp = A(i,j)
 A(i,j) = A(i,iming)
 A(i,iming) = temp
continue

swap diagonal elements

temp = A(j,j)
A(j,j) = A(iming,iming)
A(iming,iming) = temp

swap elements of the pivot vector

itemp = pivot(j)
pivot(j) = pivot(iming)
pivot(iming) = itemp

swap elements of the negative gerschgorin bounds vector

temp = g(j)
g(j) = g(iming)
g(iming) = temp

end if

Calculate delta and add to the diagonal.
delta=max(0,-A(j,j) + max{normj,taugamma},delta_previous)
where normj=sum of{|A(i,j)|}, for i=1,n,
delta_previous is the delta computed at the previous iteration,
and taugamma is tau1*gamma.

normj = 0.0

do 140 i = j+1, n
 normj = normj + dabs(A(i,j))
continue

temp = max(normj,taugamma)
delta1 = temp - A(j,j)
temp = 0.0
delta1 = max(temp, delta1)
delta = max(delta1,delta)
E(j) = delta
A(j,j) = A(j,j) + E(j)
update the gershgorin bound estimates

if (A(j,j) .ne. normj) then
 temp = (normj/A(j,j)) - 1.0
 do 150 i = j+1, n
 g(i) = g(i) + dabs(A(i,j)) * temp
 continue
150
end if

do the cholesky update

A(j,j) = dsqrt(A(j,j))
do 160 i = j+1, n
 A(i,j) = A(i,j) / A(j,j)
160
continue
do 165 i = j+1, n
do 170 k = j+1, i
 A(i,k) = A(i,k) - (A(i,j) * A(k,j))
170
continue
165
else

call final2by2(ndim, n, A, E, j, tau2, delta, gamma)
end if
end if
continue
return
end

C**
C subroutine name : modchol
C
C purpose : Simple driver for the modified cholesky algorithm,
C with the tolerances set to the default values.
C i.e. tau1 = tau2 = macheps ** 1/3
C
C input : n, ndim, A, g, macheps
C
C output : pivot, E
C (See subroutine modcholesky above for details on all parameters)
C**

subroutine modchol(ndim,n,A,g,macheps,pivot,E) modchol
integer ndim, n
double precision A(ndim,n),g(n),macheps
integer pivot(n)
double precision E(n)

double precision tau1,tau2
tau1 = macheps ** (1./3.)
tau2 = tau1
call modcholesky(ndim,n,A,g,macheps,tau1,tau2,pivot,E)

return
double precision phase1 delta, delta, g(n), E(n)
integer pivot(n)
double precision ming, tau1, gamma, tau gamma

phase1 = .true.
delta = 0.0
ming = 0.0
do 10 i=1,n
 pivot(i)=i
 g(i)= 0
 E(i) = 0
10 continue
find the maximum magnitude of the diagonal elements.
if any diagonal element is negative, then phase1 is false.
gamma = dabs(A(1,1))
if (A(1,1) .lt. 0) phase1 = .false.
do 20 i=2,n
 if (dabs(A(i,i)) .gt. gamma) gamma=A(i,i)
 if (A(i,i) .lt. 0) phase1 = .false.
continue

570
taugamma = tau1 * gamma

if not in phase1, then calculate the initial gerschgorin bounds
needed for the start of phase2.
if (.not.(phase1)) call calgersch(ndim,n,A,1,g)
return
end

C**
C
C subroutine name : calgersch
C
C purpose : calculate the negative of the gerschgorin bounds
called once at the start of phase II.
C
C input : ndim, n, A, j
C
C output : g — an n vector containing the negatives of the
Gerschgorin bounds.
C
C**
C subroutine calgersch(ndim, n, A, j, g) calgersch

integer ndim, n, j
double precision A(ndim,n), g(n)

integer i, k
double precision offrow

do 10 i = j, n
 offrow = 0.0
 do 20 k = j, i-1
 offrow = offrow + dabs(A(i,k))
 do 30 k = i+1, n
 offrow = offrow + dabs(A(k,i))
 g(i) = offrow - A(i,i)
10 continue

590

600

610
return
end

C**
C
C subroutine name: final2by2
C
C purpose: Handles final 2X2 submatrix in Phase II.
C Finds eigenvalues of final 2 by 2 submatrix,
C calculates the amount to add to the diagonal,
C adds to the final 2 diagonal elements,
C and does the final update.
C
C input: ndim, n, A, E, j, tau2,
C delta - amount added to the diagonal in the
C previous iteration
C
C output: A - matrix with complete l factor in the lower triangle,
C E - n*1 vector containing the amount added to the diagonal
C at each iteration,
C delta - amount added to diagonal elements n-1 and n.

C**

subroutine final2by2(ndim, n, A, E, j, tau2, delta, gamma)

integer ndim, n, j
double precision A(ndim,n), E(n), tau2, delta, gamma
double precision t1, t2, t3, lambda1, lambda2, lambda1i, lambda2i
double precision delta1, temp

C find eigenvalues of final 2 by 2 submatrix

C
C t1 = A(n-1,n-1) + A(n,n)
C t2 = A(n-1,n-1) - A(n,n)
C t3 = dsqrt(t2*t2 + 4.0*A(n,n-1)*A(n,n-1))
C lambda1 = (t1 - t3)/2.
C lambda2 = (t1 + t3)/2.
C lambda1i = max(lambda1,lambda2)
C lambda2i = min(lambda1,lambda2)

C find delta such that:
C 1. the l2 condition number of the final
C 2X2 submatrix + delta*1 <= tau2
C 2. delta >= previous delta,
C 3. lambda2i + delta >= tau2 * gamma,
C where lambda2i is the smallest eigenvalue of the final
C 2X2 submatrix
\[\delta_1 = (\lambda d_{11} - \lambda d_{00})/(1.0 - \tau^2) \]
\[\delta_1 = \text{max}(\delta_1, \gamma) \]
\[\delta_1 = \tau^2 \cdot \delta_1 - \lambda d_{00} \]
\[\text{temp} = 0.0 \]
\[\delta = \text{max}(\delta, \text{temp}) \]
\[\delta = \text{max}(\delta_1, \delta) \]

\[
\begin{cases}
\text{if } (\delta \gt 0.0) \text{ then} \\
A(n-1,n-1) = A(n-1,n-1) + \delta \\
A(n,n) = A(n,n) + \delta \\
E(n-1) = \delta \\
E(n) = \delta \\
\end{cases}
\]

\text{end if}

\text{C}
\text{final update}
\text{C}

\[A(n-1,n-1) = \text{dsqrt}(A(n-1,n-1)) \]
\[A(n,n-1) = A(n,n-1)/A(n-1,n-1) \]
\[A(n,n) = A(n,n) - (A(n,n-1) \cdot A(n,n-1)) \]
\[A(n,n) = \text{dsqrt}(A(n,n)) \]

\text{return}
\text{end}