DETECTING LEFTMOST PERIODICITIES

Michael G. Main

CU-CS-357-87 January 1987
DETECTING LEFTMOST PERIODICITIES
(January 1987)

Michael G. Main
Department of Computer Science
University of Colorado
Boulder, CO 80309 USA

1. Introduction

Periodicities are nonempty strings of the form $p^n q$ with $n \geq 2$ and q a substring of p. This note presents a new algorithm to find all leftmost occurrences of periodicities within a string. For a fixed alphabet, the worst-case time is linear in the length of the string.

The study of periodicities dates from the pioneering work of Axel Thue at the beginning of this century [11,12,5]. More recently, there has been a surge of interest in periodicities among researchers in formal language theory [2]. In 1978, an $O(n \log n)$ algorithm was presented to determine whether a string contains a periodicity of the form pp (a "square") [6]. Later, this algorithm was improved to find all squares in the same asymptotic time bound. (In fact, this was done in at least three independent and simple ways [1,3,7].)

An algorithm was also presented by A.O. Slisenko [10], finding all periodicities in linear time. But, Slisenko’s algorithm was a difficult 100-page presentation, so research continued to either simplify Slisenko’s algorithm or find alternative methods of detecting periodicities. Most recently, there were two linear algorithms to determine whether a string contains a square [3,8]. Both of these papers left several open problems, which are addressed by the new algorithm presented here.

The principal open problem solved here is this: Let x be a string. A periodicity (within x) is a substring of the form $p^n q$, with $n \geq 2$ and q a prefix of p. The length of p is called the period-length of the periodicity. If a periodicity $p^n q$ occurs several times within a string x, then the first time it occurs is called the leftmost occurrence. This note presents an algorithm to find all leftmost periodicities within a string x, in time proportional to the length of x, provided that the alphabet is a constant size.

Notation: The length of a string x is denoted by $|x|$, and the i^{th} character of x is denoted by $x[i]$. The substring starting at character i and ending at character j is written $x[i..j]$.
2. Main Theorem

The algorithm uses a decomposition of a string called the s-factorization, also used by Crochemore in his most recent algorithm [3]. This is a decomposition of a string x into the concatenation of several strings $x = u_1 \cdots u_k$, defined recursively as follows: Suppose $u_1 \cdots u_{h-1}$ have already been defined, so that $u_1 \cdots u_{h-1}$ is a proper prefix of x. Now we want to define u_h. Here are the rules:

1. If the next character of x (after u_{h-1}) has not yet appeared in x, then u_h consists of this single character.
2. Otherwise, u_h is the longest string such that $u_1 \cdots u_h$ is a prefix of x and u_h is a non-suffix substring of $u_1 \cdots u_h$.

The following theorem gives two properties of leftmost periodicities, in terms of the s-factorization of a string:

Theorem 1: Let x be a string with s-factorization $x = u_1 \cdots u_k$ and let r be a periodicity of x, with the leftmost occurrence of r at $x[i]..x[j]$, and with $x[j]$ occurring within u_h. Then

1. $x[i]$ occurs before u_h, and
2. $|r| \leq 2|u_{h-1}u_h|.$

Proof: (1) Suppose condition 1 does not hold, so that r is entirely within u_h. Then u_h has at least two characters, and by the definition of the s-factorization, u_h must occur as a non-suffix substring of $u_1 \cdots u_h$. But this means that $x[i]..x[j]$ is not the leftmost occurrence of r. By this contradiction, condition 1 must hold.

(2) Let $r=p^*q$, and suppose condition 2 does not hold. Then at least half of $x[i]..x[j]$ is before u_{h-1}. This means that at least one entire occurrence of p has occurred at the beginning of $x[i]..x[j]$ before the start of u_{h-1}. Moreover, when we start u_{h-1}, we are in the middle of some later occurrence of p. This means that the substring beginning at the first character of u_{h-1} and continuing until $x[j]$ also occurs earlier in x. But, since u_{h-1} ends before $x[j]$, this violates the maximality condition in the definition of an s-factorization. Therefore, condition 2 must hold.
3. The Algorithm

Here is the algorithm to find all leftmost periodicities within a string x:

1. Compute the s-factorization $x = u_1 \cdots u_k$ of the input string x.

2. For each h ($2 \leq h \leq k$), let t_h be the substring of length $2|u_{h-1}| + |u_h|$ which immediately precedes u_h in x (or to the beginning of x if there are not enough characters before u_h).

3. for $h := 2$ to k do

 begin

 (3.1) Find all periodicities which start in t_h and end in u_h.

 end.

From the theorem of the previous section, any leftmost occurrence of a periodicity r (within x) which ends within u_h will be found by step 3.1 of the algorithm.

For a finite alphabet, it is possible to compute the s-factorization of a string x in $O(|x|)$ time, by adapting McCreight's suffix tree construction [9]. (This same adaptation is used by Crochemore [3].) Therefore, the first two steps of the algorithm require linear time (for a fixed alphabet). If the alphabet is infinite, then the s-factorization requires $O(|x| \log |x|)$ time, and the first two steps also require $O(|x| \log |x|)$ time.

Step 3.1 may be computed in time $O(|t_h u_h|)$, using a modification of an algorithm which finds all new squares that appear when two strings are concatenated. (This modification is given in the next section.) Since $\sum_{h=2}^{k} |t_h u_h| < 4|x|$, the total time spent in Step 3 is $O(|x|)$.

Therefore, the worst-case time of the entire algorithm is linear in the length of x (for a fixed alphabet) or $O(|x| \log |x|)$ for an arbitrary alphabet.

4. Finding New Periodicities

Let t and u be two strings, with $|t| = m$ and $|u| = n$. This section shows how to find all new periodicities that are formed in the concatenation tu. (These are periodicities with the first character in t and the last character in u.) The algorithm requires $O(m+n)$ time, and is a modification of an earlier algorithm which finds new squares [7].
The algorithm has two parts. The first part finds all new periodicities which have at least one full period in the string u. These are called right periodicities. The second part finds all new periodicities which have at least one full period in the string t (left periodicities). Here we present only the first part, since the second part is symmetric. This first part makes use of two functions LP and LS, defined as follows:

For $(2 \leq i \leq n+1)$: $LP(i)$ is the length of the longest prefix of u which is also a prefix of $u[i]..u[n]$. ($LP[n+1]$ is defined as zero.)

For $(1 \leq i \leq n)$: $LS(i)$ is the length of the longest suffix of t which is also a suffix of tv, where v is $u[1]..u[i]$.

The following theorem characterizes new right periodicities which are formed in the concatenation of tu:

Theorem 2: Let j ($1 \leq j \leq n$) be an integer. The new right periodicities (in tu) with period-length j are precisely those substrings of tu which:

1. Have length $2j$ or more, and
2. Begin at or before $t[m]$ and end at or after $u[j]$, and
3. Begin at or after $t[m-LS(j)+1]$ and end at or before $u[j+LP(j+1)]$.

Proof: The first two conditions are clearly necessary, so let r be a substring of tu, which meets these two conditions, and let $i = |r|$. We will show that the remaining condition is necessary and sufficient for r to be a periodicity with period-length j.

Let a be the number of characters of r in t, and let b be the number of characters of r in $u[j+1]..u[n]$. (So that $i = a+b+j$.) For r to be a periodicity with period-length j, it is necessary and sufficient for the first $i-j$ characters of r to match the last $i-j$ characters of r. Equivalently,

(A) $r[1]..r[a]$ matches $r[1+j]..r[a+j]$, and

(B) $r[a+1]..r[a+b]$ matches $r[a+j+1]..r[i]$.
Condition (A) is equivalent to requiring $r[1+j] \ldots r[a+j]$ to be a suffix of t. Since $r[a+j]$ occurs at position $u[j]$, this is equivalent to requiring r to begin at or after $t[m-LS(j)+1]$. Similarly, Condition (B) is equivalent to requiring r to end at or before $u[j+LP(j+1)]$. Thus, the Conditions (A) and (B) together are equivalent to (3) in the statement of the theorem.

Theorem 2 is the basis of the following algorithm to find all new right periodicities in tu:

1. Calculate the values of $LP(2)$ through $LP(n+1)$, and the values of $LS(1)$ through $LS(n)$.

2. for $j := 1$ to n do

 begin
 The new right periodicities (with period j) are all substrings of length $2j$ or
 more beginning in the range $t[m-LS(j)+1]$ through $t[m]$, and ending in the
 range $u[j]$ through $u[j+LP(j+1)]$.
 end.

The calculations of LP and LS in Step 1 require $O(m+n)$ time, using a variation of the Knuth-Morris-Pratt pattern matching algorithm [7, section 2]. The body of the loop in Step 2 requires constant time for each j, so the entire loop is $O(n)$. Therefore, the entire algorithm takes time proportional to $|uv|$.

6. Notes

The algorithm of Section 4 finds the leftmost occurrence of every periodicity within a string in linear time (for a fixed alphabet). The algorithm may also find some non-leftmost occurrences of periodicities (those that span boundaries in the s-factorization). This information can be used to solve the problem of determining whether a string has a periodicity of the form p^n for different values of $n \geq 2$, solving a problem of Crochemore [3,4].

A further modification may allow the algorithm to find all periodicities in a simple manner. This seems likely since the periodicities that are not found are entirely within some u_h in the s-factorization, and each such u_h occurs previously in the string.
References

(1) A. Apostolico and F.P. Preparata, Optimal off-line detection of repetitions in a string, TCS 22 (1983) 297-315.

(2) J. Berstel and C. Reutenauer, Square-free words and Idempotent semigroups, in Combinatorics on Words (Lothaire, Ed.), Addison-Wesley, Reading, MA., Chapter 2.

(11) A. Thue, Uber unendliche Zeichenreihen, Norske Videnskabers Selskabs Skrifter Mat.-Nat. Kl. (Kristiania) (1906), Nr. 7, 1-22.

(12) A. Thue, Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske Videnskabers Selskabs Skrifter Mat.-Nat. Kl. (Kristiania) (1912), Nr. 1, 1-67.