Connectionist AI, Symboic AI, and the Brain

Paul Smolensky

CU-CS-342-86

University of Colorado at Boulder
DEPARTMENT OF COMPUTER SCIENCE
ANY OPINIONS, FINDINGS, AND CONCLUSIONS OR RECOMMENDATIONS EXPRESSED IN THIS PUBLICATION ARE THOSE OF THE AUTHOR(S) AND DO NOT NECESSARILY REFLECT THE VIEWS OF THE AGENCIES NAMED IN THE ACKNOWLEDGMENTS SECTION.
Connectionist AI, Symbolic AI, and the Brain

Paul Smolensky

CU-CS-342-86 September, 1988

Department of Computer Science &
Institute of Cognitive Science
University of Colorado
Boulder, CO 80309-0430

Abstract

Connectionist AI systems are large networks of extremely simple numerical processors, massively interconnected and running in parallel. There has been great progress in the connectionist approach, and while it is still unclear whether the approach will succeed, it is also unclear exactly what the implications for cognitive science would be if it did succeed. In this paper I present a view of the connectionist approach that implies that the level of analysis at which uniform formal principles of cognition can be found is the subsymbolic level, intermediate between the neural and symbolic levels. Notions like logical inference, sequential firing of production rules, spreading activation between conceptual units, mental categories, and frames or schemata turn out to provide approximate descriptions of the coarse-grained behavior of connectionist systems. The implication is that symbol-level structures provide only approximate accounts of cognition, useful for description but not necessarily for constructing detailed formal models.

Keywords: connectionist AI, symbolic AI, neural modeling, cognitive levels

Submitted to AI Review.
Copyright © 1986 by Paul Smolensky.
In the past few years a new approach to artificial intelligence called connectionist modeling has been gaining increasing attention in research and development laboratories. Connectionist systems are large networks of extremely simple processors, massively interconnected and running in parallel. Each processor has a numerical activation value which it communicates to other processors along connections of varying strengths; the activation value of each processor constantly changes in response to the activity of the processors to which it is connected. The values of some of the processors form the input to the system, and the values of other processors form the output; the connections between the processors determine how input is transformed to output. In connectionist systems, knowledge is encoded not in symbolic structures but rather in the pattern of numerical strengths of the connections between processors.

The goal of connectionist research is to model both lower-level perceptual processes and such higher-level processes as object recognition, problem solving, planning, and language understanding. There exist connectionist models of the following cognitive phenomena:

- speech perception
- visual recognition of figures in the "Origami world"
- development of specialized feature detectors
- amnesia
- language parsing and generation
- aphasia
- discovering binary encodings
- dynamic programming of massively parallel networks
- acquisition of English past tense morphophonology from examples
- tic-tac-toe
- inference about rooms
- qualitative problem solving in simple electric circuits

One crucial question is whether the computational power of connectionist systems is sufficient for the construction of truly intelligent systems. Explorations addressing this question form the bulk of the contributions to the connectionist literature: many can be found in the proceedings of the International Joint Conference on AI and the annual meetings of the American Association for AI and the Cognitive Science Society over the past several years. The connectionist systems referred to in the previous paragraph can be found in the collections in Hinton and Anderson (1981); Cognitive Science (1985); Rumelhart, McClelland, & the PDP Research Group (1986); McClelland, Rumelhart, & the PDP Research Group (1986); and the bibliography by Feldman, Ballard, Brown, and Dell (1985). In the present paper I will not address the issue of computational power, except to point out that connectionist research has been strongly encouraged by successful formal models of the details of human cognitive performance, and strongly motivated by the conviction that the pursuit of the principles of neural computation will eventually lead to architectures of great computational power.

In addition to the question of whether the connectionist approach to AI can work, there is the question: What exactly would it mean if the approach did work? There are fundamental questions about the connectionist approach that are not yet clearly understood despite their importance. What is the relation between connectionist systems and the brain? How does the connectionist approach to modeling higher-level cognitive processes relate to the symbolic approach that has traditionally defined AI and cognitive science? Can connectionist models contribute to our understanding of the nature of
the symbol processing characterizing the mind and its relation to the neural processing characterizing the brain? These are the questions I address in this paper. In the process of addressing these questions it will become clear that the answers are important not only in their own right, but also as contributions to the determination of whether the connectionist approach has sufficient power.

Levels of analysis: Neural and mental structures

It is best to begin with the question, How do accounts of intelligence relate to neural and mental structures? What are the roles of the neural and the symbolic levels of analysis? We first consider the answers from the traditional symbolic approach to AI, and then from a connectionist alternative.

The symbolic paradigm

We start with the mental structures of "folk psychology": goals, beliefs, concepts, and so forth (see Figure 1). In the symbolic approach, these mentalist concepts are formalized in terms of a "language of thought," as Fodor (1975) calls it; this language is supposed to provide a literal formalization of folk psychology. The rules for operating on this language are essentially Boole's (1854/1961) "laws of thought." These symbolic structures are supported by a physical symbol system—a physical computing device for manipulating symbols—which in turn is supported by lower implementation levels in a computing device. The idea is that eventually, if we were to get low enough down in the human physical symbol system, we would see something like neurons. In other words, on this account we just have to figure out how to relate neural structures to the low implementation levels of a physical symbol system, and then we understand the relation between neural structures and mental structures. If it were the case that increasingly lower levels of computers looked more and more like neural systems this would be a promising approach; unfortunately, insights into the design and implementation of physical symbol systems have so far shed virtually no light on how the brain works.

To more clearly understand the connectionist alternative, it is helpful to articulate a number of the properties of the symbolic approach. Allen Newell (1980) formulated this paradigm best in his physical symbol system hypothesis:

The necessary and sufficient condition for a physical system to exhibit general intelligent action is that it be a physical symbol system. (p. 170).

"General intelligent action" means rational behavior (p. 171); "rationality" means that when an agent has a certain goal and the knowledge that a certain action will lead to that goal then the agent selects that action (Newell, 1982). (And physical symbol systems are physically realized universal computers.)

What all this means in the practice of symbolic AI is that goals, beliefs, knowledge, and so on are all formalized as symbolic structures—for example, Lisp lists—that are built of symbols—Lisp atoms—that are each semantically interpretable in terms of the ordinary concepts we use to conceptualize the domain. Thus in a medical expert system, we expect to find structures like (IF FEVER THEN (HYPOTHESIZE INFECTION)). These symbolic structures are operated on by symbol manipulation procedures composed of primitive operations like concatenating lists, and extracting elements from lists. According to the symbolic paradigm, it is in terms of such operations that we are to understand cognitive processes.

It is important to note that in the symbolic paradigm, levels of cognition are analogized to levels of computer systems. The symbolic level that implements knowledge structures is alleged to be exact and complete. That means that lower levels are unnecessary for accurately describing cognition in terms of the semantically interpretable elements. This relegates the neural question to simply: How does the nervous system happen to physically implement a physical symbol system? The answer to this question does not matter as far as symbol-level AI systems are concerned.
There are a number of inadequacies of this paradigm, which Hofstadter (1985) has called "the Boolean dream." These inadequacies can be perceived from a number of perspectives, which can only be caricatured here:

- From the perspective of neuroscience, the problem with the symbolic paradigm is quite simply, as I have already indicated, that it has provided precious little insight into the computational organization of the brain.
- From the perspective of modeling human performance, symbolic models, like Newell and Simon's General Problem Solver (1972), do a good job on a coarse level, but the fine structure of cognition seems to be more naturally described by nonsymbolic models. In word recognition, for example, it is natural to think about activation levels of perceptual units.
- In AI, the trouble with the Boolean dream is that symbolic rules and the logic used to manipulate them tend to produce rigid and brittle systems.

The subsymbolic paradigm

The alternative to the symbolic paradigm that I want to present is what I call the subsymbolic paradigm (see Figure 2). In this paradigm, there is an intermediate level of structure between the neural and symbolic levels. This new subsymbolic level is supposed to be closer to each of the neural and symbolic levels than they are to each other. When cognition is described at the subsymbolic level, the description is that of a connectionist system.

The subsymbolic level is an attempt to formalize, at some level of abstraction, the kind of processing occurring in the nervous system. Many of the details of neural structure and function are absent from the subsymbolic level, and the level of description is higher than the neural level. The precise relationship between the neural and subsymbolic levels is still a fairly wide open research question; but it seems quite clear that connectionist systems are much closer to neural systems than are symbolic systems.

The relation between the subsymbolic and symbolic descriptions of cognition is illustrated in Figure 2. If we adopt a higher level of description of what's going on in these subsymbolic systems (and that involves, to a significant degree, approximation) then we get descriptions that are approximately like symbolic accounts, like traditional AI constructs. While the subsymbolic paradigm is content to give approximate accounts of things like goals and beliefs, it is not prepared to compromise on actual performance. Behind the accounts of folk psychology and symbolic AI there is real data on human intelligent performance, and the claim is that subsymbolic systems can provide accurate accounts of that data.

Note that the subsymbolic paradigm gives an essentially different role to the neural part of the story: neural structures provide the basis (in some suitably abstract sense) of the formalism that gives the precise description of intelligence, while mental structures enter only into approximate descriptions.

In the remainder of the paper I will elaborate on the nature of the subsymbolic level, and on the higher level descriptions of subsymbolic systems that approximate symbolic accounts. I want to indicate how formalizing cognition by abstracting from neural structures—rather than with symbolic formalizations of mental structures—provides new and exciting views of knowledge, memory, concepts, and learning.

Figure 2 illustrates an important part of the subsymbolic paradigm: that levels of cognition should not be thought of by analogy to levels of computer systems, all stacked underneath the "mental" part of the diagram. Just as Newtonian concepts provide approximately valid descriptions of physical phenomena that are more accurately described with quantum concepts, so the symbolic concepts of folk psychology provide approximately valid descriptions of cognitive phenomena that are more accurately described.
with subsymbolic concepts. Mental structures are like higher-level descriptions of a physical system, rather than higher-level descriptions of a computer system.

Semantic interpretation

Perhaps the most fundamental contrast between the paradigms pertains to semantic interpretation of the formal models. In the symbolic approach, symbols (atoms) are used to denote the semantically interpretable entities (concepts); these same symbols are the objects governed by symbol manipulations in the rules that define the system. The entities which are semantically interpretable are also the entities governed by the formal laws that define the system. In the subsymbolic paradigm, this is no longer true. The semantically interpretable entities are patterns of activation over large number of units in the system, whereas the entities manipulated by formal rules are the individual activations of cells in the network. The rules take the form of activation passing rules, of essentially different character from symbol manipulation rules.

Now what I'm talking about here is the particular kind of connectionist system in which what I just said is true: patterns of activity represent concepts, instead of the activation of individual elements in the network. (In the latter case, we would have a collapsing here of just the same kind that we have the symbolic paradigm.) So the subsymbolic paradigm involves connectionist systems using so-called distributed representations, as opposed to local representations. (The books by Rumelhart, McClelland, and the PDP Research Group consider distributed connectionist systems; local connectionist systems are considered in Feldman and Ballard, 1982, and Feldman, Ballard, Brown and Dill, 1985.)

Thus in the subsymbolic paradigm, the formal system description is at a lower level than the level of semantic interpretation: The level of denotation is higher than the level of manipulation. There is a fundamental two layer structure to the subsymbolic paradigm, unlike the symbolic approach. The higher semantic level is not necessarily precisely formalizable, and the lower level is not "merely implementation" of a complete higher level formalism. Both levels are essential: the lower level is essential for defining what the system is (in terms of activation passing) and the higher level is essential for understanding what the system means (in terms of the problem domain).

The subsymbolic level

I shall now characterize the subsymbolic level in more detail. Cognition looks quite different at this level than at the symbolic level. In the last part of the paper, we consider higher level descriptions of connectionist systems, where we can see some of the characteristics of the symbolic level emerging.

The subsymbolic formalism

At the fundamental level in subsymbolic systems we have a collection of dynamical variables. There are two kinds of variables: an activation level for each of the units and a connection strength for each of the links. Typically both kinds of variables are continuous. The rules that define these systems are activation passing rules and connection strength modification rules. Typically these are differential equations (although they are simulated with finite difference equations). Typically the differential equations are not stochastic, but stochastic versions will enter briefly later.

The computational role of these two kinds of equations is this. The activation passing rules are in fact inference rules: not logical inference rules, but statistical inference rules. The connection strength modification rules are memory storage and learning procedures. These points will be expanded shortly.

Because the fundamental system is dynamical system with continuously evolving variables, the subsymbolic paradigm constitutes a radical departure from the symbolic paradigm; the claim, in effect,
is that cognition should be thought of taking place in dynamical systems and not in digital computers. This is a natural outcome of the neurally-inspired rather than mentally-inspired formalism.

The relation between the subsymbolic formalism and psychological processing is in part determined by the time constants that enter into the differential equations governing activation and connection strength modification. The time required for significant change in activation levels is the order of 100 milliseconds; the time it takes for a connection strength to appreciably change is much longer, say, on the order of a minute. Thus, for times less than about 100 msec, what we’re talking about is a single equilibration or “settling” of the network; all the knowledge imbedded in the connections is used in parallel. On this time scale, we have parallel computation. When we go beyond this, to cognitive processes that go on for several seconds, like problem solving and extended reasoning, then we’re talking about multiple settlings of the network, and serial computation. This is the part of cognition for which serial symbolic descriptions such as Newell and Simon’s General Problem Solver provide a fairly good description of the coarse structure. The claim of the subsymbolic paradigm is that the symbolic description of such processing is an approximate description of the global behavior of a lot of parallel computation. Finally, if we go to still longer time scales, on the order of a minute, then we have adaptation of the network to the situation it finds itself in.

Let me summarize the contrasts between the symbolic and subsymbolic approaches, viewed at the fundamental level. In the subsymbolic paradigm we have fundamental laws that are differential equations, not symbol manipulation procedures. The systems we are talking about are dynamical systems, not von Neumann machines. The mathematical category in which these formalisms live is the continuous category, not the discrete category, so we have a different kind of mathematics coming into play. The differences are dramatically illustrated in the way memory is modeled in the two formalisms. In the von Neumann machine, memory storage is a primitive operation (you give a location and a contents, and it gets stored); memory retrieval is also a primitive operation. In subsymbolic systems these processes are quite involved: they’re not primitive operations at all. When a memory is retrieved, it’s a content-addressed memory: part of a previously instantiated activation pattern is put into one part of the network by another part of the network, and the connections fill out the rest of that previously present pattern. This is a much more involved process than a simple “memory fetch.” Memories are stored in subsymbolic systems by adjusting connection strengths so that the retrieval process will actually work: this is no simple matter.

Subsymbolic inference and the Statistical Connection

At the fundamental level of subsymbolic formalism, we have moved from thinking about cognition in terms of discrete processes to thinking in terms of continuous processes. This means that different mathematical concepts apply. One manifestation of this, in computational terms, is the claim that inference should not be construed in the logical sense but rather in the statistical sense—at least at the fundamental level of the system. (Later we will see that at higher levels, certain subsymbolic systems do perform logical inference.)

I have encapsulated this idea in what I’ve called the Statistical Connection:

The strength of the connection between two units is a measure of the statistical relation between their activity.

The origins of this principle are easily seen. The relationship between statistics and connections was represented in neuroscience by Hebb’s (1949) principle: a synapse between two neurons is strengthened when both are active simultaneously. In psychology, this relation appeared in the notion of “strength of association” between concepts, an important precursor to connectionist ideas (although since this involved statistical associations between concepts, it was not itself a subsymbolic notion). From a physics point of view, the Statistical Connection is basically a tautology, since if two units are strongly
connected, then when one is active the other is likely to be too.

But from a computational point of view, the Statistical Connection has rather profound implications vis-à-vis AI and symbolic computation. Activation passing is now to be thought of as statistical inference. Each connection represents a soft constraint: the knowledge contained in the system is the set of all such constraints. If two units have an inhibitory connection, then the network has the knowledge that when one is active the other ought not be; but that is a soft constraint that can easily be overridden by countermanding excitatory connections to that same unit (if those excitatory connections come from units that are sufficiently active). The important point is that soft constraints, any one of which can be overridden by the others, have no implications singly; they only have implications collectively. That’s why the natural process for using this kind of knowledge is relaxation, in which the network uses all the connections at once, and tries to settle into a state that balances all the constraints against each other. This is to be contrasted with hard constraints, like rules of the form “if A, then B”, which can be used individually, one at a time, to serially make inferences. The claim is that using soft constraints avoids the brittleness that hard constraints tend to produce in AI. (It is interesting to note that advocates of logic in AI have for some time now been trying to evade the brittleness of hard constraints by developing logics, such as non-monotonic logics, where all of the rules are essentially used together to make differences, and not separately; see, e.g., Artificial Intelligence, 1980.)

To summarize: In the symbolic paradigm, constraints are typically hard, inference is logical, and processing can therefore be serial. (One can try to parallelize it, but the most natural approach is serial inference.) In the subsymbolic paradigm, constraints are soft, inference is statistical, and therefore it is most natural to use parallel implementations of inference.

Higher level descriptions

Having characterized the subsymbolic paradigm at the fundamental, subsymbolic level, I would now like to turn to higher level descriptions of these connectionist systems. As was stated earlier, in the subsymbolic paradigm, serial, symbolic descriptions of cognitive processing are approximate descriptions of the higher level properties of connectionist computation. I will only be able to briefly sketch this part of the story, pointing to published work for further details. The main point is that interesting relations do exist between the higher-level properties of connectionist systems and mental structures, as they have been formalized symbolically. The view of mental structures that emerges is strikingly different from that of the symbolic paradigm.

The Best Fit Principle

That crucial principle of the subsymbolic level, the Statistical Connection, can be reformulated at a higher level, in what I call the Best Fit Principle:

> Given an input, a connectionist system outputs a set of inferences that, as a whole, give a best fit to the input, in a statistical sense defined by the statistical knowledge stored in the system’s connections.

In this vague form, this principle is generally true for connectionist systems. But it is exactly true in a precise sense, at least in an idealized limit, for a certain class of systems that I have studied in what I call **harmony theory** (Smolensky, 1983, 1984a, 1984b, 1988a, 1988b, 1988c; Riley & Smolensky, 1984).

To render the Best Fit Principle precise, it is necessary to provide precise definitions of "inferences," "best fit" and "statistical knowledge stored in the system’s connections." This is done in harmony theory, where the central object is the "harmony function" H which measures, for any possible set of inferences, the goodness of fit to the input with respect to the soft constraints stored in the connection strengths. The set of inferences with the largest value of H, i.e. highest harmony, is the best set of inferences, with
respects to a well-defined statistical problem.

Harmony theory basically offers three things. It gives a mathematically precise characterization of a very general statistical inference problem that covers a great number of connectionist computations. It tells how that problem can be solved using a connectionist network with a certain set of connections. And it gives a procedure by which the network can learn the correct connections with experience.

The units in harmony networks are stochastic units: the differential equations defining the system are stochastic. There is a system parameter called the computational temperature that governs the degree of randomness in the units' behavior: it goes to zero as the computation proceeds. (The process is simulated annealing, as in the Boltzmann machine: Hinton & Sejnowski, 1983. See Rumelhart, McClelland, & the PDP Research Group, 1986, p. 148, and Smolensky, 1988a, for the relations between harmony theory and the Boltzmann machine.)

Productions, sequential processing, and logical inference

A simple harmony model of expert intuition in qualitative physics was described in Riley and Smolensky (1984) and Smolensky (1986a, 1986c). The model answers questions like "what happens to the voltages in this circuit if I increase this resistor?" Higher level descriptions of this subsymbolic problem-solving system illustrate several interesting points.

It is possible to identify macro-decisions during the system's solution of a problem; these are each the result of many individual micro-decisions by the units of the system, and each amounts to a large-scale commitment to a portion of the solution. These macro-decisions are approximately like the firing of production rules. In fact, these "productions" "fire" at different times, in essentially the same order as in a symbolic forward-chaining inference system. One can measure the total amount of order in the system, and see that there is a qualitative change in the system when the first micro-decisions are made: the system changes from a disordered phase to an ordered one.

It's a corollary of the way this network embodies the problem domain constraints, and the general theorems of harmony theory, that the system, when given a well-posed problem, and infinite relaxation time, will always give the correct answer. So under that idealization, the competence of the system is described by hard constraints: Ohm's Law, Kirchhoff's Law. It's as though it had those laws written down inside it. However, as in all subsymbolic systems, the performance of the system is achieved by satisfying a large set of soft constraints. What this means is that if we go outside of the ideal conditions under which hard constraints seem to be obeyed, the illusion that the system has hard constraints inside is quickly dispelled. The system can violate Ohm's Law if it has to, but if it doesn't have to violate the law, it won't. Thus, outside the idealized domain of well-posed problems and infinite processing time, the system gives sensible performance. It isn't brittle the way that symbolic inference systems are. If the system is given an ill-posed problem, it satisfies as many constraints as possible. If it is given inconsistent information, it doesn't fall flat, and deduce anything. If it is given insufficient information, it doesn't just sit there and deduce nothing. Given finite processing time, the performance degrades gracefully as well. So the competence/performance distinction can be addressed in a sensible way.

Returning to the theme of physics analogies instead of computer analogies, this "quantum" system appears to be "Newtonian" under the proper conditions. A system that has, at the micro-level, soft constraints, satisfied in parallel, appears at the macro-level, under the right circumstances, to have hard constraints, satisfied serially. But it doesn't really, and if you go outside the "Newtonian" domain, you see that it's really been a "quantum" system all along.
The dynamics of activation patterns

In the subsymbolic paradigm, semantic interpretation occurs at the higher level of patterns of activity, not at the lower level of individual nodes. Thus an important question about the higher level is: How do the semantically interpretable entities combine?

In the symbolic paradigm, the semantically interpretable entities are symbols, which combine by some form of concatenation. In the subsymbolic paradigm, the semantically interpretable entities are activation patterns, and these combine by superposition: activation patterns superimpose upon each other, the way that wave-like structures always do in physical systems. This difference is another manifestation of moving the formalization from the discrete to the continuous (indeed the linear) category.

Using the mathematics of the superposition operation, it is possible to describe connectionist systems at the higher, semantic level. If the connectionist system is purely linear (so that the activity of each unit is precisely a weighted sum of the activities of the units giving it input), it can easily be proved that the higher level description obeys formal laws of just the same sort as the lower level: the subsymbolic and symbolic levels are isomorphic. Linear connectionist systems are however of limited computational power, and most interesting connectionist systems are nonlinear. However, nearly all are quasi-linear, that is, each unit combines its inputs linearly even though the effects of this combination on the unit’s activity is nonlinear. Further, the problem-specific knowledge in such systems is in the combination weights, i.e. the linear part of the dynamical equations; and in learning systems it is generally only these linear weights that adapt. For these reasons, even though the higher level is not isomorphic to the lower level in nonlinear systems, there are senses in which the higher level approximately obeys formal laws similar to the lower level. (For the details, see Smolensky 1988b.)

The conclusion here is a rather different one from the preceding section, where we saw how there are senses in which higher level characterizations of certain subsymbolic systems approximate productions, serial processing, and logical inference. What we see now is that there are also senses in which the laws approximately describing cognition at the semantic level are activation-passing laws like those at the subsymbolic level, but operation between “units” with individual semantics. These semantic level descriptions of mental processing (which include local connectionist models) have been of considerable value in cognitive psychology (e.g., McClelland & Rumelhart, 1981; Rumelhart & McClelland, 1982; Dell, 1985). We can now see how these “spreading activation” accounts of mental processing relate to subsymbolic accounts.

Schemata

One of the most important symbolic concepts is that of the schema (Rumelhart, 1980). This concept goes back at least to Kant (1787/1963) as a description of mental concepts and mental categories. Schemata appear in many AI systems in the forms of frames, scripts, or similar structures: They are prepackaged bundles of information that support inference in stereotyped situations.

I will very briefly summarize work on schemata in connectionist systems reported in Rumelhart, Smolensky, McClelland & Hinton (1988; see also Feldman, 1981, and Smolensky, 1988a, 1988c). This work addressed the case of schemata for rooms. Subjects were asked to describe some imagined rooms using a set of 40 features like has-ceiling, has-window, contains-toilet, and so on. Statistics were computed on this data and these were used to construct a network containing one node for each feature, and containing connections computed from the statistical data by using a particular form of the Statistical Connection.

This resulting network can do inference of the kind that can be performed by symbolic systems with
schemata for various types of rooms. The network is told that some room contains a ceiling and an oven; the question is, what else is likely to be in the room? The system settles down into a final state, and the inferences contained in that final state are that the room contains a coffee cup but no fireplace, a coffee pot but no computer.

The inference process in this system is simply one of greedily maximizing harmony. To describe the inference of this system on a higher level, we can examine the global states of the system in terms of their harmony values. How internally consistent are the various states in the space? It's a 40-dimensional state space, but various 2-dimensional subspaces can be selected and the harmony values there can be graphically displayed. The harmony landscape has various peaks; looking at the features of the state corresponding to one of the peaks, we find that it corresponds to a prototypical bathroom; others correspond to a prototypical office, and so on for all the kinds of rooms subjects were asked to describe. There are no units in this system for bathrooms or offices: there are just lower-level descriptors. The prototypical bathroom is a pattern of activation, and the system's recognition of its prototypicality is reflected in the harmony peak for that pattern. It is a consistent, "harmonious" combination of features: better than neighboring points like one representing a bathroom without a bathtub, which has distinctly lower harmony.

During inference, this system climbs directly uphill on the harmony landscape. When the system state is in the vicinity of the harmony peak representing the prototypical bathroom, the inferences it makes are governed by the shape of the harmony landscape there. This shape is like a "schema" that governs inferences about bathrooms. (In fact, harmony theory was created to give a connectionist formalization of the notion of schema; see Smolensky, 1988a, 1988c.) Looking closely at the harmony landscape we can see that the terrain around the "bathroom" peak has many of the properties of a bathroom schema: variables and constants, default values, schemata imbedded inside of schemata, and even cross-variable dependencies. The system behaves as though it had schemata for bathrooms, offices, etc., even though they are not "really there" at the fundamental level: these schemata are strictly properties of a higher-level description. They are informal, approximate descriptions—one might even say they are merely metaphorical descriptions—of an inference process too subtle to admit such high-level descriptions with great precision. Even though these schemata may not be the sort of object on which to base a formal model, nonetheless they are useful descriptions—which may in the end be all that can really be said about schemata anyway.

Conclusion

The view of symbolic structures that emerges from viewing them as entities of high-level descriptions of dynamical systems is quite different from the view coming from the symbolic paradigm. "Rules" are not symbolic formulae, but the cooperative result of many smaller soft constraints. Macro-inference is not a process of firing a symbolic production but rather of qualitative state change in a dynamical system, such as a phase transition. Schemata are not large symbolic data structures but rather the potentially quite intricate shapes of harmony maxima. Similarly, categories turn out to be attractors in dynamical systems: states that "suck in" to a common place many nearby states, like peaks of harmony functions. Categorization is not the execution of a symbolic algorithm but the continuous evolution of the dynamical system, the evolution that drives states into the attractors, to maximal harmony. Learning is not the construction and editing of formulae, but the gradual adjustment of connection strengths with experience, with the effect of slowly shifting harmony landscapes, adapting old and creating new concepts, categories, schemata.

The heterogeneous assortment of high-level mental structures that have been embraced in this paper suggests that the symbolic level lacks formal unity. This is just what one expects of approximate higher-level descriptions, which, capturing different aspects of global properties, can have quite different characters. The unity underlying cognition is to be found not at the symbolic level, but rather at the
subsymbolic level, where a few principles in a single formal framework lead to a rich variety of global behaviors.

If connectionist models are interpreted within what I have defined as the subsymbolic paradigm, we can start to see how mental structures can emerge from neural structures. By seeing mental entities as higher level structures implemented in connectionist systems, we get a new, more complex and subtle view of what these mental structures really are. Perhaps subsymbolic systems can achieve a truly rich mental life.
References

Figure 1
Neural and mental structures in the symbolic paradigm
Figure 2
Neural and mental structures in the subsymbolic paradigm