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Abstract—An approach to stereo based local path planning in 
unstructured environments is presented. The approach differs 
from previous stereo based and image based planning systems 
(i.e. top-down occupancy grid planners, autonomous highway 
driving algorithms, and view-sequenced route representation), 
in that it uses specialized cost functions to find paths through an 
occupancy grid representation of world directly in the image 
plane, and forgoes the standard projection of cost information 
from the image plane down onto a top-down 2D Cartesian cost 
map.  We discuss three cost metrics for path selection in image 
space. We present a basic image based planning system, discuss 
its susceptibility to rotational and translational oscillation, and 
present and implement two extensions to the basic system that 
overcome these limitations—a cylindrical based image system 
and a hierarchical planning system. All three systems are 
implemented in an autonomous robot and are tested against a 
standard top-down 2D Cartesian planning system on three 
outdoor courses of varying difficulty. We find that the basic 
image based planning system fails under certain conditions;  
however, the cylindrical based system is well suited to the task 
of local path planning and for use as a high resolution local 
planning component of a hierarchical planning system. 

I. INTRODUCTION 

UTONOMUS robot navigation aims to identify a series of 

movements that, when executed in a sequence, will 

translate the robot from a starting position to a goal position. 

The search for this path is constrained by the robot’s sensor 

information and its own kinematic limitations. Ideally, the 

path is chosen to minimize (or maximize) some criteria, such 

as energy expenditure. In highly structured environments, 

such as those encountered by a manipulator arm on a factory 

floor, an objective function can be found that describes the 

manifold on which the arm is constrained in actuator space. 

In this case, however, uncertainty about the world is limited. 

On the other hand, in unstructured environments—

particularly outdoor environments beyond the city streets and 

paths of human infrastructure—we do not have such high 

confidence a priori knowledge about the relationship 

between the appearance of a scene and its traversability.  

Visual perception involves decoding the 2D projection of 

3D Cartesian space as it is captured by a robot’s imaging 
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sensors [1], [2]. This 2D projection is referred to as image 

space. Many approaches to path planning in unstructured 

environments derive an obstacle vs. safe representation of a 

scene—referred to as an occupancy grid—which is then 

projected down from image space onto the ground plane and 

inserted into an X-Y Cartesian map [3], [4]. Path planning 

systems have also used 3D occupancy grids to represent the 

world [5]. The A* algorithm [6] (or some variant [7]–[9]) is 

then used to find a path through the occupancy grid between 

the robot’s position and the goal [3]. Work has also been 

done to model the path planning problem with various types 

of potential fields, as in [10] and [11], and as a hybrid of A* 

and potential fields, as in [12]. 

There are a number of advantages to planning a mobile 

robot’s movement in a Cartesian map. However, this 

representation is not ideal for near-field planning—in order 

to maintain a map with a computationally feasible search 

space, the world must be resampled at a non-native 

resolution. This produces a projected image with low 

fidelity. Although there are some planners that maintain a 

higher resolution map for local path planning, e.g. [13], we 

propose that transformation onto the Cartesian plane is 

superfluous. 

To the best of our knowledge, planning and actuation in 

the image space has not been studied on a robot platform in 

unstructured environments. There are, however, examples of 

image based visual servoing in semi-structured and 

structured environments.  

Autonomous highway driving algorithms [14] such as 

Navlab [15] and its many implementations [16]–[18] operate 

in a semi-structured environment. Information from image 

features such as lane markings, other automobiles, road 

color/texture, etc, allow these algorithms to follow the road 

while avoiding obstacles.  

A robotic arm on a factory floor can be controlled via a 

constraint optimization function that maps the current field 

of view (FOV) to a reference or target frame through a series 

of movements [19], [20]. This idea has been extended to 

mobile robots in semi-structured environments in various 

forms [21]–[23]. For instance, View-Sequenced Route 

Representation (VSRR) is a mapless navigation technique 

that calculates the displacement between a target image and 

the current FOV [24], [25]. This displacement is then 

translated into steering commands.  

Both Navlab and VSRR type models develop a control 

strategy as a function of the perceived scene. However, both 
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Navlab and VSRR make assumptions about the information 

that is available to them from the scene; for instance, the 

existence of lane markings or a clear view of a predefined 

goal state, respectively. These may be reasonable constraints 

in structured or semi-structured environments; however, 

planning through ambiguous terrain renders them infeasible.  

Our task involves not only identifying traversable terrain 

from non-traversable terrain, but also finding and staying on 

the optimal path to the goal. We present an approach to path 

planning that allows local path search to take place directly 

in the image plane, thereby preserving the flexibility of the 

occupancy grid paradigm and avoiding the corresponding 

transformation distortion induced by the projection into a 

Cartesian coordinate system. In our scheme, a real-world 

GPS coordinate is projected into image space as a goal. 

Next, a variant of A* is used in image space to identify the 

optimal path to the goal. Finally, robot servoing in the real 

world is accomplished via the image space path that is found 

by A*. Special attention must be placed on the run-time 

complexity of the system to allow the robot a suitable 

reaction time.  

We call our basic image based planning system the Image 

planner, and introduce it in Section III-A. We then discuss 

its susceptibility to rotational and translational oscillations. 

That is, because the Image planner lacks memory of the 

world, planning can quickly degenerate into an infinite loop 

of the form: move away from the goal to avoid an obstacle, 

and then move back toward the goal (and thus the obstacle), 

after forgetting that the obstacle exists. These limitations are 

addressed with a series of extensions to the Image planner. 

The Cylindrical planner, introduced in Section III-B, is 

created by augmenting the rotational memory of the Image 

planner to include the world beyond its FOV, and a hybrid 

hierarchical planner, introduced in Section III-C, combines 

the strengths of a local image planner with those of a global 

Cartesian planner. In Section IV we describe our 

experiments, and in Section V we discuss our results. 

II. EXPERIMENTAL APPARATUS 

Our mobile robot platform is provided in conjunction with 

the DARPA Learning Applied to Ground Robotics (LAGR) 

program. It measures roughly 1m x 1.5m x 1.5m. Its sensors 

include: two forward facing Point Grey BumbleBee 2 stereo 

cameras, a Garmin GPS receiver, a magnetic compass, and 

wheel odometers. Translation and rotation are achieved via 

two independently driven front wheels. The wheels are 

located on either side of the vertical axis that passes through 

the midpoint of the sensor mast, thus rotation around the 

mast axis is achieved by driving the wheels in opposite 

directions at the same speed. 

III. PLANNING SYSTEMS 

A. Image Planner 

Let R denote the 3D Cartesian real-world space. Our work 

focuses on navigation through R toward a goal via paths 

found in image space. The robot perceives R as a stereo 

disparity image S, provided by a pair of stereo CCD cameras. 

We build an occupancy grid O in image space based on S, 

and then find the path Poptimal in the set of paths P through O 

that minimizes a quantity W that is analogous to mechanical 

work (i.e. force multiplied by distance). See Fig. 1. Because 

any path found in O is a projection of some path existing in 

R, it is possible to navigate through R using P. This can be 

done directly, or via a projection of P from image space to R.  

S is organized in an h by w Cartesian grid based on the 

camera's physical pixel layout. We define the traversability 

of R with an occupancy grid O: 

 On,m = f Sn,m( )= Sn,m
flat − Sn,m

t ,  (1) 

where n = 1…h and m = 1…w. Note that n = 1 and m = 1 

correspond to the top row and left most column of O, 

respectively. Sn,m
t is the disparity of pixel (n, m) in the scene 

at time t and flat
mn,S  is the nominal disparity of a flat ground 

plane Rflat. In our experiments, the goal Rgoal is defined by a 

GPS coordinate in R. Rgoal is mapped into O as Ogoal, 

assuming that both Rgoal and the robot exist on Rflat. The 

robot’s starting location in O is defined Ostart=Oh,w/2. We 

interpret the traversability values stored in O as forces F that 

impede robot progress, and we search for paths through O 

that minimize the amount of work W that must be exerted to 

reach Ogoal from Ostart.  

 WP = F P( )dP
Ostart

Ogoal∫  (2) 

where dP is the differential of position along P. Ogoal and 
Ostart are nodes in O that anchor the endpoints of P. P 
contains ||P|| connected subsections i in O, each starting at 
the center of a grid location Oj,k and terminating at On,m, one 
of the 8-connected neighbors of Oj,k. Therefore, the work 
required to traverse P is found by the summation of work 
over its subsections. 

 ∑ ∑
∈∀ ∈∀

==
Pi Pi

iiiP DFWW , (3) 

where Wi is the work required to navigate path subsection i, 
Fi is the force that impedes robot progress along i, and Di is 
the length of i (i.e. the distance between Oj,k and On,m). In 
order to find the optimal path, Poptimal, we implement a 

 
Fig. 1.  A path through O from the robot position to a goal in the far-
field, where light to dark corresponds to low to high cost (left). The path 
projected into a black and white image of the scene (right). 

 



 
 

 

version of the A* algorithm that uses W as its cost function. 
The path returned by A* will have W=Wmin, where Wmin is the 
minimum amount of work required to reach the goal. 

 Wmin = FiDi

∀i∈P optimal

∑  (4) 

In our implementation of A*, Fi=1+On,m to impose a 
positive minimum force in the case of flat-ground traversal.  

Any metric used to calculate Poptimal
 must account for the 

fact that paths found in O will determine navigation through 

R. Thus, care must be taken when choosing a distance metric 

Di. We investigate three possible distance functions for Di. 

The most straightforward method for calculating Di is to 

project the endpoints of i into R, with the help of S, and then 

use the standard Euclidian distance metric in 3-space. We 

call this distance Di
R . 

 Although this metric seems very appropriate, a problem 

arises when the goal is projected into a high cost region (i.e. 

an obstacle). The optimal path is often to traverse directly 

through the obstacle. This is due to the fact that, as far as the 

planner is concerned, the goal exists within the high cost 

region in O and not behind the obstacle on Rflat. For instance, 

if a tree is located between the robot and a goal, then it will 

appear in O as if the goal has been projected onto the front 

of the tree. Thus, the shortest path to the goal appears to 

require climbing the tree. 

The second function we evaluate, 
flatR

iD , estimates the 

Cartesian distance between 1 2, the endpoints of i 

projected from the camera through the image plane and onto 

Rflat. Refer to Fig. 2. Projecting i back to Rflat avoids the tree 

climbing problem because the distance required to go up the 

front of the tree is the same as the distance required to reach 

the goal by traversing along Rflat. Note that the tree will be 

avoided due to high Fi values.  

Let 1 and 2 be the vectors that travel from the base of the 

robot flat
focusR  to 1 2, respectively. 

flatR
iD  is calculated as 

follows: 

 ( ) 





−

2
sin4r 2

21
2

21

ψ
r+dd=D

flatR
i , (5) 

where d1 and d2 are the magnitudes of 1 and 2, respectively, 

and ψ is the angle between them. We develop equations for d 

and ψ in the Appendix and show that, given certain 

assumptions, a function exists for d that is dependent on grid 

row (n or j) and four intrinsic values associated with the 

robotic system in general. Likewise, a function exists for ψ 

that is dependent on |m-k| and two intrinsic values. The 

calculation of 
flatR

iD  can be performed offline, once for each 

combination of n, j, and |m-k|, and stored for later use.  

The final distance metric we investigate, O
iD , is the L2 

norm between grid locations in O, assuming that horizontal 

and vertical neighbors are spaced unit length apart.  

 Di
O = n − j( )2

m − k( )2 =
1 j = n ±1

1 k = m ±1

2 j = n ±1,k = m ±1

 
 
 

  
 (6) 

The calculation of O
iD  forgoes the projection between image 

space and Cartesian space, allowing O
iD  to be calculated 

relatively easily compared to 
flatR

iD . 

 The A* search algorithm finds a path to the goal that 

minimizes the work expenditure as a function of both the 

distance traveled and the difficulty of travel. However, this 

model accounts for neither the physical extension of the 

robot, nor its ability to rotate in place around its central axis. 

As suggested by [4], [13], and [26], we increase the width of 

obstacles in the occupancy grid as a function of robot width 

, allowing the robot to be treated as a particle during path 

search. Note that the apparent width of an obstacle in O is 

related to the distance between the robot and the obstacle in 

R. We approximate this relationship by assuming that 

obstacles exist on Rflat. With this assumption, the distance to 

an obstacle is dn,m, and obstacle dilation becomes a function 

of n that can be calculated offline. 

 ( )kmnmn OO += ,, max  (7) 

where k is an integer such that 1 m + k) w and  
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k
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1

,

1

2
sin

w

2
sin

w ελ
θ

ελ
θ

 (8) 

where  is the angle of the camera’s FOV parallel to Rflat, 

and  is the minimum clearance allowed between the robot 

and an obstacle. This assumes that each row in O represents 

an approximately equal angle of . The assumption that 

obstacles exist on Rflat is only valid for portions of obstacles 

that are in direct contact with the ground plane (i.e. their 

bases). In many environments navigation around the base of 

an obstacle is sufficient to avoid collision; however, this is 

not generally the case. The factor  can be increased to 

address this discrepancy as the operational environment 

requires.  

O is preprocessed to enable rotation around the central 

axis of the robot by setting Oh,m=0. Pixels above the horizon 

are ignored in O because sky traversal should be impossible. 

The horizon is assumed to be generated from the ground 

 

Fig. 2.  Calculation of 
flatR

iD . Rfocus is the focal point of the robot’s 

1 2 are the endpoints of i projected onto Rflat.  



 
 

 

plane Rflat at infinity. 

Servoing is accomplished by steering toward a target 

location Ptarget= PnTarget,mTtarget located some predetermined 

distance along P in O. This is either achieved by mapping 

Ptarget into Rflat from O and then steering toward the resulting 

location, or by implementing the servoing function directly 

in O. We use the latter method in our experiments to 

calculate steering angle and speed where 

 
( )

( ) ( )22
2/h2/w

h

−−−

−=
nTargetmTarget

/2nTargetmaxSpeed
speed , (9) 

 
( )

w

2w/mTarget
Angle steering

−= θ
. (10) 

We assume that the robot has reached the goal when 

Ptarget=Oh,w/2. If Ptarget=Oh,m w/2, then there is only a rotational 

component to movement. If Ptarget=On h,w/2, then there is only 

a translational component to movement. Otherwise, 

movement consists of a combination of translation and 

rotation. 

B. Cylindrical Planner 

The Cylindrical planner is created by adding additional 

elements to O that allow for storage of information that has 

passed outside of the robot's field of view in R. The model 

uses a cylindrical representation of O that can be thought of 

as a radially panoramic mosaic of what the robot has 

experienced. Radially panoramic mosaics have been used in 

the past for landmark detection and pose estimation [25], 

[27], [28]. For implementation purposes, O is represented as 

a simple 2D grid C, with the added requirement that Cn,1 is 

considered a neighbor of Cj,p, and Cj,1 is considered a 

neighbor of Cn,p, for all rows n and j in C, where j = 

{n+1,n,n-1} and p is the number of columns in C. 

Information is added to C by:  

 ( )
t

mn,
flat
mn,f+mn SS=C −ϕ, . (11) 

That is, information destined for storage in C is offset 

horizontally by a function of , robot yaw relative to North. 

f( ) is calculated as: 

 ( ) ( )( )( ) 12
2

p +



 −=f modπϕ

π
ϕ , (12) 

In other words, stereo disparity data is placed into C as a 

function of the compass direction that the robot is facing 

when the image is captured. This implies that the cardinal 

directions South, West, North, East, and South, will be 

mapped from R into the following columns of C: 0,  p/4 , 

 p/2 ,  3p/4 , and p, respectively.  

f( ) is calculated ignoring the distortion that is caused by 

approximating multiple planes as a cylinder, and ignoring the 

fact that the image plane is not parallel to the cylinder’s 

longitudinal axis. If the FOV is such that these distortions 

cannot be ignored, then two possible solutions exist; either a 

projection can be used that reconstructs the image plane 

correctly on the cylinder, or the FOV can be restricted in 

width such that the distortion is no longer a problem. 

The A* search algorithm is modified for use on C by 

allowing path sections to exist across the South-South 

border, and by setting the robot’s location in C according to 

its pose: Crobot=Ch,f(ϕ). The goal is projected into C based on 

the distance between the Rfocus
flat  and the goal on Rflat and the 

compass heading of the goal relative to the robot. (21), 

derived in the Appendix, defines this projection. Fig. 3 

depicts a typical search through C. 

A function exists that describes how elements in C should 

be updated for any combination of translation and rotation 

that the robot executes in Rflat. However, we find that it is 

computationally prohibitive to calculate within the robot’s 

reaction time. 

An alternative memory-updating scheme is implemented 

by having C gradually forget information outside of the 

robot’s FOV as a function of the distance that the robot has 

traveled, 
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forget
tt

d

NorthEastd
CC

22

1 ,0max , (13) 

where dforget is the distance required to erase all rotational 

memory in a single update [26]. In this scheme, no 

translational updating takes place, and the values in C 

outside of the FOV will decay toward zero. We manually 

tune dforget to mimic the information loss observed in the 

translation scheme.  

C. Hierarchical Planner 

A hierarchical planner attempts to solve the path planning 

problem by dividing it up into the parallel problems of global 

and local planning. The local planner is charged with 

obstacle avoidance and navigation toward sub-goals. 

Meanwhile, the global planner concerns itself with a coarse 

representation of the world and returns appropriate sub-goals 

to the local planner. Hierarchical planners have been used in 

a variety of robot path planning schemes [29], [30]. For 

instance, [31] models the global world as a graph of 

connected nodes, in which, each node acts as the local map. 

[13] also models the global world as a graph of connected 

nodes, but views the local world in top-down Cartesian 

space. In [32], both the local and global planners are 

versions of the top-down occupancy grid model. In standard 

hierarchical Cartesian planners, the local cost-map is high 

resolution, fixed in size, and remains centered on the robot; 

the global cost-map maintains a lower resolution, expands 

 
Fig. 3.  A path from the robot position to a goal located at the base of a tree 
through the Cylindrical planner’s occupancy grid. Light to dark 
corresponds to low to high cost. 



 
 

 

 
        Fig. 4.  Course 1: obstacles of small radii. 
 

 
       Fig. 5.  Course 2: obstacle of 10 meter girth.  
 

 
       Fig. 6.  Course 3: two adjoining long thin obstacles. 
 

 

       Fig. 7.  
flatR

iD  performance on Course 3.  

with exploration, and remains fixed to some global frame of 

reference. 

We implement a hierarchical planner that uses a top-down 

occupancy grid for the global planning component and the 

Cylinder planner for the local planning component. This 

configuration combines the local path planning strengths of 

image based path planning—high resolution obstacle 

avoidance and servoing—with the global strengths of the 

birds-eye view occupancy grid—translational memory. Data 

is stored in the global planner’s occupancy grid, B, as a 

projection of t
mn,

flat
mn, SS −  onto Rflat. In our experiments, the 

resolution of B is 0.5 meters. Path planning through B is 

accomplished via a version of the work minimization A* 

search algorithm (4), where Di is the Euclidean distance 

between grid locations in B. Sub-goals are chosen to be 5 

meters to 10 meters away from the robot. 

IV. EXPERIMENTS  

We compare implementations of our three planning systems 

that use the O
iD  distance metric (described in section III-A) 

to a baseline top-down planner on three courses in 
unstructured outdoor environments. Courses 1, 2, and 3 are 
depicted in Fig. 4 through Fig. 6, respectively. The actual 
paths that the robot took are overlaid on a top-down 
occupancy grid map of the environment. All maps were 
generated independent of the test runs by teleoperation. The 
granularity of each occupancy grid is 500 centimeters. 
Course 1 is a simple course that consists of randomly placed 
obstacles with radii of 100 centimeters to 1 meter. Courses 2 
and 3 are similar to Course 1, except that Course 2 adds an 
obstacle of 10 meter girth, and Course 3 contains two 
adjoining obstacles each 1 meter wide and approximately 30 
meters and 10 meters long, respectively.  
 A version of the hierarchical planner implemented to use 

the 
flatR

iD  distance metric was also tested on course 3. The 

rout taken by this system is depicted in Fig. 7. 

V. DISCUSSION AND RESULTS 

Path planning for robot navigation is a real-time system in 
which the robot must be able to observe the world and react 
quickly enough to guarantee safety and reliability. At the 
robot’s minimum speed (approximately 0.125 m/s), robust 
navigation requires that the robot perceive the world and 
react at least every quarter meter, or 0.5 Hz. Ideally, we 
would like the robot to translate at a rate of 0.5 m/s or 
greater, which means the robot must plan at least 2 Hz. 
Improving frame-rate beyond this is not unreasonable given 
state of the art CPUs. Nonetheless, care is taken to limit the 
time complexity of our algorithms, particularly the distance 
calculations.  

We found that the 
flatR

iD  distance metric causes the path 

to be extremely sensitive to noise. When noise occurs in an 
otherwise traversable area, it creates a pseudo-obstacle that 
the planning system attempts to avoid like any other high 



 
 

 

 

  
Fig. 9.  Translational oscillation induced in the Cylindrical planner by 
a long thin wall. The initial path around the wall (top), and the path at 
a later time (bottom). 

 

Fig. 8. Distortion ratio (
flatR

iD  for vertical neighbors divided by 
flatR

iD  

for the bottom two vertical neighbors. Note that this is proportional to 

O
i

R
i DD

flat

.) as a function of occupancy grid row (top). Close up of 

distortion ratio (bottom).  

cost region. 
flatR

iD  mandates that the cost associated with 

traveling between neighboring grid locations decreases as a 
function of occupancy grid row (Fig. 8). Thus, the least 
expensive path around an obstacle will take action to avoid 
the obstacle in the near field—often by an immediate 
rotation.  This would not be a problem in the absence of 
noise. However, because pseudo-obstacles pop in and out of 
existence, erratic behavior is induced by the planning 
system’s continuous attempts to avoid new pseudo-obstacles. 
Fig. 6 and Fig. 7 show, respectively, the performance of the 

hierarchical planner using the O
iD  and 

flatR
iD  metrics on 

Course 3. The route taken by the hierarchical planning 
system in Fig. 6 is much smoother than the one in Fig. 7.  

O
iD  tends to distort Rflat distances, especially in the far 

field (Fig. 8). However, O
iD  works well in practice. By 

defining the distance between neighbors to be invariant of 
grid location, it avoids the near-field noise sensitivity 

observed with 
flatR

iD . This is because paths are penalized 

equally for near and far field detours, so the path is free to 
follow the geodesic around an obstacle or pseudo-obstacle 
without making an immediate correction. Also, because the 
range of our stereo sensors is effectively 12 meters, severe 
far-field distance distortion is somewhat irrelevant. Note that 
in Fig. 8 the distortion ratio is less than 2 for nearly half of 
the occupancy grid.  

We found that the basic Image planner is able to navigate 

through simple courses, such as Course 1; however, it is not 

a robust planning system. For instance, when Rgoal is not in 

the robot's FOV it cannot be mapped into O. This will 

happen if the robot starts in such an orientation, is close to 

the goal, or has rotated away from Rgoal in order to avoid an 

obstacle. Consequently, the Image planner fails unless some 

predefined course of action is hard-coded into the system. 

The first case is solved by requiring the robot to rotate in the 

direction of the goal upon start-up. The second case can be 

ignored because it will only happen once the robot has 

completed its task. The final case is non-trivial and plans of 

action must involve movement containing a translational 

component and a rotational component. Without both 

components, the robot risks never finding a path to the goal. 

Purely forward movement will carry the robot away from the 

goal indefinitely, whereas movement in the reverse direction 

risks obstacle collision. Pure rotation may induce oscillatory 

behavior, as the robot alternately rotates away from the 

obstacle and then back toward the goal after forgetting that 

the obstacle exists. We observed the Image planner 

displaying this behavior on Courses 2 and 3, Fig. 5 and Fig. 

6, respectively—note that each test was manually aborted 

after the robot oscillated for two minutes. A naive procedure 

that translates some distance before allowing rotation in the 

direction of the goal may perturb the system enough to 

overcome this condition. However, this does not address the 

deeper problem at the heart of rotational-oscillatory 

behavior—namely, the lack of rotational memory. The 

rotational memory of the Cylindrical planner allows it to 

remember the obstacle's existence, even when the obstacle is 

outside the robot’s field of view. Note that in Fig. 5 the 

Cylindrical planner navigates around the obstacle to the goal.  

The Cylindrical planner was able to find the goal in all 

three tests. However, on Course 3 (Fig. 6) it was the only 

planning system that opted to travel around the lengthier of 

the two obstacles. We speculate that this behavior would 

have degenerated into translational oscillation if the obstacle 

had been longer. Consider the case of Fig. 9, top. A goal is 

placed directly North of the center of a long thin wall that 

runs East to West (e.g. the length of the wall is 1km and the 

width of the wall is 1m). The robot starts South of the center 

of the wall. At first, given the information in C, it will appear 

possible to navigate around the wall in either direction. 

However, as the robot moves toward one end of the wall, the 

goal will appear to move toward the opposite end of the wall 

from the robot’s point of view (Fig. 9 bottom). Eventually, it 

will appear cheaper to reverse direction and attempt to reach 

the goal by going around the opposite end of the wall. This 

will repeat each time the robot travels a certain distance 

away from the goal in either direction.  

The only way to avoid this problem is to introduce some 

form of global translational memory, such as a global 3D or 

2D top-down Cartesian planner. Local versions of these 

planners do not suffice—they are, by definition, only 



 
 

 

concerned with portions of the world near the robot and will 

always be vulnerable to translational oscillation induced by 

obstacles larger than their translational memory. The 

hierarchical planner, on the other hand, if confronted with a 

large obstacle, will eventually find a way around it—if one 

exists. However, solutions can be suboptimal. For example, 

the robot may backtrack many times as it explores for a way 

around the wall [33]. This is observed in Fig. 6 for both the 

baseline planner and the hierarchical planner. This 

suboptimal behavior can be described as translational quasi-

oscillatory, and is related to (but not identical to) the 

translational oscillatory problem previously addressed. Any 

planning system that must make decisions based on limited 

information is susceptible to quasi-oscillatory behavior 

because any currently optimal solution may change as new 

information is discovered. Work has been done on this 

complex global planning phenomenon by [34].  

If the system has sufficient prior knowledge of the domain 
(e.g. a map) then the planner is able to make piece-wise 
optimal decisions that form a globally optimal decision. 
Highly structured environments, for instance those 
encountered by systems like Navlab, may contain sufficient 
information to use a local planner in a global setting. 
Similarly, the Cylindrical planner is equipped to navigate 
through environments similar to Courses 1 and 2 without the 
help of the hierarchical planner.  

VI. CONCLUSION AND FUTURE WORK 

We have demonstrated the efficacy of using image based 
path planning. However, any robust path-planning algorithm 
must address two environmental scenarios: those that lead to 
rotational oscillation and those that lead to translational 
oscillation. Our Image planner is susceptible to both, a 
limitation not shared by the traditional top-down Cartesian 
planners. We address these situations with a series of 
extensions to the Image planner. By augmenting the memory 
of the Image planner to include the world beyond the FOV, 
the Cylindrical planner is capable of overcoming rotational 
oscillations and reducing translational oscillations. We find 
that, in general, the translational oscillation problem can only 
be solved by a planner that maintains global translational 
memory. Although planning in image space does not 
displace the Cartesian planner, it does relegate it to the more 
aptly suited function of global planning. Local planning in 

image space is robust, and provides a simple framework for 
maintaining a high resolution world-view.  A hierarchical 
planner combines the strengths of both systems and is able to 
plan a more natural path, which can then be executed more 
fluidly.  

The high fidelity occupancy grid used in image space 
planning provides a natural framework to include more 
sophisticated models about the traversability of terrain. Color 
and texture models could be combined with stereo 
information to allow for more robust path planning. One 
unaddressed limitation of the Cylindrical planning system is 
its inability to plan behind obstacles; this is one of our 
current research focuses. The end goal of our efforts is a 
principled interaction between Cylindrical and Cartesian 
path planning. This paper proposed the first such successful 
framework, and sets the stage for future research efforts. 

VII. APPENDIX 

A. Derivation of dn,m 

 Assume that the robot is on Rflat at Rfocus
flat  and that its FOV 

is oriented such that the center pixel in the image is below 

the horizon (Fig. 10). Let Rfocus be the focus of the camera in 

R 0 be the first point on Rflat that is visible in the 

camera’s FOV. Let V 0 and is 

parallel to the image plane. y is the unit vector associated 

with the vertical length of a pixel in the image plane, and u is 

the projection of y through Rfocus onto V in R. qcenter(n) is a 

function that maps pixels’ centers from the center column of 

the image plane onto points on V contained in R. gcenter(n) is 

a function that maps pixels’ centers from the center column 

of the image plane onto points on Rflat. Note that  
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Let a be the vector between Rfocus and qcenter(h/2) and let b 

be the vector between Rfocus and qcenter(n).  is the angle 

between a and b 
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where h is the number of rows in the image plane and  

 ( ) ( )d
d+d

c
c cos

cos
0 −=a . (16) 

dc is the measured distance from 0 to gcenter(h/2), d0 is the 

measured distance from Rfocus
flat  to 0, and  is the angle 

between a and Rflat.  

 ( )( )0
1 /tan d+dd= cv

−  (17) 

where dv is the measured distance between Rfocus
flat  and Rfocus.  

We can now calculate dn,w/2, the distance between Rfocus
flat  

and gcenter(n). 

 ( ) ( )
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2/sin
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+
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−
−−u , (18) 

Fig. 10.  FOV and accompanying variables used to calculate d and . 



 
 

 

where  is the angle between V and Rflat,  

 = −2/ , (19) 

and the magnitude of u is calculated by: 

 ( )= c sin
h

2d
u . (20) 

The inverse function to (18) is given by  
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If the image distortion caused ignored, e.g. if 

( ) ( )2/sin2/tan θθ ≈ , then 

 2/w,, nmn dd ≈ . (22) 

B. Derivation of  

Let  be the angular distance in Rflat associated with the 

Rflat projection of the endpoints of i. If the endpoints of i 

exist in columns m1 and m2 in O, then given (22) 

 
| |

w
12 θmm

=
−

, (23) 

where w is the number of columns in O.  
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