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Abstract. Polyhedral analysis infers invariant linear equalities and in-
equalities of imperative programs. However, the exponential complex-
ity of polyhedral operations such as image computation and convex hull
limits the applicability of polyhedral analysis. Weakly relational domains
such as intervals and octagons address the scalability issue by considering
polyhedra whose constraints are drawn from a restricted, user-specified
class. On the other hand, these domains rely solely on candidate expres-
sions provided by the user. Therefore, they often fail to produce strong
invariants.
We propose a polynomial time approach to strongly relational analysis.
We provide efficient implementations of join and post condition opera-
tions, achieving a trade off between performance and accuracy. We have
implemented a strongly relational polyhedral analyzer for a subset of
the C language. Initial experimental results on benchmark examples are
encouraging.

1 Introduction

Polyhedral analysis seeks to discover invariant linear equality and inequality re-
lationships among the variables of an imperative program. The computed invari-
ants are used to establish safety properties such as freedom from buffer overflows.
The standard approach to polyhedral analysis is through a fixed point iteration
in the domain of convex polyhedra [9]. Complexity considerations, however, re-
strict its application to small systems. Libraries such as NewPolka [13] and
PPL [2] have made strides towards addressing some of these tractability issues,
but still the approach remains impractical for large systems.

At the heart of this intractability lies the need to repeatedly convert be-
tween constraint and generator representations of polyhedra. Efficient analysis
techniques work on restricted forms of polyhedra wherein such a conversion can
be avoided. Weakly relational domains such as octagons [17], intervals [7], oc-
tahedra [6] and the TCM domain [18], avoid these conversions by considering
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polyhedra whose constraints are fixed a priori. The abstract domain of Simon
et al. [19] considers polyhedra with at most two variables per constraint. Using
these syntactic restrictions, the analysis can be carried out efficiently. However,
the main drawback of such syntactic restrictions is the inability of the analysis
to infer invariants that require expressions of an arbitrary form. Thus, in many
cases, such domains may fail to prove the property of interest.

In this paper, we provide an efficient strongly relational polyhedral domain
by drawing on ideas from both weak and strong relational analysis. We present
alternatives to the join and post condition operations. In particular, we provide
a new join algorithm, called inversion join, that works in polynomial time in
the size of the input polyhedra, as opposed to the exponential space polyhedral
join. We make use of linear programming to implement an efficient join and post
condition operators, along with efficient inclusion checks and widening operators.

On the other hand, our domain operations are weaker than the conventional
polyhedral domain operations, potentially yielding weaker invariants. Using a
prototype implementation of our techniques, we have analyzed several sorting
and string handling routines for buffer overflows. Our initial results are promis-
ing; our analysis performs better than the standard approaches while computing
invariants that are sufficiently strong in practice.

Outline. Section 2 discusses the preliminary notions of polyhedra, transition
systems and invariants. Section 3 discusses algorithms for domain operations
needed for polyhedral analysis. Section 4 discusses the implementation and the
results obtained on benchmark examples.

2 Preliminaries

We recall some standard results on polyhedra, followed by a brief description of
system models and abstract interpretation. Throughout the paper, let R repre-
sent the set of reals and R+ = R∪ {±∞} represent the extended real numbers.

Definition 1 (Linear Assertions). A linear expression e is of the form a1x1+
· · · + anxn + b, wherein each ai ∈ R and b ∈ R+. The expression is said to be
homogeneous if b = 0. A linear constraint is of the form a1x1+· · ·+anxn+b ./0,
with ./ ∈ {≥, =}. A linear assertion is a finite conjunction of linear inequalities.

Note that the linear inequality e+∞ ≥ 0 represents the assertion true, whereas
the inequality e − ∞ ≥ 0 represents false . Since each equality e = 0 can be
represented as a conjunction of two inequalities, an assertion can be written in
matrix form as Ax+ b ≥ 0, where A is a m×n matrix, while x and b are n and
m-dimensional vectors, respectively. The set of points in Rn satisfying a linear
assertion is called a polyhedron.

The representation of a polyhedron by a linear assertion is known as its con-
straint representation. Alternatively, a polyhedron may be represented explicitly
by a finite set of vertices and rays, known as the generator representation. Each
representation may be exponentially larger than the other. For instance, the n



dimensional hypercube is represented by 2n constraints and 2n generators. Ef-
ficient libraries of conversion algorithms such as the new PolKa [12] and the
Parma Polyhedral Library (PPL) [2] have made significant improvements to the
size of the polyhedra for which the conversion is possible. Nevertheless, this con-
version still remains intractable for large polyhedra involving 100s of variables
and constraints.

A Template Constraint Matrix (TCM) T is a finite set of homogeneous linear
expressions over x. Given an assertion ϕ, its expressions induce a TCM T which
we shall denote as Ineqs (ϕ). If ϕ is represented as Ax+b ≥ 0 then Ineqs (ϕ) : Ax.

Linear Programming We briefly describe the theory of linear programming.
Details may be found in standard textbooks [5].

Definition 2 (Linear Programming). A canonical instance of the linear pro-
gramming (LP) problem is of the form

minimize e subject to ϕ ,

for assertion ϕ and a linear expression e, called the objective function.

The goal is to determine the solution of ϕ for which e is minimal. A LP
problem can have one of three results: (1) an optimal solution; (2) −∞, i.e, e is
unbounded from below in ϕ; (3) +∞, i.e, ϕ has no solutions.

It is well-known that an optimal solution, if it exists, is realized at a vertex
of the polyhedron. Therefore, the optimal solution can be found by evaluating
e at each of the vertices. Enumerating all the vertices is very inefficient because
the number of generators is worst-case exponential in the number of constraints.
The popular simplex algorithm (due to Danzig [10]) employs a sophisticated
hill climbing strategy that converges on an optimal vertex without necessarily
enumerating all vertices. In theory, the technique is worst-case exponential. The
simplex method is efficient over most problems. Interior point methods such as
Karmarkar’s algorithm and other techniques based on ellipsoidal approximations
are guaranteed to solve linear programs in polynomial time. Using an open-source
implementation of simplex such as glpk [15], massive LP instances involving
tens of thousands (104 and beyond) of variables and constraints can be solved
efficiently.

Programs and Invariants

We assume programs over real valued variables without any function calls. The
program is represented by a linear transition system also known as a control flow
graph.

Definition 3 (Linear Transition Systems). A linear transition system (LTS)
Π : 〈L, T , `0, Θ〉 over a set of variables V consists of

– L: a set of locations (cutpoints);



– T : a set of transitions (edges), where each transition τ : 〈`i, `j , ρτ 〉 consists
of a pre-location `i, a post-location `j, and a transition relation ρτ , repre-
sented as a linear assertion over V ∪ V ′, where V denotes the values of the
variables in the current state, and V ′ their values in the next state;

– `0 ∈ L: the initial location;
– Θ: a linear assertion over V specifying the initial condition.

A run of a LTS is a sequence 〈m0, s0〉 , 〈m1, s1〉 , . . ., with mi ∈ L and si a
valuation of V , also called a state, such that

– Initiation: m0 = `0, and s0 |= Θ

– Consecution: for all i ≥ 0 there exists a transition τ : 〈`j , `k, ρτ 〉 such that
mi = `j , mi+1 = `k, and 〈si, si+1〉 |= ρτ .

A state s is reachable at location ` if 〈`, s〉 appears in some run.
A given linear assertion ψ is a linear invariant of a linear transition system

(LTS) at a location ` iff it is satisfied by every state reachable at `. An assertion
map associates each location of a LTS to a linear assertion. An assertion map
η is invariant if η(`) is an invariant, for each ` ∈ L. In order to prove a given
assertion map invariant, we use the inductive assertions method due to Floyd
(see [16]).

Definition 4 (Inductive Assertion Maps). An assertion map η is inductive
iff it satisfies the following conditions:

Initiation: Θ |= η(`0),
Consecution: For each transition τ : 〈`i, `j , ρτ 〉, (η(`i) ∧ ρτ ) |= η(`j)

′. Note
that η(`j)

′ refers to η(`j)[V |V ′] with variables in V substituted by their cor-
responding primed variables in V ′.

It is well known that any inductive assertion map is invariant. However, the
converse need not be true. The standard technique for proving an assertion
invariant is to find an inductive assertion that strengthens it.

Linear Relations Analysis

Linear relation analysis seeks an inductive assertion map for the input program,
labeling each location with a linear assertion. Analysis techniques are based
on the theory of Abstract Interpretation [8] and specialized for linear relations
by Cousot and Halbwachs [9]. The technique starts with an initial assertion
map, and weakens it iteratively using the post, join and the widening operators.
When the iteration converges, the resulting map is guaranteed to be inductive,
and hence invariant. Termination is guaranteed by the design of the widening
operator.

The post condition operator takes an assertion ϕ and a transition τ , and
computes the set of states reachable by τ from a state satisfying ϕ. It can be
expressed as

post(ϕ, τ) : (∃V0)(ϕ(V0) ∧ ρτ (V0, V ))



Standard polyhedral operations can be used to compute post. However, more
efficient strategies for computing post exist when ρτ has a special structure.
Given assertions ϕ{1,2} such that ϕ1 |= ϕ2, the standard widening ϕ1∇ϕ2 is an
assertion ϕ that contains all the inequalities in ϕ1 that are satisfied by ϕ2. The
details along with key mathematical properties of widening are described in [9,
8], and enhanced versions appear in [12, 4, 1]. As mentioned earlier, the analysis
begins with an initial assertion map defined by η0(`0) = Θ, and η0(`) = false for
` 6= `0. At each step, the map ηi is updated to map ηi+1 as follows:

ηi+1(`) = ηi(`) 〈op〉



ηi(`)
⊔

τj≡〈`j ,`,ρ〉

(post(ηi(`j), τj))



 ,

where op is the join (t) operator for a propagation step, and the widening (∇)
operator for a widening step. The overall algorithm requires a predefined itera-
tion strategy. A typical strategy carries out a fixed number of initial propagation
steps, followed by widening steps until termination.

Linear Assertion Domains

Linear relation analysis is performed using a forward propagation wherein poly-
hedra are used to represent sets of states. Depending on the family of polyhedra
considered, such domains are classified as weakly relational or strongly relational.

Let T = {e1, . . . , em} be a TCM. The weakly relational domain induced by
T consists of assertions

∧

ei∈T ei + bi ≥ 0 for bi ∈ R+. TCMs and their induced
weakly relational domain are formalized in our earlier work [18]. Given a weakly
relational domain defined by a TCM T and a linear transition system Π , we
seek an inductive assertion map η such that η(`) belongs to the domain of T for
each location `. Many weakly relational domains have been studied: Intervals,
octagons and octahedra are classical examples.

Example 1 (Weakly Relational Analysis). Let X be the set of system variables.
The interval domain is defined by the TCM consisting of expressions TX =
{±xi | xi ∈ X}. Thus, any polyhedron belonging to the domain is an interval
expression of the form

∧

(xi + ai ≥ 0 ∧ −xi + bi ≥ 0) . The goal of interval
analysis is to discover the coefficients ai, bi ∈ R+ representing the bounds for
each variable xi at each location of the program [7].

The octagon domain of Miné subsumes the interval domain by considering
additional expressions of the form ±xi ± xj such that xi, xj ∈ X [17]. The
octahedron domain due to Clarisó and Cortadella considers expressions of the
form

∑

i aixi such that ai ∈ {−1, 0, 1} [6].

It is possible to carry out the analysis in any weakly relational domain effi-
ciently [18].

Theorem 1. Given a TCM T and a linear system Π, all the domain opera-
tions for the weakly relational analysis of Π in the domain induced by T can be
performed in time polynomial in |T | and |Π |.



integer x,y where (x = 1 ∧ x ≥ y)
`0 : while true do

if (x ≥ y) then
(x, y) := (x + 2, y + 1)

else
(x, y) := (x + 2, y + 3)

end if
end while

Fig. 1. An example program.

Weakly relational domains are appealing since the analysis in these domains
is scalable to large systems. On the other hand, the invariants they produce are
often imprecise. For instance, even if ei + ai ≥ 0 is invariant for some expression
ei in the TCM, its proof may require an inductive strengthening ej + aj ≥ 0,
where ej is not in the TCM.

A strongly relational analysis does not syntactically restrict the polyhedra
considered. The polyhedral domain is not restricted in its choice of invariant
expressions, and is potentially more precise than a weakly relational domain.
The main drawback, however, is the high complexity of the domain operations.
Each domain operation requires conversions from the constraint to the generator
representation and back. Popular implementations of strongly relational analysis
require worst case exponential space due to repeated representation conversions.

Example 2. Consider the system in Figure 1. Interval and octagon domains both
discover the invariant ∞ ≥ x ≥ 1 at location `0. A strongly relational analysis
such as polyhedral analysis discovers the invariant x ≥ 1 ∧ 3x−2y ≥ 1, as does
the technique that we present.

3 Domain Operations

The theory of Abstract Interpretation provides a framework for the design of
program analyses. A sound program analysis can be designed by constructing
an abstract domain with the following domain operations:

Join (union) Given two assertions ϕ1, ϕ2 in the domain, we seek an assertion
ϕ such that ϕ1 |= ϕ and ϕ2 |= ϕ. In many domains, it is possible to find the
strongest possible ϕ satisfying this condition. The operation of computing
such an assertion is called the strong join.

Post Condition Given an assertion ϕ, and a transition relation ρτ , we seek
an assertion ψ such that ϕ[V ] ∧ ρτ [V, V ′] |= ψ[V ′]. A strong post con-
dition operator computes the strongest possible assertion ψ satisfying this
condition.

Widening Widening ensures the termination of the fixed point iteration.

Additionally, inclusion tests between assertions are important for detecting
the termination of an iteration. Feasibility tests and redundancy elimination



are also frequently used to speed up the analysis. We present several different
join and post condition operations, each achieving a different trade off between
efficiency and precision.

Join

Given two linear assertions ϕ1 and ϕ2 over a vector x of system variables, we
seek a linear assertion ϕ, such that both ϕ1 |= ϕ and ϕ2 |= ϕ.

Strong Join. The strong join seeks the strongest assertion ϕ (denoted ϕ1 ts

ϕ2) subsuming both ϕ1 and ϕ2. In the domain of convex polyhedra, this is
known as the polyhedral convex hull and is obtained by computing the generator
representations of ϕ1 and ϕ2. The set of generators of ϕ is the union of those
of ϕ1 and ϕ2. This representation is then converted back into the constraint
representation. Due to the repeated representation conversions, the strong join
is worst-case exponential space in the size of the input assertions.

Example 3. Consider the assertions

ϕ1 : x− y ≤ 5 ∧ y + x ≤ 10 ∧ −10 ≤ x ≤ 5
ϕ2 : x− y ≤ 9 ∧ y + x ≤ 5 ∧ −9 ≤ x ≤ 6

Their strong join ϕ1 ts ϕ2, generated by the union of their vertices, is

ϕ : 6x+ y ≤ 35 ∧ y+ 3x+ 45 ≥ 0 ∧ x− y ≤ 9 ∧ x+ y ≤ 10 ∧ −10 ≤ x ≤ 6 .

Weak Join. The weak join operation is inspired by the join used in weakly
relational domains.

Definition 5 (Weak Join). The weak join of two polyhedra ϕ1, ϕ2 is computed
as follows:
1. Let TCM T = Ineqs (ϕ1) ∪ Ineqs (ϕ2) be the set of inequality expressions that
occur in either of ϕ{1,2}. Recall that each equality in ϕ1 or ϕ2 is represented by
two inequalities in T .
2. For each expression ei in T , we compute the values ai and bi using linear
programming, as follows:

ai = minimize ei subject to ϕ1

bi = minimize ei subject to ϕ2

It follows that ϕ1 |= (ei ≥ ai) and ϕ2 |= (ei ≥ bi).
3. Let ci = min(ai, bi). Therefore, both ϕ1, ϕ2 |= (ei ≥ min(ai, bi) ≡ ci).

The weak join ϕ1 tw ϕ2 is given by the assertion
∧

ei∈T ei ≥ ci.

The advantage of the weak join is its efficiency: it can be computed using LP
queries, where both the number of such queries and the size of each individual
query is polynomial in the input size. On the other hand, the weak join does not
discover any new relations. It is weaker than the strong join, as shown by the
argument above (and strictly so, as shown by the following Example).



Example 4. Consider the assertions ϕ1, ϕ2 from Example 3 above. The TCM T

and the ai, bi values are shown in the table below:

T :

# Relation ai(ϕ1) bi(ϕ2)
1 y − x ≥ −5 −9
2 −y − x ≥ −10 −5
3 x ≥ −10 −9
4 −x ≥ −5 −6

The weak join is given by

ϕw : (y − x ≥ −9 ∧ −y − x ≥ −10 ∧ x ≥ −10 ∧ −x ≥ −6) .

This result is strictly weaker than the strong join computed in Example 3.

Restricted Joins. The weak join shown above is more efficient than the strong
join. However, this efficiency comes at the cost of precision. We therefore seek
efficient alternatives to strong and weak join. The k-restricted join (denoted tk)
improves upon the weak join as follows:

1. Choose a subset of inequalities from ϕ1, ϕ2, each of cardinality at most k. Let
ψ1 and ψ2 be the assertions formed by the chosen inequalities. In general,
ψ1, ψ2 may contain different sets of inequalities, even different cardinalities.
Note that ϕi |= ψi for i = 1, 2.

2. Compute the strong join ψ1 ts ψ2 in isolation. Conjoin the results with the
weak join ϕ1 tw ϕ2.

3. Repeat step 1 for a different set of choices of ψ{1,2}, while conjoining each
such join to the weak join.

Since ϕi |= ψi, for i = 1, 2, it follows by the monotonicity of the strong join
operation that ϕ1 ts ϕ2 |= ψ1 ts ψ2. Thus ϕ1 ts ϕ2 |= ϕ1 tk ϕ2 for each k ≥ 0.

Let ϕ1, ϕ2 have at most m constraints. The k-restricted join requires vertex
enumeration for O((m

k )
2
) polyhedra with at most k constraints. As such, this

join is efficient only if k is a small constant. We shall now provide an efficient
O(m2) algorithm based on t2, to improve the weak join.

Inversion Join. The inversion join is based on the 2-restricted join. Let T be
the TCM and ai, bi be the values computed for the weak join as in Definition 5.
Consider pairs of expressions ei, ej ∈ T yielding the assertions

ψ1 : ei ≥ ai ∧ ej ≥ aj

ψ2 : ei ≥ bi ∧ ej ≥ bj

We use the structure of the assertions ψ1, ψ2 to perform their strong join ana-
lytically. The key notion is that of an inversion.

Definition 6 (Inversion). Expressions ei, ej ∈ T and corresponding coeffi-
cients ai, aj , bi, bj form an inversion iff the following conditions hold:



ei ≥ ai

e
j
≥

a
j

ei ≥ bi

e
j
≥

b j

(a) (b)

H

(c)

Fig. 2. (a) ai > bi, aj < bj , (b) Weak join is strictly weaker than strong join, (c)
ai > bi, aj > bj : Weak join is the same as strong join.

1. ai, aj , bi, bj ∈ R, i.e, none of them is ±∞.
2. ei 6= λej for λ ∈ R, i.e, ei, ej are linearly independent.
3. ai < bi and bj < aj (or vice-versa).

Example 5. Consider two “wedges” ψ1 : ei ≥ ai ∧ ej ≥ aj and ψ2 : ei ≥
bi ∧ ej ≥ bj . Depending on the values of ai, aj , bi, bj , two cases arise as depicted
in Figures 2(a,b,c). Figures 2(a,b) form an inversion. When this happens, the
weak join (a) is strictly weaker than the strong join (b). Figure 2(c) does not
form an inversion. The weak and strong joins coincide in this case.

Therefore, a strong join of polyhedra that form an inversion gives rise to a half
space that is not discovered by the weak join. We now derive this “missing
half-space” H analytically.

The half space subsumes both ψ1 and ψ2. A half-space that is a consequence
of ψ1 : ei ≥ ai ∧ ej ≥ aj is of the form H : ei + λijej ≥ ai + λijaj , for
some λij ≥ 0. Similarly for ψ2, we obtain H : ei + λijej ≥ bi + λijbj . Equating
coefficients, yields the equation ai +λijaj = bi +λijbj . The required value of λij

is

λij =
ai − bi

bj − aj

.

Note that requiring λij > 0 yields ai < bi and bj < aj . Therefore, ψ1, ψ2 contain
a non trivial common half-space iff they form an inversion.

Definition 7 (Inversion Join). Given ϕ1, ϕ2 the inversion join ϕ1 tinv ϕ2 is
computed as follows:

1. Compute the TCM T = Ineqs (ϕ1) ∪ Ineqs (ϕ2).
2. For each ei ∈ T compute ai, bi as defined in Definition 5 using linear pro-

gramming. At this point ϕ1 |= ei ≥ ai and ϕ2 |= ei ≥ bi. Let ϕw = ϕ1 tw ϕ2

be the weak join.
3. For each pair ei, ej, consider the expression ei +λijej ≥ ai +λijaj , with λij

as defined above.
4. The inversion join is the conjunction of ϕw and all the inversion expressions

generated in Step 3. Optionally, simplify the result by removing redundant
inequalities.



(a)

(b)

(c)

y

x

Fig. 3. Inversion join over two polyhedra (a), (b) and (c) are the newly discovered
relations.

Example 6. Figure 3 shows the result of an inversion join over two input poly-
hedra ϕ1, ϕ2 used in Example 3. Example 4 shows the TCM T and the ai, bi
values. There are three inversions

# Expressions Subsuming Half-Space
(a) 〈1, 3〉 y + 3x+ 45 ≥ 0
(b) 〈2, 4〉 −y − 6x+ 35 ≥ 0
(c) 〈1, 2〉 y − 9x+ 65 ≥ 0

The “expressions” column in the table above refers to expressions by their row
numbers in the table of Example 4. From Figure 3, note that (c) is redundant.
Therefore the result of the join may require redundancy elimination (algorithm
provided later in this section). This result is equivalent to the result of the strong
join in Example 3.

Theorem 2. Let ϕ1, ϕ2 be two polyhedra. It follows that

ϕ1 ts ϕ2 |= ϕ1 tinv ϕ2 |= ϕ1 tw ϕ2 .

The inversion join requires as many LP queries as the weak join and ad-
ditional O(m2n) arithmetic operations to compute inversions, where m is the
number of inequalities in T and n, the dimensionality.

Note. The descriptions of the weak and inversion join treat each equality as
two inequalities. The resulting join could be made more precise if additionally,
the equality join defined by Karr’s analysis [14] is computed and conjoined to
the result. This can be achieved in time that is polynomial in the number of
equalities.

Post Condition

The post condition computes the image of an assertion ϕ under a transition
relation of the form ξ ∧ x

′ = Ax + b. This is equivalent to the image of
ϕ∧ ξ under the affine transformation x

′ = Ax + b. If the matrix A is invertible,
then this image is easily computed by substituting x = A−1(x′ − b) [9]. On the
other hand, it is frequently the case that A is not invertible. We present three
alternatives, the strong, weak and restricted post conditions.



Strong Post. The strong post is computed by first enumerating the generators of
ϕ∧ ξ. Each generator is transformed under the operation Ax + b. The resulting
polyhedron is generated by these images. Conversion back to the constraint
representation completes the computation.

Weak Post. Weak post requires a TCM T ′ labeling the post location of the
transition. Alternatively, this TCM may be derived from Ineqs (η(`′)) where η(`′)
labels the post-location. Given the existence of such a TCM, we may use the
post operation defined for TCMs [18] to compute the weak post.

Note. The post condition computation for equalities can be performed separately
using the image operation defined for Karr’s analysis. This can be added to the
result, thus strengthening the weak post.

k-Restricted Post The k-restricted post condition improves upon the weak post
by using the monotonicity of the strong post operation (see [8]) similar to the k-
restricted join algorithm. Therefore, considering a subset of up to k inequalities
ψ, we may compute the strong post of ψ and add the result conjunctively to the
weak post. The results improve upon the precision of weak post. As is the case
for join, it is possible to treat the cases for k = 1, 2 efficiently.

Example 7. Consider the polyhedron ϕ : x− y ≥ 0 ∧ x ≤ 0 ∧ x + y + 3 ≤ 0
and the transformation x := x + 3, y := 0. Consider the TCM T = {x − y, x+
y, y−x,−x− y}. The weak post of ϕ w.r.t T is computed by finding bounds for
each expression. For instance the bound for x− y is discovered by solving:

minimize x′ − y′ s.t. ϕ ∧ x′ = x+ 3 ∧ y′ = 0

The overall weak post is obtained by solving 4 LPs, one for each element of T ,

ϕw : 3 ≥ x− y ≥ 1.5 ∧ 3 ≥ x+ y ≥ 1.5 .

This is strictly weaker than the strong post ϕs : 3 ≥ x ≥ 1.5 ∧ y = 0. The
1-restricted post computes the post condition of each half-space in ϕ separately.
This yields the result y = 0 for all the three half-spaces. Conjoining the 1-
restricted post with the weak post yields the same result as the strong post in
this example.

Note. The projection operation, an important primitive for interprocedural anal-
ysis, can be implemented along the same lines as the post condition operation,
yielding the strong, weak and restricted projection operations.

Feasibility, Inclusion Check and Redundancy Elimination

There exist polynomial time algorithms that are efficient in practice for checking
feasibility of a polyhedron and inclusion between two polyhedra.

Feasibility. The simplex method can be used to check feasibility of a given
linear inequality assertion ϕ. In practice, we solve the optimization problem
minimize 0 subject to ϕ. An answer of +∞ indicates the infeasibility of ϕ.



Inclusion Check. As a primitive, consider the problem of checking whether a
given inequality e ≥ 0 is entailed by ϕ, posing the LP: minimize e subject to ϕ.
If the optimal solution is a, it follows from the definition of a LP problem that
ϕ |= e ≥ a. Thus subsumption holds iff a ≥ 0. In order to decide if ϕ |=
Ax + b ≥ 0, we decide if the entailment holds for each half-space Aix + bi ≥ 0.

Redundancy Elimination (Simplification). Each inequality is checked for sub-
sumption by the remaining inequalities using the inclusion check primitive.

Widening

The standard widening of Cousot and Halbwachs may be implemented efficiently
using linear programming. Let ϕ1, ϕ2 be two polyhedra such that ϕ1 |= ϕ2.

Let us assume that ϕ1, ϕ2 are both satisfiable. We seek to drop any constraint
ei ≥ 0 in ϕ1 that is not a consequence of ϕ2. This can be achieved by the inclusion
test primitive described above.

Definition 8 (Standard Widening). The standard widening of two polyhedra
ϕ1 |= ϕ2, denoted ϕ = ϕ1∇ϕ2 is computed as follows,

1. Check satisfiability of ϕ1, ϕ2. If either one is unsatisfiable, widening reduces
to their join.

2. Otherwise, for each ei ∈ Ineqs (ϕ1), compute bi = minimize ei subject to ϕ2.
If bi < 0 then drop the constraint ei ≥ 0 from ϕ1.

This operator is identical to the widening defined by Cousot and Halb-
wachs [9]. The operator may be improved by additionally computing the join
of the equalities in both polyhedra. The work of Bagnara et al. [1] presents
several approaches to improving the precision of widening operators.

4 Performance

We have implemented many of the ideas in this paper in the form of an ab-
stract domain library written in Ocaml. Our library uses GLPK [15] to solve
LP queries, and PPL [2] to convert between the constraint and generator rep-
resentations of polyhedra. Such conversions are used to implement the strong
join and post condition. Communication between the different libraries is imple-
mented using Unix pipes. As a result, the communication overhead is significant
for small examples.

Choosing Domain Operations. We have provided several options for the join
and the post condition operations. In practice, one can envision many strategies
for choosing among these operations. Our implementation chooses between the
strong and the weak versions based on the sizes of the input polyhedra. Strong
post condition and joins are used for smaller polyhedra (40 variables+constraints).
On the other hand, the inversion join is used for polyhedra with roughly 100s
of variables+constraints, while the weak versions are used for larger polyhedra.



Name (#vars) #trans Strong+Weak Purely Strong ±
time mem time mem

req-grant(11) 8 3.14 5.7 0.1 4.1 +
csm(13) 8 6.21 5.9 0.1 4.2 6=
c-pJava(18) 14 11.2 6.0 0.1 4.1 6=
multipool(18) 21 10.0 6.0 2.1 9.2 +

incdec(32) 28 39.12 6.8 8.7 10.4 6=
mesh2x2(32) 32 33.8 6.4 18.53 66.2 6=
bigjava(44) 37 46.9 7.2 256.2 55.3 6=
mesh3x2(52) 54 122 8.1 > 1h+ > 800+ +

Table 1. Performance on Benchmark Examples. All times are in seconds and memory
utilization in Mbs.

We observe empirically that the use of strong operations does not improve the
result once the widening phase is started. Therefore, we resort to weak join and
post condition for the widening phase of the analysis.

4.1 Benchmark Examples

We supplied our library to generate invariants for a few benchmark system mod-
els drawn from related projects such as FAST [3] and our previous work [18].
Table 1 shows the complexity of each system in terms of number of variables
(#vars) along with the performance of our technique of mixed strong, weak
and inversion domain operations as compared with the purely strong join/post
operations implemented directly in C++ using the PPL library. We compare
the running time and memory utilization of both implementations. Results were
measured on an Intel Xeon II processor with 1GB RAM. The last column com-
pares the invariants generated. A “+” indicates that our technique discovers
strictly stronger invariants whereas a “6=” denotes that the invariants are in-
comparable.

Also, for small polyhedra, strong operations frequently outperform weak do-
main operations in terms of time. However, their memory consumption seems
asymptotically exponential. Therefore, weak domain operations yield a drastic
performance improvement when the size of the benchmark examples increases
beyond the physical memory capacity of the system. Comparing the invariants
generated, it is interesting to note that the invariants produced by both tech-
niques are, for the most part, incomparable. While inversion join is weaker than
strong join, the non-monotonicity of the widening operation and its dependence
on the syntactic representation of the polyhedra cause the two versions to com-
pute different invariants.

Analysis of πVC Programs. We applied our abstract domain library to analyze
a subset of the C language called πVC , consisting of imperative programs over
integers with function calls. The language features dynamically allocated arrays,



Description Size (Weak+Strong) (Strong) Proves
#LOC #fns time(sec) mem(Mb) time(sec) mem(Mb) Property

binary-search (*) 27 2 0.48 7.8 0.4 7.5
√

insertionsort 37 1 2.9 7.9 2 7.8
√

heapsort 75 5 26.2 9.8 23.0 9.6
√

quicksort (*) 106 4 2m 13.2 overflow
√

Knuth-Morris-Pratt 110 4 9.4 8.6 7.9 8.6 4
Boyer-Moore 106 3 33.7 10.4 28.8 10.8 12
fixwrites(*) 270 10 4.2m 26.5 > 75m > 75M 28

Table 2. Performance of invariant generator for benchmark programs

records and recursive function calls while excluding pointers. Parameters are
passed by value and global variables are disallowed. The language incorporates
invariant annotations by the user that are verified by the compiler using a back-
ground decision procedure. Our analysis results in sound annotations that aid the
verifying compiler in checks for runtime safety such as freedom from overflows,
and with optional user supplied assertions, help prove functional correctness.

Our analyzer is inter-procedural, using summaries to handle function calls in
a context sensitive manner. Our abstraction process models arrays in terms of
their allocated sizes while treating their contents as unknowns. Integer opera-
tions such as multiplication, division and modulo are modeled conservatively so
that soundness is maintained. The presence of recursive function calls requires
that termination be ensured by limiting the number of summary instances per
function and by widening on the summary preconditions.

Table 2 shows the performance on implementations of standard sorting al-
gorithms, string search algorithms and a part of the web2C code for converting
Pascal-style writes into C-style printf functions, originally verified by Dor et
al. [11]. The columns in Table 2 show the size of each program in lines of code
and number of functions. An asterisk (*) identifies programs containing recur-
sive functions. We place a check mark (

√
) in the “proves property” column if

the resulting annotations themselves prove all array accesses and additional user
provided assertions. Otherwise, the number of unproven accesses/assertions is
indicated. Our analyzer proves a vast majority (≥ 90%) of the assertions valid,
without any user interaction. Indirect array accesses such as a[b[i]] are a major
reason for the false positives. We are looking into more sophisticated abstrac-
tions to handle such accesses. The invariants generated by both the versions are
similar for small programs, even though weak domain operations were clearly
used during the analysis. The difference in performance is clearer as the size of
the program increases. Our interface to the PPL library represents coefficients
using long integers. This led to an overflow error while analyzing quicksort.

In conclusion, we have designed and implemented efficient domain operations
and applied our technique to verify interesting benchmark examples. We hope
to extend our analyzer to handle essential features such as pointers and arrays.
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