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Abstract. We propose a static analysis framework for concurrent pro-
grams based on reduction of thread interleavings using sound invariants
on the top of partial order techniques. Starting from a product graph
that represents transactions, we iteratively refine the graph to remove
statically unreachable nodes in the product graph using the results of
these analyses. We use abstract interpretation to automatically derive
program invariants, based on abstract domains of increasing precision.
We demonstrate the benefits of this framework in an application to find
data race bugs in concurrent programs, where our static analyses serve
to reduce the number of false warnings captured by an initial lockset
analysis. This framework also facilitates use of model checking on the
remaining warnings to generate concrete error traces, where we leverage
the preceding static analyses to generate small program slices and the
derived invariants to improve scalability. We describe our experimental
results on a suite of Linux device drivers.

1 Introduction

Concrete error traces are critical for effective debugging of software. Unfortu-
nately, generating error traces for concurrency related bugs is notoriously hard.
One of the key reasons for this is that concurrent programs are behaviorally com-
plex due to the many possible interleavings between threads. These interleavings
make concurrent programs hard to analyze.

Verification and analysis for concurrent systems is currently a very active
area of research due to the multi-core revolution. Testing, static analysis, and
model checking have all been explored but not without some drawbacks. Testing
has clearly been the most effective debugging technique for sequential programs.
However, the multitude of interleavings among threads makes it hard to provide
meaningful coverage guarantees for concurrent programs. Furthermore, replaya-
bility of the bugs detected through testing is a challenge.

Static analysis techniques have been successful for detecting standard concur-
rency bugs such as data races and deadlocks [28,25,24,11,26,15]. However, the
large number of bogus warnings generated by static analyzers remains a draw-
back. Most static analyses ignore conditional statements, focusing mostly on the
syntactic reachability of a pair of control locations rather than semantic reach-
ability. This places the burden of sifting the true bugs from the false warnings
on the programmer, which leads to poor productivity.
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Model checking [5,3,6] has the advantages of systematic state space explo-
ration, and can produce concrete error traces. However, the state explosion
problem severely limits its scalability on large real-life concurrent programs.

In this paper, we propose a general framework for analysis of concurrent
programs, based on semantic reduction in the thread interleavings by use of
sound invariants. We first utilize partial order reduction (POR) techniques and
constraints from synchronization primitives to construct a transaction graph.
The transaction graph effectively captures the relevant thread interleavings for
performing a sound static analysis. We then derive sound invariants by using
abstract interpretation over this transaction graph. These invariants are used
to further refine the transaction graph by removing unreachable nodes. This
can lead to larger transactions, i.e. a reduction in the thread interleavings. The
removal also facilitates the discovery of stronger invariants on the reduced graph.
This process can be iterated until convergence, i.e. until no more nodes can be
removed and no better invariants computed. The transaction graph is central in
our approach: at any stage it provides a current snapshot of thread interleavings
needed for sound static analysis. It also allows us to stage various analyses to
achieve scalability, such that less precise but cheaper techniques are used first
to refine the transaction graph, to enable application of more precise techniques
later. Our focus is on successive reduction of thread interleavings, which is a
primary source of complexity in the analysis of concurrent programs.

a0: voidAlloc Page() {
a1: a := c;
a2: pt lock(&plk);

a3: if (pg cnt ≥ LIMIT) {
a4: pt wait(&pg lim,&plk);

a5: incr (pg count) ;

a6: pt unlock(&plk);

a7: sh1 := sh ;
a8: } else {
a9: pt lock(&count lock);
a10: pt unlock(&plk);
a11: page := alloc page();

a12: sh := 5 ;
a13: if (page)

a14: incr( pg count );

a15: pt unlock(&count lock);
a16: end-if
a17: b := a +1;
a18: end-function

b0: voidDealloc Page() {
b1: pt lock(&plk);

b2: if (pg count == LIMIT)

b3: sh := 2 ;

b4: decr (pg count) ;

b5: sh1 := sh ;
b6: pt notify(& pg lim, & plk);
b7: pt unlock(& plk);
b8: } else {
b9: pt lock(&count lock);
b10: pt unlock(&plk);
b11: decr(pg count);

b12: sh := 4 ;
b13: pt unlock(&count lock);
b14: end-if
b15: end-function

Fig. 1. Example concurrent program consisting of two functions
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Motivating Example
The concurrent program shown in Fig. 1 comprises of multiple threads executing
the Alloc Page and Dealloc Page routines. We assume that each statement shown
is executed atomically. For clarity, all shared variable accesses and synchroniza-
tion constructs pt lock, pt unlock, pt wait and pt notify are highlighted.

The shared variable sh is written to at location a12, b3 and b12. Since the
set of locks held at a12 and b3 ( viz., {count lk} and {plk}, respectively) are
disjoint, the pair (a12,b3) normally constitutes a data race warning according
to lockset-based race detection techniques.

When some thread reaches the control location b3, we automatically establish
the interval invariant ψ3 : pg count ∈ [LIMIT,+∞), regardless of the control
location of the other threads. This invariant is quite challenging to establish
(the reader is invited to attempt). Specifically, establishing ψ3 requires us to
reason about the sequence of synchronizations between threads as well as the
conditional branches involved.

Likewise, we establish the invariant ϕ12 : pg count ∈ (−∞,LIMIT) when
some thread reaches the control location a12, regardless of the location of the
other threads. Once again, this invariant is non-trivial to establish.It involves
conditional branches as well as thread synchronization.

Using the invariants computed, we conclude that locations a12 and b3 are
not simultaneously reachable . In other words, the lockset-based method yields a
bogus warning that can be eliminated by means of the automatically computed
invariants ψ3, ϕ12.

2 Program Model

We consider concurrent imperative programs comprising threads that commu-
nicate using shared variables and synchronize with each other using standard
primitives such as locks, rendezvous, etc.

Program Representation. Each thread in a concurrent program Ti :〈Fi, ei, Gi, Li〉
consists of procedures Fi, entry procedure ei ∈ Fi, a set of global variables
G and thread local variables v. Each procedure p ∈ F , is associated with a
tuple of formal arguments args(p), a return type tp, local variables L(p), and a
control flow graph (CFG). Each procedural CFG 〈N(p), E(p), action〉 consists
of a set of nodes N(p) and a set of edges E(p) between nodes in N(p). Each
edge m→ n ∈ E(p) is associated with an action that is an assignment, a call to
another procedure, a return statement, a conditional guard, or a synchronization
statement. The actions in the CFG for a procedure p may refer to variables in
the set G ∪ args(p) ∪ L(p).

A multi-threaded program Π consists of a set of threads T1, . . . , TN for some
fixed N > 0 and a set of shared variables S. Note that every shared variable
s ∈ S is a global variable in each thread Ti.

Threads synchronize with each other using standard primitives like locks, ren-
dezvous and broadcasts. Locks are standard primitives used to enforce mutually
exclusive access to shared resources. They occur very commonly in many parallel
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programming paradigms and are widely used to enforce thread synchronization.
Rendezvous are motivated by wait/notify primitives of Java and condition
variables in the POSIX thread library. Rendezvous find limited use in applica-
tions such as browsers, device drivers and scientific programs. Broadcasts are
seldom seen in practice.

2.1 Preliminaries

Static program analysis can be used to compute sound invariant assertions that
characterize the values of program variables at different program points. Since
our approach involves reasoning with infinite sets of integers and reals, the ab-
stract interpretation framework forms an integral part. We provide a concise
description of abstract interpretation in this section. A detailed presentation is
available elsewhere [9,8].

Let Ψ be a CFG of a sequential (single threaded) program. Concurrent pro-
grams are treated in Section 4. For simplicity, we assume that Ψ consists of a
single procedure that does not involve calls to other procedures. Procedures, in-
cluding recursive procedures, can be handled by implementing a context-sensitive
program analysis. All variables involved in Ψ are assumed to be integers. Pointers
and arrays are lowered into integers using a process of memory modeling followed
by abstraction. Such an abstraction is implemented by the F-Soft framework [14].
As mentioned earlier, each edge in the CFG is labeled with an assignment or a
condition.

An abstract domain Γ consists of assertions drawn from a selected assertion
language which form a lattice through the partial order � modeling logical in-
clusion between assertions. Each object a ∈ Γ represents a set of program states
[[a]]. For the analysis, we require the following operations to be defined over Γ :

(a) Join: Given a1, a2 ∈ Γ , the join a = a1 	 a2 is the smallest abstract object a
w.r.t 	 such that a1 � a, a2 � a.

(b) Meet: The meet a1 
 a2 corresponds to the logical conjunction.
(c) Abstract post condition postΓ models the effect of assignments.
(d) Inclusion test � to check for the termination.
(e) Widening operator ∇ to force convergence for the program loops.
(f) Projection operator ∃ removes out-of-scope variables.
(g) Narrowing operator  is used for solution improvement.

Given a program Ψ and an abstract domain Γ , we seek a map π : L �→ Γ
that maps each CFG location � ∈ L to an abstract object π(�). Such a map is
constructed iteratively by the forward propagation iteration used in data-flow
analysis:

π0(�) =
{�, if � = �0
⊥, otherwise

and πi+1(�) =
⊔

e: m→�

postΓ (πi(m), e) .

If the iteration converges, i.e, πi+1(�) � πi(�) for all � ∈ L for some i > 0, πi+1 is
the result of our analysis. However, unless the lattice Γ is of finite height or satis-
fies the ascending chain condition, convergence is not always guaranteed. On the
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other hand, many of the domains commonly used in verification do not exhibit
these conditions. Convergence is forced by using widening and narrowing [9].

Using abstract interpretation, we may lift dataflow analyses to semantically
rich domains such as intervals, polyhedra, shape graphs and other domains to
verify sophisticated, data-intensive properties. Intervals, Octagons and Polyhe-
dra are instances of numerical domains that may be used to reason about the
numerical operations in the program.

The interval domain consists of assertions of the form xi ∈ [�, u], associating
each variable with an interval containing its possible values. The domain oper-
ations for the interval domain such as join, meet, post condition, inclusion, etc.
can be performed efficiently (see [7] for details). However, the interval domain
is non-relational. It computes an interval for each variable that is independent
of the intervals for the other variables. As a result, it may fail to handle many
commonly occurring situations that require more complex, relational invariants.
The polyhedral domain [10] computes expressive linear invariants and is quite
powerful. However, this power comes at the cost of having exponential time
domain operations such as post condition, join, projection and so on.

The octagon domain due to Miné [22] extends the interval domain by com-
puting intervals over program expressions such as x − y, x + y and so on, for
all possible pairs of program variables. The domain can perform operations such
as post, join and projection efficiently using a graphical representation of the
constraints and a canonical form based on shortest-path algorithms.

3 Transaction Graphs

In this section, we describe how we capture thread interleavings in the form of
a transaction graph. We also describe our procedure for constructing an initial
transaction graph by utilizing partial order reduction techniques and constraints
due to synchronization primitives. The transaction graph will be used as a basis
for the static analysis technique to be presented in the next section.

Let P be a concurrent program comprised of threads T1,..., Tn and let Ni

and Ei be the set of control locations and transitions of the control flow graph
(CFG) of Ti, respectively. We write �i � mi to denote a path from li to mi.

Definition 1 (Transaction Graph). A transaction graph ΠP of P is defined
as ΠP = (NP , EP ), where NP ⊆ N1 × ... × Nn and EP ⊆ NP × NP . Each
edge of ΠP represents the execution of a sequence of statements by a thread Ti.
Specifically, an edge is of the form (l1, . . . , li, . . . , ln) → (l1, . . . ,mi, . . . , ln),, such
that there is a path in Ti from li � mi. Such an edge represents an execution of
a program segment in thread Ti.

A transaction graph considers a subset of the possible tuples of control states
concurrently reachable by n different threads. Edges of the graph consist of a
sequence of moves by a single thread. The product graph is a transaction graph
ΠP ≡ ⊗iNi consisting of the cartesian product of the control locations in each
thread, and each edge representing the execution of a single statement by a single



Semantic Reduction of Thread Interleavings in Concurrent Programs 129

thread. In the presence of rendezvous and broadcast actions on the edges, the
definition may be updated to necessitate synchronous rendezvous to happen in
two consecutive moves.

The cartesian product graph consists of a superset of all the concurrent control
states that need to be considered for the analysis of a given program. It is reduced
to a transaction graph of manageable size by using partial order reduction (POR)
[13] wherein we remove redundant control states that produce a result consistent
with some other interleaving (see below).

Shared Variable Identification: The first step towards building a transaction
graph consists of automatically and conservatively identifying shared variables.
In general, shared variables are either global variables of threads, aliases thereof
and pointers passed as parameters to API functions. Since global variables can be
accessed via local pointers, alias analysis is key for identifying shared variables.

Our shared variable detection technique uses update sequences(Cf. [16]) to
track aliasing information as well as whether a variable is being shared. An
update sequence of assignments from pointers p to q along a sequence {lj} of
consecutive thread locations is of the form l0 : p1 = p, l1 : p2 = q1, ..., li−1 : pi =
qi−1, li : pi+1 = qi, ..., lk : p = qk, where qi is aliased to pi between locations li−1

and li. Then p is aliased to a shared variable if there exists an update sequence
starting at a global variable or an escaped variable. Update sequences can be
tracked via a simple and efficient dataflow analysis (see [17] and [16] for details).

Static Partial Order Techniques: The transaction graph is computed using
partial order reduction (POR) which has been used extensively in model check-
ing [13]. POR exploits the fact that concurrent computations are partial orders
on operations of threads on shared variables. Therefore, instead of exploring
all interleavings that realize this partial order, it suffices to explore just a few
(ideally just one).

In this setting, we use POR over the complete product graph P of the thread
CFGs, instead of over the state space of the concurrent program. We consider
a pair of statements st1 and st2 of threads T1 and T2, respectively, to be de-
pendent if (i) st1 and st2 access a common shared variable (including variables
used for synchronization), and (ii) at least one of the accesses is a write opera-
tion. Whereas, this is a purely syntactic characterization, we may use semantic
considerations to obtain a more refined dependence relation.

When constructing the transaction graph, a key goal is to maximize the
lengths of the resulting transactions in the presence of scheduling constraints
imposed by synchronization primitives. The general problem of delineating trans-
actions of maximal length for threads synchronizing via locks and rendezvous
is presented elsewhere [18]. For completeness, we present a simple transaction
delineation algorithm for the easier case of two threads synchronizing via locks.
Our algorithm is broadly similar to that of Godefroid [13] and is shown in Alg. 1.
It is a worklist algorithm that traverses through the global control states of the
concurrent program and computes their successors. The pair (l1, l2) represents
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Algorithm 1. Transaction Delineation based on Static POR

1: Initialize W = {(in1, in2)}, where inj is the initial state of thread Tj , and
Processed to ∅.

2: repeat
3: Remove a state (l1, l2) from W and add it to Processed
4: if neither l1 nor l2 is a shared object access then
5: let Succi = {(m1, m2)| where (a) mi′ = li′ with i′ ∈ {1, 2} and i′ �= i, and (b)

mi is CFL-reachable from li via a local path x of thread Ti such that mi is the
first shared object access encountered along x}

6: Set Succ = Succ1 ∪ Succ2

7: else if l1 is a shared object access of sh, say, then
8: if m2 is a statement accessing sh that is CFL-reachable from l2 via a path x

of T2 such that (a) l1 conflicts with m2, and (b) no lock held at l1 is acquired
(and possibly released) along x then

9: Let Succ1 = {(m1, l2)| where m1 is CFL-reachable from l1 via a path y
such that m1 is the first shared object access along y after l1}

10: Let Succ2 = {(l1, m2)}
11: Set Succ = Succ1 ∪ Succ2

12: else
13: Succ = {(m1, l2)| m1 is CFL-reachable from l1 via a path x such that m1

is the first shared object access along x after l1}
14: end if
15: else if l2 is a shared object access of sh, say, then
16: compute Succ as in steps 7-14 with the roles of l1 and l2 reversed
17: end if
18: Add all states of Succ not in Processed to W .
19: until W is empty

a global control state in which threads T1 and T2 are at control locations l1 and
l2, respectively.

At the initial state (in1, in2) of the given concurrent program, we let each
thread execute until it encounters its first shared object access (steps 4-6). Next,
in order to compute the successors of a global state (l1, l2) we need to decide
whether a context switch is required at location li of thread Ti. A conflict analysis
is carried out to determine whether T1 is currently accessing a shared object sh
at the location l1 and whether thread T2 starting at l2 can reach a location
m2 which accesses sh and is dependent with l1, i.e., l1 conflicts with m2. If so,
then we explore interleavings wherein T1 executes l1 first leading to the set of
successors Succ1 (step 9) and those wherein T2 executes the path leading to m2

before l1 is executed leading to the set of successors Succ2 (step 10). On the other
hand, if the synchronization primitives ensure that no path starting at l2 leads
to T2 accessing sh then no context switch is required at l1 and the successors of
(l1, l2) result only from executing transitions of T1 (step 13).

A crucial difference between Alg. 1 and the classical POR algorithm is that
in deducing reachability of mi from li we need to take recursion into account,
i.e., we need to deduce CFL-reachability of mi from li in thread Ti.
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(a1, b1)

(a1, b3)

(a12, b1)

(a12, b3)

(a3, b1)

(a8, b1)(a10, b1) (a3, b3) (a1, b4)

(a1, b6)(a3, b4)

(a3, b6)(a14, b1)

(a9, b1) (a8, b3)

(a8, b4)

Fig. 2. Transaction Graph

Example 1. In Figure 1, the statements at locations a12 and b12 are dependent
since the outcome for sh differs based on their relative order of execution. State-
ments b5 and a14 are independent, the actions performed by them commute.
Statements b4 and b11 of Fig. 1 both decrease a shared variable pg count by
1. Semantically, these statements are independent, since their order of execution
does not affect the reachable states.

Synchronization Constraints. We now illustrate utilization of synchronization
constraints in our running example from Figure 1. Fig. 2 shows a portion of the
transaction graph obtained after pruning nodes with non-disjoint locksets. Exam-
ples of tuples pruned for non-disjoint lockset include (a5,b4), (a6,b3), (a3,b2) and
so on which are mutually excluded by the lock plk. Note that a static lockset anal-
ysis on each thread allows us to avoid generating such pairs in the first place.

The send and wait statements b6 and a4, respectively, enforce that in a
2−threaded execution, b7 must be executed before a4. Therefore all the nodes
in the set {(a5,b7), (a6,b7), (a7,b7)} are all unreachable. Again, computing the
synchronization language at each location visited by each thread will ensure that
such tuples are never considered.

The POR and synchronization-based constraints yield transactional sequence
of actions for each thread so that an interleaving with another thread need not
be considered during the execution of this sequence, while still capturing all the
feasible interleavings. However, such sequences may be conditional on the loca-
tion of the other thread. For instance, statements {b1, . . . ,b7 } are transactional
provided the Alloc Page thread resides in one of the locations {a1,. . . ,a7}. This
allows us to compact many locations in the product graph into one single location
in the initial transaction graph.

To summarize, partial order techniques and synchronization constraints are
used to construct a transaction graph over the global control states. Although
our presentation described these steps separately, our implementation derives
an initial set of thread conflicts based on both considerations, which drives the
construction of the transaction graph. The initial transaction graph is used to
compute sound invariants, described in the next section.
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4 Generation of Sound Invariants

We now apply abstract interpretation over the initial transaction graph to com-
pute sound invariants. The key difference between abstract interpretation for
sequential programs as opposed to transaction graphs, is the treatment of in-
variants that relate thread-local variables to shared variables. Such invariants
are quite useful, since threads typically perform many actions involving locals
and globals in an atomic section. However, local variables of a thread T1 may
not be shared directly with another thread T2. A general solution is to consider
a cartesian product of the abstract domain with itself, yielding tuples of invari-
ant facts 〈ϕ1, . . . , ϕn〉 for each node of the transaction graph, wherein ϕi[S,Li]
relates the global variables S with the local variables Li of the ith thread.

For the sake of simplicity, we restrict our attention to two threads (i.e, n = 2).
The invariant tuple annotating a node 〈�i,mj〉 of the transaction graph is de-
noted 〈ϕi, ψj〉, wherein ϕi[S,L1] relates the values of the shared and local vari-
ables for thread T1 and ψj [S,L2] for thread T2. Since the programs communicate
through shared variables, we require that the set of shared variables described
by any pair ϕi, ψj are the same: (∃L1) ϕi ≡ (∃L2)ψj .

This consistency condition will be maintained in our analysis. However, main-
taining this condition through the abstract interpretation process is tricky.

Example 2. Consider a simple action by a thread T1, a : �1
x := 10−−−−−→ �2 which

updates a shared variable x to 10, while thread T2 remains in location m. This
corresponds to a move in the transaction graph from 〈�1,m〉 → 〈�2,m〉.

Let 〈(x = 5), (x = l, l = 5)〉 be the assertion labeling the node (�1,m). After
a move by the first thread, the assertion labeling the node (�2,m) should be
〈(x = 10), (l = 5, x = 10)〉. Note that to maintain consistency, we are forced to
update the invariant for thread T2 even if T2 did not perform any action.

A similar situation arises at the “join-nodes” of the transaction graph. Due to
the consistency condition, these nodes do not act as true join nodes as in the
sequential case. We address these difficulties by introducing a “meld” operator
in the abstract domain, in order to maintain the consistency condition.

Melding: As mentioned earlier, the shared variables S may be modified by
executing some transaction edge ni → nk by thread Ti, updating the component
ϕi of the invariant tuple. However, this may violate the consistency requirements
w.r.t the invariant tuples corresponding to the other threads. To enforce this
consistency, we introduce an operator meld(ϕk, ψj) that forces the global state
values represented by assertion ψj to coincide with those in ϕk.

Definition 2 (Meld). Let α[S,L1] and β[S,L2] be assertions over shared and
local variables for each thread. The assertion γ : meld(α, β) is such that (a)
(∃L1)α ≡ (∃L2)γ and (∃G)β |= (∃G)γ, and (b) the operator must be entry-wise
monotonic. I.e., if α1 |= α2 and β1 |= β2 then

meld(α1, β1) |= meld(α2, β1), meld(α1, β1) |= meld(α1, β2) .
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The result γ of meld(α, β) over-approximates the global variable values described
by α and the local variable values described by β.

The design of a melding operator is specific to the underlying abstract domain.
A simple melding operator can be constructed for most abstract domains using
projection and works for domains wherein the conjunction 
 coincides with the
logical conjunction ∧ (i.e, Moore closed domains). Formally, we have meld(ϕ, ψ) :
(∃L1)ϕ ∧ (∃G)ψ.

Post Condition: An elementary step in the fixed point computation consists
of propagating an assertion pair 〈ϕi, ψj〉 across an edge ni → nk of one of
the threads. Let ϕk denote the result of the post-condition post(ϕi, ni → nk).
In practice, however, a move by a thread ni → nk in the transaction graph
may represent the execution of a (possibly atomic) program segment in the
corresponding thread consisting of numerous basic blocks. Therefore, the “post”
needs to be computed using a thread-local abstract interpretation of the segment
corresponding to the edge.

The effect of executing a thread edge ni → nk starting from the node 〈ni,mj〉,
labelled by the assertion 〈ϕi, ψj〉, yields the assertion pair

〈
ϕk, ψ

′
j

〉
wherein:

ϕk : post(ϕi, ni → nk), ψ′
j : meld(ϕk, ψj). Formally, we use a propagation

operator propagate to model the effect of executing a transaction ni across an
edge ni → nk: propagate(〈ϕi, ψj〉 , ni → nk) =

〈
ϕk, ψ

′
j

〉
.

Our goal is to produce a map η labeling each node of the transaction graph
〈ni,mj〉 with a pair of assertions η(ni,mj) : ϕi, ψj such that ϕi[S,L1] relates
the shared variables S with the local variables L1, and similarly ψj . Secondly,
each of the assertions 〈ϕi, ψj〉 holds, whenever the individual thread controls
simultaneously reside in the nodes 〈ni,mj〉.

Formally, for any edge 〈ni,mj〉 → 〈nk,mj〉, we require that propagate(η(ni,
mj), ni → nk) |= η(nk,mj). A symmetric condition needs to hold for moves of
the thread T2. The map η can be constructed using forward propagation on a
transaction graph G using propagate as the post-condition.

Loops and Recurrences: A cycle in the transaction graph corresponds directly
to a loop or a recursive procedure in one or more of the threads. Such cycles are
handled naturally in our abstract interpretation scheme using widening. Specif-
ically, widening is performed conservatively at each node of the form (l1, . . . , lk)
such that for some component li there exists a back-edge of the form mi → li in
the CFG of Ti. For example, in the case of cycles arising due to loops li would
be a loop head. Standard iteration schemes known for sequential programs can
be used for analyzing transaction graphs.

5 Refinement of Transaction Graphs

We use the abstract interpretation framework described in the previous section
to automatically derive sound invariants for the concurrent program. In practice,
we use abstract domains of increasing precision ranges, octagons, and polyheda
to derive more accurate invariants.
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Algorithm 2. Refinement of Transaction Graph

1: Construct an initial transaction graph G0
π by using partial order techniques and

synchronization constraints.
2: repeat
3: Compute range, octagonal, and polyhedral invariants over Gi

π And prune paths
from Gi

π resulting in Hi
π.

4: Compute a new product transaction graph Gi+1
π based on the thread conflicts

and synchronization constraints in Hi
π.

5: until Gi+1
π = Gi

π

6: return Gi
π

Invariant-based slicing of thread conflicts. At each stage, we use the de-
rived invariants to show the unreachability of code segments, e.g. in conditional
branches. If these unreachable code segments contain shared variable accesses,
this can lead to a reduction in the conflicts between threads, thereby allow-
ing larger transactions in individual threads. We call this a refinement of the
transaction graph, since it provides a more accurate view of thread interleavings
required for analysis. Such refinement helps to improve accuracy of subsequent
analysis by discounting spurious thread interference from unreachable code seg-
ments, while also improving scalability due to smaller transaction graphs that
result from a smaller number of interleavings and larger individual transactions.

Iterative refinement. In general, we can iteratively refine the transaction
graph by alternately leveraging conflict analysis (using partial order techniques
and synchronization constraints) and sound invariants until we reach a fix-point,
where the transaction graph cannot be refined any more.

This iterative procedure for refining a transaction graph is shown in Figure 2.
The initial transaction graph construction utilizes POR and synchronization con-
straints (described in Section 3). This bootstraps the iterative process. This initial
step is critical for making the computation of sound invariants scale (described
in Section 4). This is because the initial transaction graph over global control
states is much smaller than a naive product graph over individual statements
in threads. Furthermore, the capturing of POR and synchronization constraints
drastically reduces the number of interleavings considered by our invariant com-
putation. This effectively, makes the invariants stronger.

6 Applications

The transaction graph constructed by exploiting synchronization constraints
and sound invariants can be used for various analyses and verification appli-
cations on concurrent programs. These include concurrent pointer alias analysis,
model checking, etc. Once the product transaction graph has been computed,
any dataflow analysis of concurrent programs can be carried out sequentially
over the nodes of this graph. From a model checking perspective, the product
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transaction graph encodes all the context switches that need be explored. When
carrying out partial order reduction over the state space during model checking
(described later in this section), we allow context switching only at transaction
boundaries defined by the transaction graph.

In the remainder of this section, we describe a specific application of our
approach for detection of data race bugs in concurrent programs. There have
been many successful efforts based on static analysis [28,25,24,11,26,15]. These
approaches, however, may generate a large number of bogus warnings. Model
checking [5,3,6] has the advantage that it can produce concrete error traces and
does not rely on the programmer to inspect the warnings and decide whether
they are true bugs or not. However, the state explosion problem severely limits
its scalability, especially on large real-life concurrent programs.

Classic static data race warning generation has three main steps. First, control
locations with shared variable accesses are determined in each thread. Next, the
set of locks held at each of these locations of interest are computed, using lockset
analysis. Pairs of control locations in different threads where (i) the same shared
variable is accessed, (ii) at least one of the accesses is a write operation, and (iii)
disjoint locksets are held, constitute a potential data race site and a warning is
issued.

Since dataflow analysis for concurrent programs is undecidable in general,
typical static data race detection methods ignore conditional statements in the
threads and perform thread-local analysis only. Indeed, a pair of control locations
(c1, c2) marked as a potential data race site may simply be unreachable in any
run of the given concurrent program.

We use the static analysis framework proposed in this paper to check the
reachability of the pair of control locations (c1, c2) appearing in such warn-
ings. If the pair is statically unreachable, then the warning is bogus, and can
be eliminated. The combined use of synchronization constraints and sound in-
variants provide cheaper methods than model checking to check the pairwise
(un)reachability of c1 and c2, while providing more accuracy than existing static
analysis methods for data race detection. In fact, one can use any of the exist-
ing fast methods to generate the initial set of data race warnings, and use our
techniques to automatically reduce the number of warnings.

We also leverage the final transaction graph generated in our framework to
perform model checking, for producing concrete error traces for the remaining
warnings. Details of our symbolic (SAT-based) model checking techniques for
concurrent programs are described in our previous work [19]. The additional
benefit is that our transaction graph already captures reductions in thread in-
terleavings that would have otherwise been explored during model checking. We
also use slicing on the transaction graph to generate smaller models for specific
warnings, by inlining the functions in the specific contexts and slicing away the
rest. We can also use the derived invariants to prune the search space during
model checking. The combined effect is to improve the viability of model checking
on concurrent programs.
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7 Experimental Results

We applied the proposed static analysis framework for reducing data race warn-
ings generated by an initial lockset-based analysis on a suite of Linux device
drivers with known data races. The results are shown in Table 1, where columns
4 and 5 report the number of warnings (#Warn) and time taken (seconds), re-
spectively, by the lockset-based static analysis. Column 6 reports the number of
warnings after reduction by using our invariant-based static analysis, with the
time taken (in seconds) reported in Column 7. This analysis is successful in re-
ducing the number of warnings to a more manageable level within a few minutes.
As an additional benefit, we may now apply techniques such as model checking
on the few remaining warnings. Column 8 reports the number of warnings for
which our model checking procedure [19] was successful in generating a concrete
error trace, with the final unresolved number of warnings reported in Column 9.

Table 1. Results for Static Reduction of Data Race Warnings

Driver KLOC # ShVars
#Warn. Time #After Time #Wit. #Unknown

(secs) Invar (secs)

pci gart 0.6 1 1 1 1 4 0 1

jfs dmap 0.9 6 13 2 1 52 1 0

hugetlb 1.2 5 1 3.2 1 0.9 1 0

ctrace 1.4 19 58 6.7 3 143 3 0

autofs expire 8.3 7 3 6 2 12 2 0

ptrace 15.4 3 1 15 1 2 1 0

raid 17.2 6 13 1.5 6 75 6 0

tty io 17.8 1 3 4 3 11 3 0

ipoib multicast 26.1 10 6 7 6 16 4 2

TOTAL 99 24 21 3

Table 2. Results for Model Checking Data Race Warnings. All timings are in seconds
and memory in MBs.

Witness #
Symbolic POR+BMC
DepthTime Mem

jfs dmap : 1 10 0.02 59

ctrace : 1 8 2 62

ctrace : 2 56 10 hr 1.2G

ctrace : 3 92 2303 733

autofsexpire : 1 9 1.14 60

autofsexpire : 2 29 128 144

ptrace : 1 111 844 249

raid : 1 42 26.13 75

raid : 2 84 179 156

raid : 3 44 32.19 87

Witness #
Symbolic POR+BMC
DepthTime Mem

raid : 4 34 4.15 61

raid : 5 40 9.30 59

raid : 6 70 70 116

tty io : 1 34 0.82 5.7

tty io : 2 32 9.69 14

tty io : 3 26 31 26

ipoib multicast : 1 6 0.1 58

ipoib multicast : 2 8 0.1 59

ipoib multicast : 3 4 0.1 58

ipoib multicast : 4 14 0.3 59
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The detailed results for model checking are shown in Table 2, where we re-
port the depth at which the bug is found, and the time and memory used by
our model checking procedure that uses symbolic POR with SAT-based BMC.
We were able to generate a concrete error trace for the known data race in
all but one example. This is mainly due to the small sliced models we gener-
ated by using warning-specific static information, even for large drivers (such
as ipoib multicast). Thus, our static analysis framework enables scalable model
checking for larger concurrent programs.

8 Related Work and Conclusions

We have presented a general framework for static analysis of concurrent pro-
grams, where we use partial order reduction and synchronization constraints to
capture a reduced set of thread interleavings, on which we derive sound invari-
ants by using abstract interpretation to perform further reduction. We described
an application of this framework to reduce the number of data race warnings,
and to enable the application of model checking to find concrete error traces.

Our work is related to prior work on verification of concurrent programs that
attempts to get around the undecidability barrier by considering restricted mod-
els of synchronization and communication [1,12] or by bounding the number of
context switches [27,2,23,21]. There are also other recent efforts to leverage se-
quential analysis in concurrent settings [4,20]. Our approach also exploits specific
patterns of synchronization, but our main focus is on deriving sound invariants
for reduction in thread interleavings, by lifting abstract interpretation techniques
to the concurrency setting. Since thread interleavings are a primary source of
complexity in concurrent programs, this provides us further opportunities to
apply more precise analyses, including model checking.
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