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Abstract. We propose techniques for the verification of hybrid systems
using template polyhedra, i.e., polyhedra whose inequalities have fixed
expressions but with varying constant terms. Given a hybrid system de-
scription and a set of template linear expressions as inputs, our technique
constructs over-approximations of the reachable states using template
polyhedra. Therefore, operations used in symbolic model checking such
as intersection, union and post-condition across discrete transitions over
template polyhedra can be computed efficiently using template polyhe-
dra without requiring expensive vertex enumeration.

Additionally, the verification of hybrid systems requires techniques to
handle the continuous dynamics inside discrete modes. We propose a
new flowpipe construction algorithm using template polyhedra. Our tech-
nique uses higher-order Taylor series expansion to approximate the time
trajectories. The terms occurring in the Taylor series expansion are
bounded using repeated optimization queries. The location invariant is
used to enclose the remainder term of the Taylor series, and thus trun-
cate the expansion. Finally, we have implemented our technique as a part
of the tool TimePass for the analysis of affine hybrid automata.

1 Introduction

Symbolic model checking of infinite state systems requires a systematic repre-
sentation for handling infinite sets of states. Commonly used representations
include difference matrices, integer/rational polyhedra, Presburger arithmetic,
polynomials, nonlinear arithmetic and so on. Expressive representations can bet-
ter approximate the underlying sets. However, the basic operations required for
symbolic execution such as intersection, image (post-condition) and so on are
harder to compute on such representations.

Convex polyhedra over reals (rationals) are a natural representation of sets of
states for the verification of hybrid systems [15, 30,2, 10-12]. However, basic al-
gorithms required to manipulate polyhedra require worst-case exponential com-
plexity. This fact has limited the practical usefulness of symbolic model checking
tools based on polyhedra. Therefore, restricted forms of polyhedra such as or-
thogonal polyhedra [3] and zonotopes [11] are used to analyze larger systems at
a level of precision that is useful for proving some properties of interest. Other



techniques, such as predicate abstraction, use Boolean combinations of a fixed
set of predicates pi,...,pm, to represent sets of states [1,16]. Such techniques
enable the refinement of the representation based on counterexamples.

In this paper, we propose template polyhedra as a representation of sets of
states. Given a set of template expressions ey, ..., e, we obtain a family of tem-
plate polyhedra, each of which is represented by the constraints A, e; < ¢; [29]. As
with predicate abstraction, our approach assumes that the template expressions
are provided as an input to the reachability problem. We then use the family
of polyhedra defined by the given template expressions as our representation
for sets of states. The advantage of restricting our representation to a family of
template polyhedra is that operations such as join, meet, discrete post-condition
and time elapse can be performed efficiently, without requiring expensive vertex
enumeration. Furthermore, our initial experience suggests that commonly used
domains in software analysis such as intervals and octagons provide a good ini-
tial set of templates. This set can be further refined using simple heuristics for
deriving additional expressions.

In order to analyze hybrid systems, we additionally require techniques to
over-approximate the continuous dynamics at some location. This paper pro-
poses a sound flowpipe construction technique based on a Taylor series approxi-
mation. Our approach works by solving numerous linear programs. The solutions
to these linear programs correspond to bounds on the terms involved in the Tay-
lor series expansion. The expansion itself is bounded by enclosing the remainder
term using the location invariant. The flowpipe construction results in a series of
template polyhedra whose disjunctions over-approximate the time trajectories.

Finally, we have implemented our methods in our prototype tool TIMEPASS
for verifying safety properties of affine hybrid systems. We use our tool to ana-
lyze many widely studied benchmark systems and report vastly improved per-
formance on them.

Related Work

Hybrid systems verification is a challenge even for small systems. Numerous ap-
proaches have been used in the past to solve reachability problems: the HyTech
tool due to Henzinger et al. uses polyhedra to verify rectangular hybrid sys-
tems [15]. More complex dynamics are handled using approximations. Kurzhan-
ski and Variaya construct ellipsoidal approximations [17]; Mitchell et al. use
level-set methods [20]; the d/dt system uses orthogonal polyhedra and face lift-
ing [2]; Piazza et al. [22] propose approximations using constraint solving based
on quantifier elimination over the reals along with Taylor series expansions to
handle the continuous dynamics. Lanotte & Tini [18] present approximations
based on Taylor series that can be made as accurate as possible, approaching
the actual trajectories in the limit.

Girard uses zonotopes to construct flowpipes [11]. The PHAVer tool due to
Frehse extends the HyTech approach by repeatedly subdividing the invariant
region and approximating the dynamics inside each subdivision by piece-wise
constant dynamics [10]. Tiwari [31] presents interesting techniques for proving



safety by symbolically integrating the dynamics of the system. Symbolic tech-
niques for proving unreachability without the use of an explicit flowpipe ap-
proximation [28,32,26,23]. These techniques can handle interesting nonlinear
systems beyond the reach of many related techniques.

The problem of flowpipe construction for template polyhedra has been stud-
ied previously by Chutinan & Krogh [5]. Their technique has been implemented
as a part of the tool CheckMate [30]. Whereas the CheckMate approach solves
global non convex optimization problems using gradient descent, our approach
solves simple convex optimization problems to bound the coefficients of the Tay-
lor series expansion. Furthermore, our technique can be extended to some non-
linear systems to construct ellipsoidal and polynomial flowpipes. The CheckMate
technique simply yields a harder nonconvex optimization problem for these cases.
On the other hand, our approach loses in precision due to its approximation of
functions by Taylor polynomials; CheckMate, however, is more robust in this
regard.

Template polyhedra are commonly used in static analysis of programs for
computing invariants. Range analysis can be regarded as template polyhedra
over expressions of the form +z [7] . Similarly, the octagon domain due to
Miné [19] uses template polyhedron of the form A z; — z; < ¢. General tem-
plate polyhedra were used as an abstract domain to represent sets of states by
Sankaranarayanan et al. [29].

2 Preliminaries

Let R denote the set of reals, and Ry = R U {£oo}. A first order assertion
o[r1,...,2y], over the theory of reals, represents a set [¢] C R™. A column vec-
tor, denoted (x1,...,x,), is represented succinctly as x. Capital letters A, B, C
and X,Y,Z denote matrices; A; denotes the i** row of a matrix A. A linear
function f(z) is the inner product of vectors ¢”«. Similarly, an affine function
is represented as c¢"x + d.

Polyhedra. A polyhedron is a conjunction of finitely many linear inequalities
N\, ei < ¢, represented succinctly as Az < b, where A is a m x n matrix, b is a
m x 1 column vector and < is interpreted entry-wise.

A linear program(LP) P : max. ¢ subject to Ax < b seeks to optimize
a linear objective ¢"@ over the convex polyhedron [Az < b]. If [Ax < b] is
nonempty and bounded then the optimal solution always exists. LPs are solved
using techniques such as Simplex [8] and interior point techniques [4]. The former
technique is polynomial time for most instances, whereas the latter can solve LPs
in polynomial time.

Vector Fields and Lie Derivatives. A wvector field D over R™ associates each
point & € R™ with a derivative vector D(x) € R™. Given a system of differential
equations of the form #; = f;(x1,...,2,), we associate a vector field D(x) =
(fi(x),..., fo(x)). A vector field is affine if the functions fi, ..., f, are all affine
in «. For instance, the vector field Do(z,y) : (x +y,z — 2y — 3) is affine.



Let D(xz) = (fi(x), ..., fa(x)) be a vector field over R™. The Lie derivative
of a continuous and differentiable function h : R" — R is Lp(f) = (Vh)-D(x) =
Py % - fi(x). The Lie derivative of the function = + 2y — 2 over the vector
field DO(a:, y) shown above is given by

Lpy,(x+2y—2)=1-(z+y)+2-(z—2y—3)=3r—-3y—6.

Hybrid Systems. To model hybrid systems we use hybrid automata [14].

Definition 1 (Hybrid Automaton). A hybrid automaton ¥ : (n,L,7,60,D,I, {;)
consists of the following components:

— n is the number of continuous variables. These variables are denoted by the
set V.=A{x1,...,z,}.

— L, a finite set of locations; £y € L is the initial location;

— T, a set of (discrete) transitions. Each transition T : ({1 — la,p;) € T
consists of a move from €1 € L to £y € L, and an assertion p, over VUV’,
representing the transition relation;

— Assertion O, specifying the initial values of the continuous variables;

— D, mapping each £ € L to a vector field D({), specifying the continuous
evolution in location £;

— I, mapping each £ € L to a location invariant, I(¢).

A computation of a hybrid automaton is an infinite sequence of states (I, x) €
L x R™ of the form (ly, xo), (l1,x1), {l2,x2), ..., such that initially ly = ¢y, and
xo € [O]; and for each consecutive state pair (l;, x;), (liy1, ®;11), satisfies one
of the consecution conditions:

Discrete Consecution: there exists a transition 7 : (¢1, 03, p,) € T such that
li =01, lix1 = Lo, and (@, x;11) | pr, OF

Continuous Consecution: [; = [;;; = ¢, and there exists a time interval
[0,9), > 0, and a time trajectory 7 : [0,0] — R™, such that 7 evolves from x;
to x; 41 according to the vector field at location ¢, while satisfying the location
condition I(¢). Formally,

1. 7(0) = @1, 7(0) = x2, and (V¢ € ]0,4]), 7(t) € [L(¢)],
2. (Vt € [075))a % - D(€)|m:‘r(t)

Definition 2 (Affine Hybrid Automaton). A hybrid automaton ¥ is affine
if the initial condition, location invariants and transition relations are all repre-
sented by a conjunction of linear inequalities; and furthermore, the dynamics at
each location D () is an affine vector field.

The rest of the paper focuses solely on affine systems. However, our results also
extend to the non-affine case.

Ezample 1. Affine hybrid systems are used to represent a variety of useful sys-
tems. Consider the oscillator circuit shown in Figure 1(a). The circuit consists of
a capacitor that may be charged or discharged using a voltage triggered switch
S that is controlled by the voltage across the capacitor V.. The corresponding
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Fig. 1. An oscillator circuit (left) and its affine hybrid automaton model.

affine hybrid automaton H has two modes C' and D corresponding to the charg-
ing and discharging; and two variables V. modeling the voltage of the capacitor
and ¢t modeling time. Switching between each mode takes place when the capac-
itor has charged (or discharged) to 90% (10%) of its final charge. We assume the
mode invariants I(C) : 0 <V, <4.5and I(D): 0.5 <V, <5.

The post-condition and time elapse operations are the two fundamental prim-
itives for over-approximating the reachable sets of a given hybrid automaton.
Given an assertion ¢ over the continuous variables, its post-condition across a
transition 7 : (¢, m, p) is given by post(p, 7)[y] : (3 x) (p(x) A p(x,y)). The
post-condition of a polyhedron is also polyhedral. It is computed using intersec-
tion and existential quantification.

Similarly, given an assertion ¢, the set of possible time trajectories inside a
location ¢ with invariant I(¢) and dynamics D(¥) is represented by its time elapse
¢ = timeElapse(p, (D, I)). However, for affine hybrid systems, the time elapse of
a polyhedron need not be a polyhedron. Therefore, the time elapse operator is
hard to compute and represent exactly. It is over-approximated by the union of
a set of polyhedra. Such an approximation is called a flowpipe approximation.

Using post-conditions and time elapse operators as primitives, we can prove

unreachability of unsafe states using a standard forward propagation algorithm.
Such an algorithm is at the core of almost all safety verification tools for hybrid
systems [15,2, 30, 10]
Template Polyhedra. The goal of this paper is to implement symbolic model
checking on hybrid systems using template polyhedra. We now present the basic
facts behind template polyhedra, providing algorithms for checking inclusion, in-
tersection, union and post-condition. Additional details and proofs are available
from our previous work [29].

A template is a set H = {hy(x),..., hy,(2)} of linear expressions over x.
We represent a template as an m x n matrix H, s.t. each row H; corresponds
to the linear expression h;. Given a template, a family of template polyhedra
may be obtained by considering conjunctions of the form A, hi(x) < ¢;. Each
polyhedron in the family may be obtained by choosing the constant coefficients
Cly. yCm.
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Fig. 2. Polyhedra (a), (b) and (c) are template instances for the template H shown in
Example 2, whereas (d) is not.

Definition 3 (Template Polyhedron). A template polyhedron over a tem-
plate H is a polyhedron of the form Hx < c, wherein ¢ € R''. Such a polyhedron
will be represented as (H, c).

Ezample 2. Consider the template H = {z, —z,y,—y,y — x,x — y}. The unit
square —1 <z < 1A —1 <y < 1 may be represented by the template polyhedron
(H,(1,1,1,1, 00, 00)). Figure 2 shows three polyhedra that are instances, and one
that is not.

Let ¢1 < eo signify that for each row i € [1, |e1]], e1; < e,

Lemma 1. If ¢1 < ¢ then (H,c1) C (H,ca). However, the converse need not
hold.

Example 3. The set C': = = 0 Ay = 0 may be represented using the tem-
plate H = {z,—z,y,—y,z + y} using the instances vectors ¢ : (0,0,0,0,0),
¢ :(0,0,0,0,100), ¢ : (—10,0,0,0,0), and e3 : (0,—100,0,0,0). In each case
(H,¢;) C (H,c). However ¢; £ c. Intuitively, “fixing” any four of the rows to 0
renders the remaining constraint row redundant.

Consider a region C' C R" and template H. There exists a smallest template
polyhedron (H, ¢), with the least instance vector ¢, that over-approximates C,
denoted ¢ = ay (C). Furthermore, for any template polyhedra (H,d) that over-
approximates C, ¢ < d. Each component ¢; of ay(C) may be computed using
the optimization problem ¢; : max. h;(x) s.t. @ € C. Note that if C' is a poly-
hedron, then its best over-approximation according to a template H is obtained
by solving |H| linear programs.

Lemma 2. For any closed set C C R", the polyhedron Hx < ap(c) is the
smallest template polyhedron that includes C'.

Example 4. Let H = {x, —x,y, —y} be a template. Consider the set C : (22 +
y? < 1) of all points inside the unit circle. The smallest template polyhedron



containing C' is the unit square that may be represented with the instance vector
(1,1,1,1). Additionally, if the expressions z + y,z — y, —x — y,x + y are added
to the set H, the smallest template polyhedron representing C' is the octagon
inscribed around the circle.

It is algorithmically desirable to have a unique representation of each set
by a template polyhedron. Given a template polyhedron (H,c), its canonical
form is given by cang(c) = ag(Hz < c¢). An instance vector is canonical iff
c=cang(c).

Lemma 3. (a) (H,c) = (H,d) iff cany(c) = cang(d), and (b) (H,c) C (H,d)
iff cang(c) < cang(d).

Thus, canonicity provides an unique representation of template polyhedra.
Any representation can be converted into a canonical representation in polyno-
mial time using optimization problems.

The union of (H, ¢1) and (H, c2) (written ¢;lles) is defined as ¢ = max(¢y, ¢2),
where max denotes the entry-wise minimum. Similarly, intersection of two poly-
hedra ¢, ¢ is represented by ¢ = min(eq, ¢2).

Given a template polyhedron Py : (J,¢), and a discrete transition relation
7, we wish to compute the smallest template polyhedron Py : (H,d) that over-
approximates the post-condition post(Fp, 7). Note that the templates J and H
need not be identical. The post-condition d : posty({J,c),7) is computed by
posing an optimization query for each d;: max. H;y subj. to Jx < c A p,(x,y).
The resulting d is always guaranteed to be canonical.

Lemma 4. The polyhedron posty(Py,T) is the smallest template polyhedron
containing post(Py,T).

In program analysis, template polyhedra with a fixed set of template have
been used previously. For instance, given variables x1,...,x,, intervals are ob-
tained as template polyhedra over the set Hy = {1, —x1,22,...,Zn, —xn} [7].
Similarly, the octagon domain is obtained by considering the template expres-
sions Ho = Hy U {%xz; £ ;|1 < i < j < n} [19]. Other domains based on
template polyhedra include the octahedron domain consisting of all linear ex-
pressions involving the variables x1, ..., 2, with unit coefficients [6].

3 Flowpipe Construction

We now consider flowpipe construction techniques to over-approximate the time
trajectories of affine differential equations. An instance of flowpipe construction
problem: (H, cg,inv,D,d) consists of the template H, an initial region (H, cp),
the location invariant (H,inv) and an affine vector field D representing the dy-
namics and a time step § > 0. We assume that (H,inv) and (H, ¢g) are nonempty
and bounded polyhedra.

Ezample 5. Consider the oscillator circuit model from Example 1. An instance
consists of a template H = {v,—v,t,—t,v — t,t — v}, initial condition v €
[0,0.1],¢ = 0 and location invariant v € [0, 5], ¢ € [0, 100].



Let F(t) denote the set of states reachable, starting from (H, cp), at some time
instant ¢ > 0. Similarly, §[¢, ¢+ 0) denotes the set of reachable states for the time
interval [t,t + §).

Formally, we wish to construct a series of flowpipe segments

<Had0>7<H7d1>a<Had2>7"'7<H7dN>""

such that each segment d; over-approximates §[jd, (j+1)d). There are two parts
to our technique:

Flowpipe Approximation: Approximate §[0,4d) given (H, cp).
(i

Set Integration: Given an approximation §[id, (i +1)d), approximate the next
segment F[(i + 1), (i + 2)4).

Together, they may be used to incrementally construct the entire flowpipe.

Set Integration. By convention, the j* order Lie derivative of a function f is
written f). Let f: ¢« be a linear function. By convention, we denote its j*
order derivative as c¢Wx.

Definition 4 (Taylor Series). Let h be a continuous function and differen-
tiable at least to order m + 1. It follows that

thrl
(m+1)!"

mwzmm+hmmﬁ+mmmﬁ+~~+mwmﬁf

o mf+mmﬂkm

where 0 € [0,t). The last term of the series is known as the remainder.

Let Sy : (H,d}) be an over-approximation of §[kd, (k+1)d). We wish to compute
an approximation Syy1 for the time interval [(k 4 1)d, (k + 2)d). In other words,
we require an upper bound for the value of each template row H;x. Let x(t) be
the state at time instant ¢. Using a Taylor series expansion, we get:

5m (m) 5m+1
!Hi z(t) + —

m

H™ Vgt +0), (1)

Hia(t+6) = Halt) 4 + CES

where 0 < 0 < §. Note that the first m terms are functions of x(t), whereas the
remainder term, is a function of (¢t + ). The exact value of 6 is not known and
is conservatively treated as a nondeterministic input. In other words, we may
write H;x(t+ ) as a sum of two expressions H;x(t+0) = g;Tx(t) +r;"x(t +6),
wherein g; represents the sum of the first m terms of the Taylor series and 7;
represents the remainder term.

Assuming ¢ € [jd, (j + 1)0), we have x(t) € Si. Therefore, an upper bound
on g; is obtained by solving the following LP:

9" = max. g;"x subj.to. € S (2)

Similarly, even though the remainder term cannot be evaluated with certainty,
we know that «(t +60) € (H,inv). A bound on r;x(t 4 0) is, therefore, obtained
by solving the optimization problem

m
T

' = max. r; "y subj.to y € (H,inv) (3)



The overall bound on H;z(t+6) is ¢7"* + 7", Finally, the over-approximation
Sk+1 is obtained by computing ¢/"** + r"%* for each template row i € [1, |H]].
Note that in the optimization problem above, the time step ¢ is an user-input

(m)

constant, each Lie-derivative g, is affine and Sj; is a template polyhedron. As

a result, the optimization problems for affine vector fields are linear programs.

Ezample 6. Following Example 5, consider a flowpipe segment v € [0,0.2] At €
[0,0.1] by § = 0.1, according to the differential equation © = 25¢

first row of the template is H; : v. The first 6 Lie derivatives of H; are tabulated
below:

0 1 2 3 4 5 6
) b—v|—b+v|[b—v|=bF+v[b—v|[=5+v
2 4 8 16 32 64

Following, Eq. 1, we use exact arithmetic to obtain

o(t +8) = v+ S50 4 =5tv | Bougss) . —StuO) o
- 0.9515294244791670(0) + 0 2138528802083 + 0.131 x 10~ 7w (0)

9o 0

Now observing that v(0) € [0,0.2], we obtain g{** = 0.4341 (upto 4 decimal
places). Similarly, using the location invariant v(0) € [0, 5], we obtain r§** =
0.131 x 1078 x 5. As a result, we obtain a bound v(t + 0.1) < 0.4341 (upto
4 decimal digits). Repeating this process for every template row gives us the
required flowpipe approximation for the segment [0.1,0.2).

Flowpipe Approximation

We now seek an approximation (H,dg) for §[0,0). Therefore, for each tem-
plate row H,;, we wish to bound the function H;x as an univariate polynomial
of degree m + 1 over the time interval [0,). Let a;j, 0 < j < m be the re-

N )
sult of the optimization a;; = max w subj.to. ® € (H,co) and a;m+1 =

H™Y () . .
max —L——+= subj.to. y € (H,inv) -

Each optimization problem is an LP and can be solved efficiently. Consider
the polynomial p;(t) = Y77, ait’ + @i mprt™ L

Lemma 5. Fort >0 and x € (H,co), Hix(t) < p;(t).

1 o H™ (2(0 ma1 H™ D (0
H(t) = Hiw(0) + tH @ (0) + - ¢ 2O gt [ __(20)

)

< o+ it + o Q™ + gt B < and £ 0

< pi(t)
The required bound for the function H;x for the time interval ¢ € [0,0) may now
be approximated by maximizing the univariate polynomial p;(t) over the interval
[0,6). The maximum value of an univariate polynomial p in a time interval
[T, T2] may be computed by evaluating the polynomial at the end points T, Tz
and the roots (if any) of its derivative p’ lying in that interval. The maxima in
the interval is guaranteed to be achieved at one of these points.
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Fig. 3. Flowpipes for Example 1: (a) one complete charge/discharge cycle and (b) the
time interval [0, 49].

Ezxample 7. Consider the problem instance shown in Example 5. We wish to
compute an over-approximation of §[0,0.1) given v(0) € [0,0.1] and ¢(0) = 0.
We consider a bound H; : v over ¢ € [0,0.1). Example 6 shows the lie derivatives.
The following table shows the bounds ai,...,as corresponding to the initial
condition and invariant regions (accurate to 4 decimal places).

0]1] 2 3 4 [ 5 ] 6
0.1]2.5]—0.6125/0.1058]|—0.01276[0.0013][-0.00106]

As a result, we have that v(t) < —0.00106t°+ 0.0013¢> — 0.01276t* + - - - +0.1 for
all t € [0,0.1). This polynomial is increasing in this range and has its maximum
value at ¢ = 0.1. This yields a bound v < 0.3439 for the segment F[0,0.1).
Similarly, we can compute bounds for all the rows in the template.

Thus, given an instance of the flowpipe problem, we compute an initial flow-
pipe segment (H,dy) 2 §[0,0) by computing univariate polynomials, one per
template row, that upper bound the Taylor series and in turn finding the max-
ima of these polynomials. This initial flowpipe segment is then advanced by using
set integration. Following this scheme, Fig. 3 shows the flowpipe constructed for
the instance in Example 5. Let dg,...,dyx be the results of the flowpipe con-
struction on a given instance.

Theorem 1. The disjunction \/f\io (H,d;) contains all the time trajectories
starting from (H,co) and evolving according to D inside (H,inv).

Termination. In theory, the flowpipe construction produces infinitely many seg-
ments. However, we may stop this process if the flowpipe “exits” the invariant,
ie, (H,dy) N (H,inv) = @ for some N > 0; or “cycles” back into itself, i.e.,
(H,dn) C (H,d;) for j < N. The flowpipe construction can be stopped upon
encountering a cycle since each subsequent segment will lie inside a previously
encountered segment.

Ezxtensions. Our technique is directly applicable to cases where the templates
may consist of nonlinear functions and the dynamics may be nonlinear. In each



Table 1. Optimization problems for flowpipe construction.

Dynamics (D)|Template (h;)|Invariants (I) Optimization Problem.

Affine Linear Polyhedral Linear Programming

Affine Ellipsoidal Polyhedral Quadratic Programming [4]
Polynomial  |Polynomial [Semi-Algebraic|Sum-of-Squares Optimization (SOS) [21]
Continuous  |Continuous |Rectangular Interval Arithmetic [13]

case, we encounter different types of optimization problems with differing objec-
tives and constraints. Table 1 summarizes the different optimization problems
that are encountered.

Matriz Ezponentiation. Set integration can also be computed using matriz ex-
ponentiation for affine systems [5]. In this approach, we compute a matrix ex-
ponential T = 49, corresponding to the dynamics D(x) = Az. Given the
initial segment Sy, approximating §[0,4), we may compute successive sets as
Si+1 = TS;. However, computing this transformation requires an expensive ver-
tex representation of S;. On the other hand, our approach works purely on the
constraint representation of template polyhedra using LPs for set integration.
Location Invariant Strengthening. The location invariant bounds the remainder
term in our construction. Therefore, tighter bounds on the remainder can result
from stronger location invariants. Such a strengthening can be computed prior
to each flowpipe construction using a policy iteration technique. Using invariant
strengthening, each flowpipe construction instance can be performed more ac-
curately using a better bound for the location invariant. Curiously, a stronger
invariant region may result in fewer flowpipe segments and quicker termination,
thus reducing the overall time taken by our technique. The details of the invari-
ant strengthening technique appear elsewhere [27].

4 Experiments

Our prototype tool TIMEPASS implements the techniques described in this paper
using template polyhedra for safety verification.

Template Construction. A larger set of template expressions provides a richer
representation of template polyhedra. However, the size of each LP instance
encountered is linear in the number of templates. Therefore, too many templates
impacts performances.

Our template construction strategy uses two basic sources of template ex-
pressions: (a) Fixed templates such as boxes and octagons; and (b) Expressions
occurring in the hybrid system description. Fixed templates used include bozx
templates which include the expressions +x;, for each continuous variable z; in
the system, and octagon templates of the form +x; + z; for all z; # z;.

Additionally, we enrich templates by computing their Lie derivatives. This
process is important since the key flowpipe construction steps involve finding



Table 2. Performance of our tool on hybrid systems benchmarks. All timings are in
seconds and memory in MBs. Legend: Inv. Str.: Invariant Strengthening, H: Template
size, 0: step size, T:Time, Mem: memory, Prf?: Property proved.

Name || Description Size/Params w/o Inv. Str.|| Inv. Str.
#Var|#Loc|#Trs||H||d T |Prf? T |Prf?
focus [24] 2 2 1 28 0.2 ||0 Y 0 Y
reigen - 3 2 1 54 0.2 ||0.1 |Y 0.2 |Y
flow - 3 2 1 54 10.2 (|0.1 |Y 0.1 |Y
convoi - 5 1 1 90 (0.2 ||]10 |Y 18 Y
therm 1] 2 3 4 28 10.05[1.1 |Y 1.2 |Y
nav01 ||Benchmark [9]||4 8 18 |64 |0.2 (]260 |Y 22 Y
nav02 - 4 8 18 |64 0.2 ||362 |Y 23 Y
nav03 - 4 8 18 |64 0.2 (|390 |Y 20 |Y
nav04 - 4 8 18 |64 0.2 ||1147|Y 18 Y
nav05 - 4 8 18 |64 0.1 ||7 N 513 |Y
nav06 - 4 8 18 |64 |0.2 (|45 |N 1420|N
nav07 - 4 15 |39 |64 [0.2 [|1300|N 572 |Y
nav08 - 4 15 |39 |64 0.2 ||139 |N 572 |Y

bounds on the Lie derivatives of the template rows (and their convex combina-
tions). Therefore, tracking bounds for such rows as part of the template can lead
to tighter bounds. The eigenvectors corresponding to the real eigenvalues of the
RHS matrix of the differential equations also form an interesting set of template
expressions. The Lie derivatives of such expressions yield back the original ex-
pression upto a constant scale factor. As a result, the Taylor polynomials for
such expressions can be computed precisely without truncation.

Numerical Issues. It is possible to implement most of the algorithms described in
this paper using exact arithmetic. In our experience, however, exact arithmetic
LP solvers exhibit large performance overheads. Hence, our tool primarily uses
a floating point implementation of the simplex algorithm. The LP solution can
then be verified using the Karush-Kuhn-Tucker (KKT) conditions to lie within
an error tolerance bound (~ 1077). Failing, the error tolerance bounds, the
verification may be performed an exact arithmetic simplex implementation. All
our experiments, however, were performed with a floating point solver.

Parameters. The time step J for flowpipe construction has the largest impact on
the performance. A large time step speeds up the convergence but results in a
coarser approximation. In general, the ideal choice of time step is hard to realize.
Therefore, we use a trial-and-error approach to successively reduce/increase 0 to
arrive at a large enough time step that proves the property of interest.

Ezxperiments. Table 2 shows the performance of our tool on some hybrid systems
benchmarks consisting of small but complex systems, designed to test the accu-
racy of the flowpipe construction and its propagation. A detailed description is
available elsewhere [24,9]. We report on our performance with and without the
use of invariant strengthening. Our tool successfully proves safety for a most of



Table 3. Flowpipe results on systems with many variables. Note: Timeout is set to 1h.

n |#Sys

HI||#Loc|#Trs|| Time(sec) Mem (Mb) |Proved?
Avg.|Max |Min||Avg.|Max|Min
10{10 |80 ||7 6 21 152 1 |5 |7 |3 10/10
20|10  |160((14 |13 |[30 (91 |8 ||11 |13 |5 10/10
40|10  [320([21 |20 [{192 [975 |44 ||105 |88 |126 || 10/10
80|6 640|[29 |28  ||1386|> 1h|420 ||700 |743 |608 || 5/6

the benchmarks instances. Note that invariant strengthening plays a key role, es-
pecially for the larger examples. As expected, the use of invariant strengthening
vastly reduces the time taken to prove many properties. Our timings on the other
examples are quite competitive with those of PHaVer [10] and HSolver [25]. Our
approach also provides the first known verification for benchmarks nav05-nav08.
Figure 4 depicts the reach sets computed by our tool for the NAVO5 and the
NAVO8 benchmark examples.

We stress test our flowpipe construction on systems with a large number of
variables. Since we do not have access to meaningful models in a suitable format,
we use a scheme for generating a family of systems with known behaviors and
verify these using our tool. Each system H,, has n > 0 variables. It has a primary
mode (o, and secondary modes 1, ..., 0p,.

The dynamics at location £y are ' = A(x—t), where A is an invertible matrix
with negative real eigenvalues and t is a target point. These dynamics ensure
that ¢ is a stable equilibrium point. The mode invariant I(¢y) is a hypercube
|x| < t+ e for a parameter ¢ > 0. To generate A, we choose negative eigenvalues
A at random, and compute A = X ' AX for invertible X.

The secondary modes consist of regions around the corners of the primary
mode hypercube, which are unreachable from the interior of the primary mode.
The initial location is £y and © : & € [—eg,e0]. We seek to verify that the
secondary modes are unreachable. We first generate many instances with varying
dynamics A, target vectors t and number of secondary modes. We also fix e = 1
and €y = 0.1. Table 3 shows the results of running our tool on systems of varying
sizes. To minimize the run-time overhead especially for large systems, these
experiments were carried out without using policy iteration to strengthen the
invariant region. It clearly demonstrates the scalability of our approach. Also, it
demonstrates that our flowpipe is accurate enough to prove a vast majority of
instances.

5 Conclusion

Template polyhedra are shown to be an effective tool for the verification of hybrid
systems by avoiding the need to perform costly vertex enumerations using tem-
plate polyhedra. In the future, we hope to study heuristics for choosing template
expressions that would enable application of our technique to the counterexam-
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Fig. 4. Reach sets (projected over z,y) along with the unsafe cell for the NAVO5 (left)
and NAVOS (right) benchmarks.

ple guided refinement (CEGAR) framework. We hope to extend our techniques
to nonlinear systems and apply it to more meaningful examples.
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