Validating Numerical Semidefinite Programming
Solvers for Polynomial Invariants.

Pierre Roux!, Yuen-Lam Voronin?, and Sriram Sankaranarayanan?

! ONERA - The French Aerospace Lab, Toulouse, FRANCE
2 University of Colorado, Boulder, CO, USA

Abstract. Semidefinite programming (SDP) solvers are increasingly used as
primitives in many program verification tasks to synthesize and verify polyno-
mial invariants for a variety of systems including programs, hybrid systems and
stochastic models. On one hand, they provide a tractable alternative to reasoning
about semi-algebraic constraints. However, the results are often unreliable due to
“numerical issues” that include a large number of reasons such as floating point
errors, ill-conditioned problems, failure of strict feasibility, and more generally,
the specifics of the algorithms used to solve SDPs. These issues influence whether
the final numerical results are trustworthy or not. In this paper, we briefly survey
the emerging use of SDP solvers in the static analysis community. We report on the
perils of using SDP solvers for common invariant synthesis tasks, characterizing
the common failures that can lead to unreliable answers. Next, we demonstrate ex-
isting tools for guaranteed semidefinite programming that often prove inadequate
to our needs. Finally, we present a solution for verified semidefinite programming
that can be used to check the reliability of the solution output by the solver and a
padding procedure that can check the presence of a feasible nearby solution to the
one output by the solver. We report on some successful preliminary experiments
involving our padding procedure.

1 Introduction

Program analysis techniques using abstract interpretation, especially numerical domain
program analysis, rely fundamentally on the ability to reason about constraints expressed
in a suitable logic that stems from the abstract domain. Typical reasoning tasks include
the problem of checking satisfiability of an assertion in the logic used in emptiness
and inclusion checks, and characterizing elements of the cone of consequences of an
assertion used to compute the transfer function and join operations [24]. The process of
using basic solver primitives has led to many constraint-based approaches to synthesizing
and verifying invariants for programs [23,69,33,34,2,35]. Initial approaches that focused
on linear systems [69,33,34] have been generalized to address nonlinear (polynomial)
systems [2,36]. Other extensions to hybrid systems and stochastic systems have also
been proposed [62,25,18].

However, extensions to polynomial systems necessarily face the challenge of reason-
ing about polynomial inequality constraints. While the problem of checking satisfiability
of these constraints is well-studied, precise solutions to this problem are as yet intractable
for large problems. Likewise, computing the cone of consequences precisely is also

2 Pierre Roux, Yuen-Lam Voronin, and Sriram Sankaranarayanan

prohibitively expensive in practice, requiring quantifier elimination. A more tractable
alternative uses a convex relaxation from the given polynomial system to a semidefinite
programming problem (SDP) using the sum of squares (SOS) relaxation [73,46,56,55,54].
Such a relaxation guarantees soundness when used in invariant checking/synthesis tasks,
and has been shown to have nice theoretical guarantees. However, in practice, the ap-
proach requires us to use SDP solvers [79]. It is well-known that precise solutions of
SDPs is a hard and open research question. For instance, there are SDPs which have
a feasible solution but no rational feasible solutions. Therefore, most solvers seek an
approximate solution. At the same time, it is well known (but not well documented)
that numerical SDP solvers are also hard to use in practice. The presence of “numerical
issues” leads to unreliable answers from the SDP solvers, that in turn lead to unsound
results when employed in program analysis tasks.

In this paper, we characterize numerical issues into many types. At one end of the
spectrum, we have issues that arise from floating point errors and approximate answers,
since numerical solvers seldom reach a true optimal solution. At the other end, certain
problems are not well posed, depending on the nature of the solution technique used.
One common reason involves the failure of strict feasibility. Using actual examples from
the literature, we show how the answers from popular numerical SDP solvers can be
wrong and potentially mislead even a careful user who pays due attention to the various
errors reported by the SDP solver.

Finally, we address some of the numerical problems raised. We first present a sound
verification procedure that can check the answer from the solver and help us decide
whether the answer is qualitatively correct. Next, we provide a padding procedure that
helps reformulate a given problem into a stricter version so that if an approximate,
floating point solver can find a reliable answer to the stricter version, then we conclude
feasibility of the original version. We integrate our framework into a polynomial invariant
synthesis/verification task, showing how our ideas can successfully address numerical
issues arising from the solver.

2 Motivating Examples

In this section, we illustrate through two examples the scenario where numerical SDPs
give seemingly sensible solutions to simple invariant generation problems, and yet the
generated invariants are not sound.

Consider the program in Fig. 1. Does there exist an inductive invariant® in the
form {(z1,x;) € R? | p(x1,22) > 0} for some polynomial p? A tractable sufficient
condition that guarantees this can be formulated using the SOS optimization approach
(see Section 3), resulting in an SDP instance that can be solved by numerical solvers. The
widely used SDPT3 [78] solver reports a solution. Although all the DIMACS errors [71]
are less than 10~8, not raising any suspicion, we found traces of the program that violate
this purported invariant (see Fig. 1).

As another example, we consider a program from ADIJE et al. [1] and the “invariant”
they offer, generated with numerical solvers (Fig. 2). Note that the purported invariant is

3 In the remainder of this paper, the word “invariant” is used for inductive invariant.

Validating Numerical Semidefinite Programming Solvers 3

(x1, x2) € {@1, 22 | 2] + 23 < 1.5%}
while (1) { // Find Inv. p(xz1,xz2) >0

x1l = x1 * x2;
x2 = —-x1;
}
() 14 2.4623 + 2.46x3 — 5 x 10721
PiT1, %2) —2.462%22 — 5 x 10~ "z

Fig. 1: (Left) An example program, and “loop invariant” p(x1,x2) > 0 synthesized
using numerical solvers. (Right) The claimed “invariant” and dashed lines showing
violations.

(x1, x2) € [0.9,1.1] x [0,0.2]
while (1) {
pre_x1 = x1; pre_x2 = x2; + 0.8037z5 4 3.0297z% — 2.5924x
if (x172 + %272 <= 1) {
x1l = pre_x1"2 + pre_x2"3;

2.510902467 4 0.0050x1 + 0.0148x2 — 3.0998:&%

— 1.526621 22 + 1.913327 22 + 1.8122z1 23 — 1.6042z

} :is: I:re_xlﬁ% + pre_x272; —0.051255 25 + 4.44302° 22 + 1.8926z, x5 — 0.54647
x1 = 0.5 » pre_x1°3 4 0.20842; — 0.58662 x2 — 2.2410a5 5 — 1.5714x 73
- 06t g;:_;ﬁ;e—xyz; 1 0.0890z1 24 + 0.965623 — 0.00982° + 0.032027 2>

} + 0.3 * pre_x2°2; +0.0232z 23 — 0.2660z5 x5 — 0.774622 x5

} — 0.9200z; 25 — 0.6411z5 > 0

Fig.2: (Left) An example program taken from from ADIJE et al. [1] (Example 4).
(Right) Purported invariant at loop head synthesized using SDP solvers [1].

1 R 1 R
0 R 0f R
—1] 1L]
| | | | | |
~1 0 1 2 3 4 -1 0 1

Fig. 3: (Left) The candidate invariant from Fig. 2 with arrows showing concrete tran-
sitions. The arrows leaving it are counterexamples to its inductiveness. (Right) The
invariant of degree 8 whose soundness is proved using the approach in this paper.

4 Pierre Roux, Yuen-Lam Voronin, and Sriram Sankaranarayanan

indeed not inductive: one can find points in it whose image after one iteration of the loop
body exits the invariant (Fig. 3). Fig. 3 also depicts an actual invariant, proved using the
method in this paper.

3 Sum of Squares (SOS) and Semidefinite Programs (SDP)

In this section, we provide the background for sum of squares (SOS) optimization from
the perspective of proving entailments for program analysis (invariant synthesis/verifica-
tion) tasks. We then trace the steps along which SOS optimization problems are relaxed
to semidefinite programs (SDP).

Let R denote the set of real numbers and x : (21, ...,z,) denote a vector of real-
valued variables. The ring of multivariate real polynomials over x is denoted by R[x].
The degree of any polynomial p(x) € R[x] is denoted by deg(p). A template polynomial
is of the form p(c,x) : Zj:1 ¢; pj(x), where p1, ..., ps are basis polynomials and
c:(c1,...,cs) is a placeholder for parameters serving as scalar multiples of the basis
polynomials. A generic template polynomial of degree d > 0 is formed by choosing all

monomials of degree up to d as the basis polynomials, and has s = (”jd) parameters.

3.1 Semi-algebraic Assertions and Entailment Problems

A semi-algebraic assertion ¢ is a finite conjunction of polynomial inequalities:
w: p1(x) =0 A - A pp(x)>0.

It denotes a corresponding semi-algebraic set [¢] : {x € R™ | x |= ¢}. As such, semi-
algebraic assertions subsume useful abstract domains such as polyhedra and ellipsoids.
They also represent a rich class of constraints with a decidable entailment checking
problem [9]. We define two classes of problems involving semi-algebraic sets that are
commonly used as primitives.

Definition 1 (Entailment Checking). Given two semi-algebraic assertions ¢ and
over X, check if ¢ =, Le., forallx € R", if x = ¢, then x |=).

Definition 2 (Parametric Entailment). Let ¢ : (¢, .. ., ¢s) represent parameters. The
input to a parametric entailment problem consists of k pairs (i, p;)5_,, wherein p; is a
semi-algebraic assertion and p;(c,x) is a template polynomial. The goal is to compute
a value c such that all the entailments hold:

(1 E pi(e,x) >20) A -+ A (¢ FE pi(c,x) >0).

The entailment checking and its analog of parametric entailment checking are funda-
mental primitives that we will use for synthesizing and checking invariants of programs.
The example below illustrates the application of these primitives.

Validating Numerical Semidefinite Programming Solvers 5

(x1, x2)€I:{(zl,$2)|w§§1 A $§§1} 2
while (1) {
pre_xl = x1; pre_x2 = x2;
if (x1 >= x2) { 1r N
x1l = 0.687 % pre_x1 + 0.558 % pre_x2
- 0.0001 * pre_x1 % pre_x2;
x2 = -0.292 % pre_x1 + 0.773 % pre_x2; (= |
} else {
x1 = 0.369 % pre_x1 + 0.532 % pre_x2
- 0.0001 % pre_x172; 1k B
x2 = -1.27 » pre_x1l + 0.12 x pre_x2
- 0.0001 * prex_xl = pre_x2;
} ! -2 | | |

2 -1 0 1 2

Fig. 4: (Left) An example program. (Right) Invariant [p(z1,x2) > 0], along with exe-
cutions that start inside the initial set I (square).

Invariant checking: Consider the program in Fig. 4. We wish to prove that all executions
remain inside a safe set S : {(x1,z2) | |z1] <2 A |z2| < 2}. To prove this, we consider
an inductive invariant {(x1, z2) | p(x1,z2) > 0}, where

p(z1,x2) 1 37 — 3 + 25 — 22329 + 2235 — 1221 — 102222 — 62125 — 625, (1)

Fig. 4 shows the invariant region p(z1, 22) > 0. To show that it is indeed an invariant
that establishes .S as a safe set, we check that the following conditions hold:

(@) Initial condition: 1 — 23 >0 A 1 —22>0 = p(xy,x9) >0,

(b) Consecution (loop) conditions: Let 11 (x1,x2) : (0.687x1 +0.55825 — 0.000121 z2,
—0.292x1 4 0.773z2) denote the transition enabled by the condition z1 > x5, and
To(w1,22) 1 (0.36921 + 0.53222 — 0.000127, —1.2721 + 0.1229 — 0.00012122)
denote the transition enabled by the condition x1 < 2. We require two conditions,
corresponding to the two transitions in the loop:

() 21 —x2 >0 A p(x1,22) >0 E p1 > 0, where p; = po 7y, and
(ii) zo — 21 >0 A p(x1,22) >0 | po > 0, where g = p o To.
(c) Safety conditions: p(x1,22) >0 E —2<21 <2 N —2<1x9 < 2.

The invariant checking problem is then a series of polynomial entailment checking.

Invariant synthesis: The invariant synthesis problem requires us to synthesize polynomi-
als that satisfy some entailment conditions, such as p(z1, z2) in (1) satisfying the initial,
loop and safety conditions. To do so, we parameterize a template polynomial as follows:

4

p(c x) . c1 + coxy + c3x9 + C4ZE% +c5x129 + cﬁxg + C7m:{’ + 08x1:r§+ ?)
’ ng%mz + cloxg + 011913‘11 + clgx?xg + 0131}%,@% + 014.’,13‘11:% +ci5x5)

We then search for values of ¢ = (¢y, .. ., ¢15) such that the following entailments hold:

(a) Initial condition: 1 — 23 >0 A 1—23 >0 = p(c,x) >0,

6 Pierre Roux, Yuen-Lam Voronin, and Sriram Sankaranarayanan

(b) Loop conditions: The loop condition for the transition 71 is (21 —2z2 > 0 A p(c, x) >
0 E pi(e,x) > 0), where p; = p o 7. However, we note that in this condition, a
parametric polynomial inequality appears on the antecedent side. This leads to hard
bilinear optimization problems that are beyond the scope of this paper (see [68] for
a discussion of this issue). We impose a stronger condition on p that states that p
must be non-decreasing for each loop iteration*:

(i) 1 —22 >0 Epi(c,x) > p(c,x), and
(i) 22 —21 > 0 [pa(c, x) > p(c,x), where pp = p o .

The invariant synthesis problem is thus reduced to a parametric entailment problem.

3.2 Solving Entailment Problems

There are numerous approaches to solving semi-algebraic entailment checking and
parametric entailment problems. We classify these into four broad classes: (a) quantifier
elimination for the theory of polynomial inequalities, (b) interval arithmetic with branch-
and-bound, (c) linear programming relaxations, and (d) sum of squares relaxations that
will be the focus of our exposition.

Exact Approaches: It is well-known that the logical theory of polynomial inequalities
admits effective decision procedures and a quantifier elimination procedure, originally
discovered by TARSKI and further developed by COLLINS, HONG, WEISPFENNING
and others [9,21,22,76,83]. These procedures attempt to solve the entailment problem
¢ = ¥ by checking the unsatisfiability of the assertion p(x) A (—)(x)). This problem
is known to be NP-hard in theory, and hard to solve, in practice. Typical sizes of problems
that can be tackled involve polynomials with ~ 5 variables, and degrees ~ 3 [27].

Likewise, an exact approach for the parametric entailment problem requires to
perform a quantifier elimination of the form:

(Vx) (p1(x) = pi(e,x) 20 A -+ A (%) = pi(e,x) 20) .

Doing so leads to an assertion that can be expressed purely in terms of c. If this assertion
is satisfiable, a solution ¢ = ¢* can be extracted.

Branch-and-Bound (BnB) Approaches: They work over states x that are a priori
restricted to a compact set X. They proceed by subdividing X into finitely many in-
terval (hyper-rectangular) cells. Inside each interval, the entailment is evaluated using
interval arithmetic [31,32] or a branch-and-bound scheme using linear programming
relaxation of the constraints [70]. BnB approaches can be used to check whether an en-
tailment ¢ |=) holds by checking the unsatisfiability of the assertion ¢(x) A (—t)(x)).
They can conclude soundly that the entailment holds or even find a witness x such that
o(x) A (—(x)) is satisfied. Unfortunately, due to computational limitations, these
techniques may also terminate without an answer. Recent work on delta-satisfiability
procedures have carefully analyzed this condition to conclude that a “nearby” formula is

4 Control theorists call (opposite of) such functions Lyapunov functions [30].

Validating Numerical Semidefinite Programming Solvers 7

satisfiable [32]. BnB approaches can extend beyond polynomial programs and invariants.
Currently, BnB approaches are restricted to solving entailment problems. Their applica-
tion to solving parametric entailment problems remains an open challenge. Part of the
challenge involves the optimal subdivision of X to search for solutions c.

Linear Programming (LP) Relaxations: Linear programming relaxations have been
considered for checking polynomial entailment and solving parametric entailment prob-
lems (see BEN SASSI et al. for details and further references [70]). LP approaches are
primarily based on so-called Handelman relaxation and reformulation linearization.
Given an entailment problem with py,...,p; as antecedents. We generate “valid in-
equalities” that are consequences of the original antecedents. This is achieved by simply
multiplying the antecedents together, enriching the set of possible antecedents. This
step is inspired by the Handelman positivstellensatz [37]. Next, we introduce fresh
variables corresponding to each monomial term and turn our polynomial entailment
problem into a linear entailment problem that can be checked using solvers. This step
is called reformulation linearization technique (RLT) [72]. BEN SASSI et al show that
the generation of linear constraints can be performed in the Bernstein polynomial ba-
sis [10,29], rather than the monomial basis to obtain a larger set of valid inequalities.
The LP approach has the main advantage that Simplex solvers can be used with ex-
act arithmetic to completely avoid numerical issues. The recent work of MARECHAL
et al use this approach and generate machine checkable proofs of polynomial entail-
ments [48]. However, LP relaxations yield a “weak” proof system that requires higher
degree terms or a BnB decomposition of the domain, to prove “simple consequences”
suchas -1 <z <1 A -1<y<1 | (224 y* > 0) [70]. Interestingly, the
Handelman relaxation and RLT are implicit in the polyhedral abstract domain for com-
puting semi-algebraic invariants proposed by BAGNARA et al [8]. A related approach
of diagonal SOS (DSOS) has been proposed by ALT AHMADI and MAJUMDAR [3].
Their approach is based on the SOS relaxation wherein instead of reducing to a SDP,
they reduce to an LP by imposing the stronger condition of diagonal dominance on
the associated matrix rather than the semi-definiteness condition that will be described
subsequently in this section. A full comparison of DSOS with SOS relaxations for
program analysis problems is currently open.

Positivstellensatz/Sum of Squares (SOS) Relaxations: The SOS relaxation [46,56] is
an incomplete but efficient way to numerically solve polynomial entailment problems.

Definition 3 (SOS Polynomial). A polynomial p € R[x] is said to be SOS if there exist
polynomials h; € R[x| such that for all x, p(x) = >, h?(x).

Although not all non negative polynomials are SOS, being SOS is a sufficient condition
to be non negative.

Example 1. Consider p : 2z} + 223wy — 2222 + 523. Since p = h? + h2, where
hi : % (2x% + 1290 — 3$§) and hg : % (3:v1$2 + x%) the polynomial p is non
negative, i.e., p(x1,x2) > 0 holds for all ;1,5 € R2.

8 Pierre Roux, Yuen-Lam Voronin, and Sriram Sankaranarayanan

Now consider a polynomial entailment problem of the form:

pi(x) =0 A o A pr(x) 20 = p(x) > 0. 3)
[}
Our goal is to write p as a combination of p1, . . ., py, in the following form:
p=00+0o1p1+ -+ 0k Pk 4
such that gg, ..., o0 are SOS polynomials over x. Let K denote the semi-algebraic

set H/\ff:1 pj > OH, let R(K) denote the cone of consequences of K, i.e, R(K) =

{p(x) | ¢ E p(x) > 0} and M (K) denote all polynomials expressible in the form (4):

M(K) = {p(X) ’ p=00+Y ", 05p) 0 sos}.

Theorem 1 (Putinar’s Positivstellensatz). For all K, M(K) C R(K).
Conversely, if K is compact and M (K) contains a polynomial of the form s(x) =
St @7 — L for some constant L > 0, then M (K) = R(K).

Proof. We will prove the “easy” direction that M (K) C R(K). Letp € M(K). There

exist SOS polynomials oy, . .., o) such that p = og + Zle o;p;. Let x be such that
pi(x) > 0forall ¢ € [1, k]. We have that ¢;(x) > 0 since each o; is a SOS polynomial.

Therefore, we conclude that p(x) = oo(x) + Zle o;(x)p;(x) > 0.
For the converse, we refer the reader to Putinar’s work [63]. O

Thus, a polynomial entailment problem of the form (3) is relaxed to an SOS problem:

find : polynomials oy, ..., 0 € Ry[X]
st. p=o¢+ Zle oipi, 5
0o, ...,0} are SOS.

First, we choose a degree limit d > 0 (d must be an even number because all positive
polynomials have even maximum degree), and select templates oo(c(?), x), . .., op(c®), x)
with unknowns c(?, . .., c¢(*). We then require that p be equal to a polynomial combi-
nation of py, ..., pg with “multipliers” oy, ..., oy as shown above. This yields a set
of linear equations involving ¢(), ..., ¢(®) and the coefficients of p, obtained by com-
paring both sides monomial by monomial and setting their coefficients to be the same.
Finally, we require oy, . . ., o to be SOS. This will be tackled through a reduction to a
semidefinite programming (SDP) problem, as will be explained subsequently.

Example 2. Consider the initial condition check for the program in Fig. 4: p1 (21, 22) >
0 A pa(z1,22) >0 | p(z1,72) > 0 with p;(z1,72) = 1 — 22 and p given in (1).
Our goal here is to find polynomials og, o1, 02 such that p = oy + o1 p1 + 02 p2. For
simplicity, let us write 0g = ¢; + cowy + -+ + c1573, 01 = dq + - -+ + d1525 and

Validating Numerical Semidefinite Programming Solvers 9

09 = €1 + -+ - + e15w5. We obtain equality constraints by equating terms corresponding
to the same monomial on both sides:

c1 + di + ey = 37 (comparing constant terms), . .., —ej5 = 0 (comparing xg).

The SOS problem seeks to satisfy these equalities, and additionally make o, 01, 02
SOS. Solving this as an SDP problem (as will be explained below), we obtain: o1 ~ 11 —
0.1321+1.522+242% —3x122+8.222 and o2 ~ 8.840.63x1 —1.4z2+6.527+1.621 x2+1822.

SOS formulation of parametric entailment problems. Consider now a parametric
entailment problem of the form (¢; = pj(c,x) > 0) for j = 1,..., K involving
parameters c. Let us write ¢; : pj, (x) >0 A --- A pj,(x) > 0. This is reduced to a
sum of squares problem:

find : polynomials ¢;,...,0;; € Rg[x],j € {1,...,K}

k .
s.t. bj = 0Tj,0 +Zi=1 034,iPj;» J € {17"'3K}7 (6)
04,0y---,054, are SOS, j € {1,,K}

The unknowns include the coefficients c involved in each p;(c,x) for the original
parametric entailment and the coefficients cU%) corresponding to SOS multipliers Ojii-

Next, we provide a reduction from SOS problems to a well known class of optimiza-
tion problems: semidefinite programs (SDPs). Any polynomial p of degree 2d (a non
negative polynomial is necessarily of even degree) can be written as a quadratic form in
the vector z of all monomials of degree less or equal d:

p(x)=2"Qz, 7

d

,J and () is a constant symmetric matrix.

where z = [1,x1,...,zn,x1:1:2,...,x

Example 3. Consider p(x1,z2) : 227 + 22329 — 2323 + 53, To satisfy the equality

21T 2

xy q11 912 413 x7

_ 2 2

p(r1,72) = | 73 q12 422 423 L2
T1T2 413 423 433 T1T2

= qu17] + 2q1375 72 + (¢33 + 2q12) 7575 + 2q237175 + 2073,

the equalities g11 = 2, 2q13 = 2, ¢33 + 2q12 = —1, 2g23 = 0 and ¢32 = 5 must hold.
Two possible examples for the matrix @) are shown below:

21 1 2 —31
Q=1(150|, @Q@=|-350
10-3 1 05

The polynomial p is then SOS if and only if there exist a positive semidefinite matrix
@ satisfying (7). A matrix @ is said to be positive semidefinite denoted by @ = 0, when
for all vectors y, y7 Qy > 0. A matrix Q is said to be positive definite denoted by Q > 0,
when for all nonzero vectors y, y? Qy > 0.

10 Pierre Roux, Yuen-Lam Voronin, and Sriram Sankaranarayanan

Example 4. In Example 3, the first matrix @) is not positive semidefinite (for y : [0, 0, 1]T,
yTQy = —3). However, the second matrix @’ is positive semidefinite as it can be written
Q' = LT L with
1 _
[2-31
V21013

(then, for all y, yT Qy = (Ly)* (Ly) = ||Ly||3 > 0). This gives the SOS decomposition
of Example 1: p(z1,z2) = §(22% + z122 — 323)? + 1 (3w122 + 23)*

As aresult, SOS programming problems can be written as semidefinite optimization
problems involving matrices. Let z be a vector of monomials over x chosen so that
we may write each polynomial o;(c(?), x) as a quadratic form o;(c”),x) = 27C;z
wherein C; is a matrix whose entries are variables in c(?). Thus, the SOS programming
problem (5) and (6) can be written down as an SDP problem:

find : C,Co,...,ck
s.t. agpc + Z?:O tI’(Ai’jCj) = bi7 ¢ =]., e, (8)
C;=0,7=0,... k.

Note here that tr(Y") for a square matrix Y is the sum over all its diagonal entries. It
can be checked that the expression tr(AB) is equivalent to > ;" 377 A; ;B ; for
n X n matrices A, B. Thus, we have eliminated the formal variables x from the problem
and reduced it to finding matrices that satisfy some linear equality constraints, and
are positive semidefinite. In fact, moving one step further, we write a single unknown
matrix C' in the block diagonal form: C' = Diag(c|, ¢ ,...,ct,¢5,Co,C1,...,Ch),
encoding ¢; as ¢ — ¢; with ¢, ¢; € R, This allows us to write (8) as:

()

find: C s.t. tr(A;C) =b;,i=1,...,m, ©)
C = 0.

Problems that follow this form, or equivalently (8), are called semidefinite programming
problems (SDP) [16,79]. They form a well known class of convex optimization problems
that generalize linear programs and can be solved numerically even for large® problem
matrices C. Numerical solvers also allow to optimize a linear objective function of the
coefficients of C'. Finally, we define the notion of strict feasibility.

Definition 4 (Strict Feasibility). The SDP in (9) is said to be strictly feasible when
there exists a solution to the problem wherein the matrix C' is positive definite.

If every feasible solution C' to the problem (9) is positive semidefinite but not positive
definite (in other words, the matrix has zero eigenvalues, or alternatively is rank deficient),
the problem is said to fail strictly feasibility.

Remark 1. For a strictly feasible problem, there exist solutions C' such that any Cin
a neighborhood from C and satisfying the equality constraints tr(A4;C) = b; is also a
solution. In contrary, problems that are not strictly feasible are also said to have an empty
(relative) interior because, for any solution C, there exist C' arbitrarily close from C' that
satisfy the equality constraints but are not solutions. This is illustrated on Fig 5.

> Typically, matrices C; can be of size n x n for n up to a few hundreds.

Validating Numerical Semidefinite Programming Solvers 11

{M | M =0} {M | M =0}

Fig. 5: The line represents the equality constraints tr(A;C) = b; and the shaded area the
matrices C' = 0. The set of solutions is the intersection of the line and the shaded area.
(Left) A strictly feasible SDP problem. (Right) An empty interior problem.

4 Verified SDPs

In Section 3, we laid out a procedure for formulating invariant checking and synthesis as
a general SOS feasibility problem, which in turn is an SDP feasibility problem. There
are SDPs with rational problem data whose solutions are irrational. However, under
some regularity conditions, SDP problems can theoretically be solved efficiently up to
arbitrarily small error tolerance (see e.g., [84, Ch. 8-10]). In practice, many numerical
solvers are available to solve SDP instances satisfactorily. A comprehensive list of
SDP solvers is available elsewhere [40,49] (see also [6, Part III]). Currently, the default
choice for solving SDPs are specialized second order methods (i.e., using second order
derivatives) called interior point methods (IPMs)°.

We discuss in Section 4.1 issues leading to inaccuracy or poor solution quality in SDP
solving via IPMs. Then in Section 4.2, we consider solutions to guarantee soundness.

4.1 Sources of Solution Inaccuracy in Solving SDPs

Before we discuss ways to ensure soundness of solutions to the invariant checking and
synthesis problem generated by SDP solvers, we first focus on a few issues that could
possibly make an SDP solution inaccurate, leading to potential unsoundness. We will
concentrate on SDP solutions obtained from general IPMs.

How do IPMs Work? The convergence of a general IPM assumes strict feasibility
(Def. 4). Using positive definite matrices as initial points, a general IPM repeatedly
solves a perturbed linearization of the Karush-Kuhn-Tucker optimality conditions for a
search direction, and moves along that search direction with a fractional step size that
maintains the positive definiteness of the iterates. (See e.g. [5,52,77,84].)

In the following, we discuss the four potential issues that can cause solution inaccu-
racy when a general IPM is used for obtaining SDP solutions: (1) inexact termination,
(2) failure of strict feasibility, (3) ill-conditioning and (4) floating-point errors.

® There also exist first order methods handling larger problems but with less accurate solutions.

12 Pierre Roux, Yuen-Lam Voronin, and Sriram Sankaranarayanan

Inexact Termination. The first source of inaccuracy stems from the fact that IPM usually
do not converge in finitely many iterations. Iterations are then stopped when some
stopping criterion is met, for instance when the equalities in (9) are e-approximated (i.e.,
[tr(A;C) — b;| < €) or when the number of iterations becomes too big. Thus IPMs only
produce approximate solutions. Nonetheless, under strict feasibility assumption, most
common IPMs enjoy a convergence result of the following form: for any e € (0, 1), if an
appropriate initial point is chosen, then it takes at most a number of steps polynomial in
the problem size and log(é) to obtain an e-approximate solution. (See e.g. [84, Ch. 10].)

Failure of Strict Feasibility. Strictly feasibility is a desirable property. For instance,
as seen above, it guarantees that a SDP can be solved to arbitrary accuracy by an IPM.
“Random” SDP problems are strictly feasible with probability one [28, Theorem 3.2].
However, strict feasibility can fail systematically for SDP instances arising from appli-
cations due to the inherent problem structure. The pervasive failure of strict feasibility
has been observed in SDP instances arising from e.g. sensor network localization [45],
quadratic assignment problem [87], graph partitioning [85], protein conformation [4,17]
and polynomial optimization [80,82,65]. In particular, strict feasibility can fail for entail-
ment problems (Sect. 3.1), as shown in the following example:

Example 5. We check whether the entailment (¢(z,y) : z —y > 0 E p(x,y) :
v —y+ 222 — 2y? + 2% + 2%y — 2y? — y> > 0) is true using an SOS relaxation:
we look for SOS polynomials o, € Ra[x,y] such that ¢ = o + 0 - p. In other words,
we need to find coefficients ¢ = (co,...,c5) and d = (dy,...,ds) such that o(z,y) :
co+erx+eoytczr? +eyry+esy? and 6(z, y) ¢ do+diw +doy +dsx? +dyzy + dsy?
are SOS and all the coefficients of o + § - p and ¢ coincide; or equivalently,

(a) const. term co =0,
N N (b) coeff. of = c1+do =1,
1"” 2¢1 ?02 (c) coeff. of y cog —do=—1,
Qe = ?Cl 163 zca| =0, comparing (d) coeff. of 22 ¢34+ dy = 2,
SOS 5C2 5€C4 Cp coeffs. of ¢ : (e) coeff. of zz;y c4 —dy +d2 =0, (]O)
do Ldy ds and s (f) coeff. of y cs —do = —2,
Qa = |3d1 d3 35da| =0, otop (g) coeff. OfIz ds =1,
Ldy 1ds ds (h) coeff. of z°y dy — d3z =1,
(i) coeff. of zy? ds — dy = —1,
(j) coeff. of y> —ds = —1,

which is an SDP feasibility problem. Note that (10) fails the strict feasibility, i.e., if
(Qe, Qq) is feasible for (10), then Q. and/or Qg is rank deficient: by the positive
semidefiniteness of @ and Q4 and equation (a) in (10), co = ¢; = ¢z = 0 must hold’.

While the failure of the strict feasibility in small instances such as Example 5 usually
does not cause much numerical issues, significant inaccuracy can often be observed
as the number of variables and the degrees of the polynomials increase [82]. Facial
reduction techniques proposed by BORWEIN and WOLKOWICZ [13,14,15], can be used
for preprocessing SDP instances that are not strictly feasible [19,20,57,64,75,81]. A more
efficient version using linear programming reduction, called partial facial reduction, was
proposed by PERMENTER and PARRILO [59,58].

7 If a matrix is PSD and one of its diagonal entry (e.g. the (1, 1) entry) equals 0, then the entire
row and column that contain that diagonal entry (i.e., the first row and column) equal 0.

Validating Numerical Semidefinite Programming Solvers 13

1ll Conditioning. The coefficients of the polynomials in the entailment problems can
influence the condition number of the linear system that is solved in IPMs, and a large
condition number can affect the convergence of IPMs. While most SDP solvers use
preconditioning to enhance the numerical stability, it is important to caution against the
possible inaccuracy caused simply by the large input coefficients, which can occur even
when preconditioning is used.

Example 6. Consider the entailment checking problem instance:

q(z,y) >0 A qz,y) >0 A gs(z,y) >0 = p(z,y) >0, an
N—— —— N——
z+y ~-(z2+y—1) x—4y?

where p : (22 +y?)(q1(2,y) +q2(7, y) +q3(z, y) +8) and = is a user-specified constant.
For any v € R, (11) is true, and the corresponding SOS problem has an obvious solution
(0; : 2% +y?fori = 1,...,3) that is independent of . Even though theoretically the
solution set remains the same for varying -y, we see from Table 1 that a mere change in
the value of « can affect the solution accuracy in some SDP solvers: in this example,
SDPT3 appears more robust against ill conditioning than SeDumi. The large value of «
worsens the conditioning of the linear system solved in each iteration of an IPM and can
lead to significant inaccuracy.

Table 1: The relative residual norm of the solutions returned by SDPT3 [78] and Se-
DuMi [74] for varying values of «.

=1 v=10° [v=10° | ~v =10’
SDPT3 (2.1 x 10~%|5.4 x 10~ 1°[5.1 x 107°[2.3 x 1078
SeDuMi|5.5 x 107 7] 2.6 x 107 3.3 x 10~°| 0.00023

Floating point errors. For the sake of efficiency, IPMs are implemented using floating-
point arithmetic. Thus, the precision of the floating-point format used limits the accuracy
of the result. The most commonly used floating-point format offers a precision of about
10716 for arithmetic operations and SDP solvers usually offer accuracies ¢ around
1078 [12,86]. Higher accuracies can be reached using more precise (and expensive)
floating-point formats such as done by the SDPA-GMP solver (see [6, Ch. 24] and [51]).

4.2 Proving Soundness

Now we describe several different techniques for proving that SDP feasibility problems
(9) arising from the SOS formulation of parametric entailment problems admit solutions.
These techniques can be separated in two main approaches:

(a) Techniques that attempt to get an actual solution. They are able to solve some empty
interior problems but this is often expensive.

(b) Techniques that prove the existence of an actual solution, nearby to an approximate
one. They require strict feasibility but are much cheaper.

14 Pierre Roux, Yuen-Lam Voronin, and Sriram Sankaranarayanan

After a quick review of the first approach, we detail the second one, since numerical tests
in Sect. 5 indicate that it is the more useful for proving polynomial invariants.

Deriving Exact Solutions As already mentioned in Section 3.2, the problem (9) is
decidable. Unfortunately, even the most recent algorithms [41] are not meant to be
competitive with numerical solvers. Another approach consists in assuming the existence
of a rational solution®, using a numerical solver and attempting by various means to
project its approximate solution to an exact rational solution [38,44,50,60,61]. These
methods are truly impressive as they are able to solve some empty interior problems. It
is also worth noting that since they provide an exact SOS decomposition, mechanically
checking it with a proof assistant like Isabelle/HOL or Coq is particularly simple [38,50].
Unfortunately they require heavy computations in rational arithmetic, which incurs the
risk of an exponential blow-up of the size of the denominators.

Proving Existence of a Nearby Solution We now assume that (9) is strictly feasible,
call a numerical solver that returns an approximate solution C' and attempt to derive
from it a proof that there exists an actual solution C' (without actually computing C),
based on the following proposition, whose proof is similar to that of [47, Theorem 4].

Proposition 1. If (9) results from the SOS programming problem (5) or (6), and Ce
R#*# satisfies the inequality (5 MaxX;e(1,....m} ltr(A;C) — b,|> < Amin(C) (the small-

est eigenvalue of C), then (9) admits an actual solution C.
This suggests the following method to prove that as SOS problem is feasible:

Step 1. Obtain an approximate solution C. B
Step 2. Compute (an overapproximation of) € := max;c 1, ..} [tr(A;C) — by).
Step 3. Check that C' — s¢€’ I = 0 (which implies s €' < Amin(C)).

Step 1 is achieved using a numerical solver and Step 2 is performed using floating-
point interval arithmetic. The hard step is to provide a sound and efficient way to check
C — s€e I = 0. We rely on a check suggested by the following theorem. Let IF be a
floating-point format with unit roundoff eps and underflow unit eta. For any symmetric
floating point matrix M € F*** with 2(s 4 2)eps < 1, define « : %tr(M) +
4(s+1) (2(s + 2) + max; M, ;) eta.

Theorem 2. ([67, Corollary 2.4]) M > 0 if there exists M € 5% such that the
following conditions hold:

- Z\éj = M;j, for any i # j;
- M;; < M;; — o, for any i; and

— the Cholesky algorithm implemented in floating point arithmetic succeeds on M, i.e,
concludes that M is positive semidefinite,

8 An SDP defined by rational data does not necessarily have a rational solution [53,77].

Validating Numerical Semidefinite Programming Solvers 15

Theorem 2 is used to prove that C —se 1> 0,as follows:

— compute M := C—sé I using floating-point arithmetic with rounding toward —oo.
It follows that the error (C' — s ¢’ I) — M will be a diagonal matrix with nonnegative
entries. Hence, if M > 0 then C—sél > 0, as well.

— check that M is symmetric and that 2(s 4 2)eps < 1;

— compute M = M — oI with rounding toward —oo;

— compute the Cholesky decomposition of M.

If the Cholesky decomposition succeeds (which happens when, e.g., Amin (C') > s €' +2a
[26]), then C — s€' I = 0.

Remark 2. For the IEEE 754 [42] binary64 format with rounding to nearest’, eps =
2753 (~ 10716) and eta = 271975 (~ 107323). Thus, the hypothesis 2(s + 2)eps < 1
is always satisfied for practical values of s. Moreover, for typical values (s < 1000
and elements of M of order of magnitude 1), o < 1071, This is negligible in front of
s€’ ~ 10785 (1078 being the typical default stopping tolerance), which means that the
incompleteness of this positive definiteness check is not an issue in practice.

Steps 2 and 3 can be performed in only O(s®) floating-point operations (cost of the
Cholesky decomposition) so the cost of the whole method is dominated by the call to
the numerical SDP solver in Step 1.

Remark 3. For ease of exposition, the above technique was presented on the whole
matrix C, although it is preferable to apply it on each block C; of C.

Padding the SDP Problem Naturally, all this requires that the least eigenvalue of the
solution returned by the numerical solver be larger than s €. It could seem that ¢’ is
known only after numerically solving the SDP problem, since it is computed from its
result in Step 2. In fact, ¢’ will be less than the stopping criterion € of the solver, which is
known in advance. Thus instead of solving (9), we solve the slightly modified problem

find: C s.t. tr(A;C) =b;,i=1,...,m,
C—sel =0,

which is an SDP (up to the change of variable C — C + se).

The simple criterion in Proposition 1 assumes SDP problems translated from SOS
problems. On the other hand, the tool VSDP [39,43] verifies the solutions of general
SDP problems using interval arithmetic results.

Remark 4. Mechanically checking proofs generated by the three step method of this
section is an ongoing project. To this end, Theorem 2 has been verified in Coq [66].

5 Experiments

? Type double in C.

16 Pierre Roux, Yuen-Lam Voronin, and Sriram Sankaranarayanan

This section presents an experimental evaluation of the xe {m €R" ’ NSy (@) > 0}
methods described in Sections 3 and 4 on the examples while (1)
of ADJE et al. [1]. We first synthesize polynomial invari- lfx ({:](};)1 (S !
ants for these programs, following [1], then attempt to else
formally prove their soundness. As seen in Section 2, these * = ()
formal proofs are particularly worthwhile as synthesizing Fig. 6: Benchmarks form.
incorrect invariants is quite easy.

Considered programs are of the form in Fig. 6. An invariant p(c,x) > 0 can be
provided by any solution'® of the parametric entailment problem:

11(x) >0 A -+ Adg(x) >0FEp(c,x) >0
9(x) <0 = (pom)(c,x) = p(c,x)
9(x) 2 0 = (pom2)(c,x) = p(c,x).

(See Section 3.) Thus, any solution of the following SOS problem gives an invariant:

find : polynomials o; €]Rd_dij[x} (Ge{l,...,k}), 0r11,0k42 € Rg_g,[X]
st. p— Y5, 0yijis SOS,

(pom1) —p+ ogs1gis SOS, (12)
(poTe) —p— ogt2gis SOS,
O1y...,0k+2 are SOS,

where d is the degree of p and d; , ..., d;, and d, are the degrees of i1,...,%; and g

respectively (all assumed to be less than d).

Table 2 gives the time needed to synthesize candidate invariants of degree d equal to
4, 6, 8 and 10 by solving the above SOS problem. “Example 4” in this table corresponds
to the program of Fig. 2. The candidate invariant obtained for degree d = 6 is given in
Fig. 2 and displayed in Fig. 3. The one obtained for d = 8 is also displayed in Fig. 3.
“Example 8” corresponds to Fig. 4.

Unfortunately, the problem (12) usually has an empty interior'!. This means that the
candidate invariant obtained from numerical solvers does not precisely satisfy (12). In

fact, there often exist values xg such that ¢;(xg) > 0,...,7(X¢) > 0 and p(xo) is a
tiny negative value. To fix that, we look for a small'? ¢ € R such that p+ ¢ — Z?Zl ot

is SOS for SOS polynomials o ;. This is done using the padding technique of Section 4.
Times in table 2 include this fixing step.

We now attempt to prove that the fixed candidate invariants p are correct by consid-
ering the following entailment checking problem

i1(x) >0 A -+ Adg(x) >0FEpx) >0
9(x) <0 A p(x) 20 (pomn)(x) >0 (13)
9(x) =20 A p(x) 20 (pom)(x) >0

10 To get a “small” invariant, one minimizes the radius of the ball enclosing it [1].

' Assignments 7 often admit a fixpoint xo = 7(xXo) meaning that the condition (po7) —p+o g >
0 boils down in xg to o(x0) g(x0) > 0 implying o(x0) = 0 when g(xo0) < 0.

12 In practice, ¢ < 102 when coefficients of p are of order of magnitude 1.

Validating Numerical Semidefinite Programming Solvers 17

We first evaluated methods looking for exact solutions with the implementation of
MONNTAUX and CORBINEAU [50]. Table 3 gives the results. The checking process is
split in two parts: init for the initialization property (first entailment of (13)) and ind. for
the inductiveness property (remaining entailments). As seen in the table, most of the
initialization properties are indeed proved but proofs of the inductiveness property fail
for all but the smallest example. This can be explained by the size of the corresponding
SDP problems. For the initialization property, the largest block is a matrix of size

(”:%) X (”Z%) whereas for inductiveness it is of size ("t%) X ("t%) This is too
much'? to perform heavy computations with exact rational arithmetic.

Although (12) usually has an empty interior, it is worth noting that this unfortunate
property is due to the relaxation and is not intrinsic to the problem. Indeed, the loop
body 7 of the considered programs are usually strictly contractive, i.e., the image of the
invariant {x | p(x) > 0} by 7 is included in its interior. When 7 is continuous, this means
that any polynomial p close enough from p also defines an invariant {x | p(x) > 0}.
In fact, the entailment checking problem (13) commonly leads to strictly feasible SDP
problems. Thus, the method presented in Section 4.2 can be used to efficiently prove
the soundness of a large part of the candidate invariants, as seen in Table 4. The time
needed to compute the proofs (Table 4) is comparable to the time needed to synthesize
the invariants (Table 2). Indeed, most of this time is spent running SDP solvers.

These results are confirmed by VSDP [39,43] when we provide it the SDP problems
corresponding to (13) and the solutions computed by SDP solvers. This again indicates
that these numerical verification methods only induce a very small overhead compared
to the time required to run SDP solvers.

Implementation The SOS to SDP translation described in Section 3, as well as the
validation method described in Section 4.2 have been implemented in our OCaml library
OSDP. It offers an interface to the SDP solvers Csdp [11], Mosek [7], SDPA [86]
and SDPA-GMP [51] and is available at http://cavale.enseeiht.fr/osdp/.
Results from Tables 2 and 4 have been obtained thanks to a small static analyzer
relying on the library and available, along with all benchmarks, at http://cavale.
enseeiht.fr/validatingSDP2016/. All computations were performed with
the Mosek solver on a Xeon @ 2.67GHz.

6 Conclusion

Thus far, we have reviewed the use of SOS relaxations and numerical SDP solvers to
solve polynomial problems arising in static analysis of programs. We presented some
examples and experiments showing that, although erroneous results are often obtained
from numerical solvers, rigorous proofs of soundness are possible. Moving forward, we
wish to examine the application of our approach inside theorem provers and applications
to hybrid systems, as well.

BForn=2d, =3andd =8, ("t%) = (§) = 15 whereas (”*%) =(}) =91

http://cavale.enseeiht.fr/osdp/
http://cavale.enseeiht.fr/validatingSDP2016/
http://cavale.enseeiht.fr/validatingSDP2016/

18 Pierre Roux, Yuen-Lam Voronin, and Sriram Sankaranarayanan

Table 2: Time to synthesize candidate invariants for benchmarks [1]. n is the number of
variables and d, the degree of the polynomial assignments. All times are in seconds, TO
means timeout (900s) and MO out of memory (4GB).

d=4|d =6|d =8|d =10
Example 4 (n =2, d, =3) 025|095 | 331 | 8.85
Example 5 (n =3, d- =2) 0.48 | 2.83 |22.75|112.37
Example 6 (n =4, dr =2) 2.12 {64.07| TO | MO
Example 7 (n =2, dr =3) 0.25|0.96 | 3.15 | 10.45
Example 8 (n =2, dr =2) 0.17 | 034 | 0.74 | 1.93

Table 3: Checking the candidate invariants with the implementation of MONNIAUX and
CORBINEAU [50]. All times are in seconds, NS means that no proof is found, TO means
timeout (900s) and MO out of memory (4GB).

d=14 d=26 d=38 d=10
init ind. | init ind.| init ind.| init ind.
Example 4 (n =2, d- =3) 1.43 NS | 3.35 TO|[19.80 MO|142.33 MO
Example 5 (n =3, d- =2) 3.82 TO (14249 MO| TO MO| TO MO
Example 6 (n =4, d, =2) 3220 TO | TO MO| — —| — —
Example 7 (n =2, d- =3) 1.48 NS | 3.36 TO|[18.36 MO|120.40 MO
Example 8 (n =2, d- =2) 1.93 12.81] 3.78 NS|26.29 TO|193.79 TO

Table 4: Checking the candidate invariants with the method of Section 4. All times are in
seconds. As seen in Section 2, counter-examples are easily found for Ex. 4, d = 4 and 6
and Ex. 7, d = 4. No such counter-examples were found for the other unproved cases
and it remains unknown whether they are actually inductive or not.

d=14 d=2©6 d=28 d=10
init ind.|init ind. |init ind. |init ind.
Example 4 (n =2, d- =3) 0.05 NS [0.07 NS [0.19 3.03|0.17 NS
Example 5 (n =3, d- =2) 0.08 0.33(0.23 2.20 |0.74 14.55(2.50 92.15
Example 6 (n =4, d, =2) 0221521263894 — — | — —
Example 7 (n =2, d- =3) 0.05 NS [0.07 0.85(0.19 3.320.17 NS
Example 8 (n =2, d- =2) 0.05 0.13{0.07 NS |0.09 NS [0.15 NS

Table 5: Rechecking the proofs of Table 4 with VSDP [39,43], All times are in seconds.
d=4 [d=6 [d=8 [d=10
init ind.|init ind.|init ind.|init ind.

Example 4 (n =2, d, =3) 0.04 NS [0.06 NS [0.06 0.30/0.07 NS
Example 5 (n =3, d- =2) 0.06 0.18(0.09 0.26(0.16 0.80{0.27 2.52
Example 6 (n =4, dr =2) 0.10 0.30{0.27 1.11| — — | — —
Example 7 (n =2, d» =3) 0.05 NS [0.05 0.15(0.06 0.25|0.07 NS
Example 8 (n =2, d- =2) 0.04 0.07(0.03 NS [0.04 NS |0.05 NS

Validating Numerical Semidefinite Programming Solvers 19

Acknowledgments: The authors would like to thank Didier Henrion, Pierre-Loic Garoche
and Assalé Adjé for interesting discussions on this subject. This work was supported by
the US National Science Foundation (NSF) under CNS-0953941 and CCF-1527075. All
opinions expressed are those of the authors and not necessarily of the NSF.

References

1.

10.

11.

12.
13.

14.

15.

16.

17.

Assalé Adjé, Pierre-Loic Garoche, and Victor Magron. Property-based polynomial invariant
generation using sums-of-squares optimization. In Sandrine Blazy and Thomas Jensen, editors,
Static Analysis - 22nd International Symposium, SAS 2015, Saint-Malo, France, September
9-11, 2015, Proceedings, volume 9291 of Lecture Notes in Computer Science, pages 235-251.
Springer, 2015.

. Assalé Adjé, Stéphane Gaubert, and Eric Goubault. Coupling policy iteration with semi-

definite relaxation to compute accurate numerical invariants in static analysis. In ESOP,
2010.

. Amir Ali Ahmadi and Anirudha Majumdar. DSOS and SDSOS optimization: LP and SOCP-

based alternatives to sum of squares optimization. In Annual Conference on Information
Sciences and Systems (CISS), pages 1-5, 2014.

. B. Alipanahi, N. Krislock, A. Ghodsi, H. Wolkowicz, L. Donaldson, and M. Li. Determining

protein structures from NOESY distance constraints by semidefinite programming. J. Comput.
Biol., 20(4):296-310, 2013.

. F. Alizadeh, J.-P.A. Haeberly, and M.L. Overton. Primal-dual interior-point methods for

semidefinite programming: convergence rates, stability and numerical results. SIAM J. Optim.,
8(3):746-768 (electronic), 1998.

. MLF. Anjos and J.B. Lasserre. Introduction to semidefinite, conic and polynomial optimization.

In Handbook on semidefinite, conic and polynomial optimization, volume 166 of Internat. Ser.
Oper. Res. Management Sci., pages 1-22. Springer, New York, 2012.

. MOSEK ApS. The MOSEK C optimizer APl manual Version 7.1 (Revision 40), 2015.
. Roberto Bagnara, Enric Rodriguez-Carbonell, and Enea Zaffanella. Static Analysis: 12th

International Symposium, SAS 2005, London, UK, September 7-9, 2005. Proceedings, chap-
ter Generation of Basic Semi-algebraic Invariants Using Convex Polyhedra, pages 19-34.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

. Sugata Basu, Richard Pollock, and Marie-Francoise Roy. Algorithms in Real Algebraic

Geometry. Springer-Verlag, 2006.

Sergei Nanatovich Bernstein. Démonstration du théoréme de Weierstrass fondée sur le calcul
des probabilités. Communcations de la Société Mathématique de Kharkov 2, 13(1):1-2, 1912.
Brian Borchers. CSDP, a C library for semidefinite programming. Optimization Methods and
Software, 11(1-4), 1999.

Brian Borchers. Csdp user’s guide, 2006.

J.M. Borwein and H. Wolkowicz. Characterization of optimality for the abstract convex
program with finite-dimensional range. J. Austral. Math. Soc. Ser. A, 30(4):390-411, 1980/81.
J.M. Borwein and H. Wolkowicz. Facial reduction for a cone-convex programming problem.
J. Austral. Math. Soc. Ser. A, 30(3):369-380, 1980/81.

J.M. Borwein and H. Wolkowicz. Regularizing the abstract convex program. J. Math. Anal.
Appl., 83(2):495-530, 1981.

Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press,
2004.

Forbes Burkowski, Yuen-Lam Cheung, and Henry Wolkowicz. Efficient use of semidefinite
programming for selection of rotamers in protein conformations. INFORMS Journal on
Computing, 26(4):748-766, 2014.

20

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Pierre Roux, Yuen-Lam Voronin, and Sriram Sankaranarayanan

Aleksandar Chakarov, Yuen-Lam (Vris) Voronin, and Sriram Sankaranarayanan. Deductive
proofs of almost sure persistence and recurrence properties. In Tools and Algorithms for
Construction and Analysis of Systems (TACAS), volume 9636 of Lecture Notes in Computer
Science, pages 260-279. Springer-Verlag, 2016.

Y-L. Cheung, S. Schurr, and H. Wolkowicz. Preprocessing and regularization for degenerate
semidefinite programs. In D.H. Bailey, H.H. Bauschke, P. Borwein, F. Garvan, M. Thera,
J. Vanderwerff, and H. Wolkowicz, editors, Computational and Analytical Mathematics,
In Honor of Jonathan Borwein’s 60th Birthday, volume 50 of Springer Proceedings in
Mathematics & Statistics. Springer, 2013.

Yuen-Lam Cheung. Preprocessing and reduction for semidefinite programming via facial
reduction: theory and practice. PhD thesis, University of Waterloo, 2013.

G.E. Collins. Quantifier elimination for real closed fields by cylindrical algebraic decomposi-
tion. In H.Brakhage, editor, Automata Theory and Formal Languages, volume 33 of Lecture
Notes in Computer Science, pages 134—183. Springer, 1975.

George E. Collins and Hoon Hong. Partial cylindrical algebraic decomposition for quantifier
elimination. Journal of Symbolic Computation, 12(3):299-328, sep 1991.

Patrick Cousot. Proving program invariance and termination by parametric abstraction,
lagrangian relaxation and semidefinite programming. In VM CAI, 2005.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, 1977.

Thao Dang and Thomas Martin Gawlitza. Template-based unbounded time verification of
affine hybrid automata. In Programming Languages and Systems (APLAS’11), volume 7078
of Lecture Notes in Computer Science, pages 34-49. Springer, 2011.

James Demmel. On floating point errors in cholesky. LAPACK Working Note 14, October
1989.

Andreas Dolzmann and Thomas Sturm. REDLOG: Computer algebra meets computer logic.
ACM SIGSAM Bull., 31(2):2-9, June 1997.

M. Diir, B. Jargalsaikhan, and G. Still. The Slater condition is generic in linear conic
programming, 2012.

Rida T. Farouki. The Bernstein polynomial basis: A centennial retrospective. Computer Aided
Geometric Design, 29(6):379 — 419, 2012.

Eric Féron. From control systems to control software. Control Systems, IEEE, 30(6), dec.
2010.

M. Frinzle, C. Herde, S. Ratschan, T. Schubert, and T. Teige. Efficient solving of large
non-linear arithmetic constraint systems with complex Boolean structure. JSAT—Journal
on Satisfiability, Boolean Modeling and Computation, Special Issue on SAT/CP Integration,
1:209-236, 2007.

Sicun Gao, Soonho Kong, and Edmund M. Clarke. dreal: An SMT solver for nonlinear
theories over the reals. In Intl. Conference on Automated Deduction (CADE), pages 208-214,
2013.

Stephane Gaubert, Eric Goubault, Ankur Taly, and Sarah Zennou. Static analysis by policy
iteration on relational domains. In ESOP, 2007.

Thomas Gawlitza and Helmut Seidl. Precise fixpoint computation through strategy iteration.
In ESOP, 2007.

Thomas Martin Gawlitza and David Monniaux. Improving strategies via SMT solving. In
ESOP, 2011.

Thomas Martin Gawlitza and Helmut Seidl. Computing relaxed abstract semantics w.r.t.
quadratic zones precisely. In SAS, 2010.

David Handelman. Representing polynomials by positive linear functions on compact convex
polyhedra. Pacific J. Math, 132(1):35-62, 1988.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

52.

53.

54.

55.

56.

57.

Validating Numerical Semidefinite Programming Solvers 21

John Harrison. Verifying nonlinear real formulas via sums of squares. In Klaus Schneider and
Jens Brandt, editors, Theorem Proving in Higher Order Logics, 20th International Conference,
TPHOLs 2007, Kaiserslautern, Germany, September 10-13, 2007, Proceedings, volume 4732
of Lecture Notes in Computer Science, pages 102—118. Springer, 2007.

V. Hirter, C. Jansson, and M. Lange. VSDP: verified semidefinite programming. http:
//www.ti3.tuhh.de/jansson/vsdp/. Accessed on March 28, 2016.

Christoph Helmberg. Semidefinite programming. https://www-user.tu-chemnitz.
de/~helmberg/semidef.html. Last updated: December 2012.

Didier Henrion, Simone Naldi, and Mohab Safey El Din. Exact algorithms for linear matrix
inequalities. arXiv preprint arXiv:1508.03715, 2015.

IEEE Computer Society. IEEE Standard for Floating-Point Arithmetic. IEEE Standard
754-2008, 2008.

Christian Jansson, Denis Chaykin, and Christian Keil. Rigorous error bounds for the optimal
value in semidefinite programming. SIAM J. Numerical Analysis, 46(1), 2007.

Erich Kaltofen, Bin Li, Zhengfeng Yang, and Lihong Zhi. Exact certification in global
polynomial optimization via sums-of-squares of rational functions with rational coefficients.
J. Symb. Comput., 47(1):1-15, 2012.

N. Kirislock and H. Wolkowicz. Explicit sensor network localization using semidefinite
representations and facial reductions. SIAM J. Optim., 20(5):2679-2708, 2010.

Jean B. Lasserre. Global optimization with polynomials and the problem of moments. SIAM
Journal on Optimization, 11(3):796-817, 2001.

J. Lofberg. Pre- and post-processing sum-of-squares programs in practice. /EEE Transactions
on Automatic Control, 54(5):1007-1011, 2009.

Alexandre Maréchal, Alexis Fouilhé, Tim King, David Monniaux, and Michael Périn. VM-
CAI’16, chapter Polyhedral Approximation of Multivariate Polynomials Using Handelman’s
Theorem, pages 166—184. Springer, 2016.

Hans D. Mittelmann. Decision tree for optimization software: semidefinite programming.
http://plato.asu.edu/sub/nlores.html#semidef. Accessed on March 28,
2016.

David Monniaux and Pierre Corbineau. On the generation of positivstellensatz witnesses in
degenerate cases. In Marko C. J. D. van Eekelen, Herman Geuvers, Julien Schmaltz, and
Freek Wiedijk, editors, Interactive Theorem Proving - Second International Conference, ITP
2011, Berg en Dal, The Netherlands, August 22-25, 2011. Proceedings, volume 6898 of
Lecture Notes in Computer Science, pages 249-264. Springer, 2011.

. M. Nakata. A numerical evaluation of highly accurate multiple-precision arithmetic version

of semidefinite programming solver: SDPA-GMP, -QD and -DD. In Computer-Aided Control
System Design (CACSD), 2010 IEEE International Symposium on, pages 29-34, Sept 2010.
Y. Nesterov and A. Nemirovskii. Interior-Point Polynomial Algorithms in Convex Program-
ming. Society for Industrial and Applied Mathematics, 1994.

Jiawang Nie, Kristian Ranestad, and Bernd Sturmfels. The algebraic degree of semidefinite
programming. Mathematical Programming, 122(2):379-405, 2008.

A. Papachristodoulou, J. Anderson, G. Valmorbida, S. Prajna, P. Seiler, and P. A. Parrilo.
SOSTOOLS: Sum of squares optimization toolbox for MATLAB Version 3.00, October 2013.
Pablo Parrilo. Structured Semidefinite Programs and Semialgebraic Geometry Methods in
Robustness and Optimization. PhD thesis, California Institute of Technology, May 2000.
Pablo A. Parrilo. Semidefinite programming relaxations for semialgebraic problems. Math.
Program., 96(2):293-320, 2003.

Gabor Pataki. Strong duality in conic linear programming: Facial reduction and extended
duals. In D.H. Bailey, H.H. Bauschke, P. Borwein, F. Garvan, M. Thera, J. Vanderwerff, and
H. Wolkowicz, editors, Computational and Analytical Mathematics, In Honor of Jonathan

http://www.ti3.tuhh.de/jansson/vsdp/
http://www.ti3.tuhh.de/jansson/vsdp/
https://www-user.tu-chemnitz.de/~helmberg/semidef.html
https://www-user.tu-chemnitz.de/~helmberg/semidef.html
http://plato.asu.edu/sub/nlores.html#semidef

22

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

7.

Pierre Roux, Yuen-Lam Voronin, and Sriram Sankaranarayanan

Borwein’s 60th Birthday, volume 50 of Springer Proceedings in Mathematics & Statistics,
pages 613-634. Springer, 2013.

Frank Permenter and Pablo A. Parrilo. Tools for SDP facial reduction. https://github.
com/frankpermenter/frlib. Accessed on April 10, 2015.

Frank Permenter and Pablo A. Parrilo. Partial facial reduction: Simplified, equivalent semidefi-
nite programs via approximations of the positive semidefinite cone. http://arxiv.org/
abs/1408.4685,2014.

Helfried Peyrl and Pablo A. Parrilo. Computing sum of squares decompositions with rational
coefficients. Theor. Comput. Sci., 409(2):269-281, 2008.

André Platzer, Jan-David Quesel, and Philipp Riimmer. Real world verification. In Renate A.
Schmidt, editor, Automated Deduction - CADE-22, 22nd International Conference on Auto-
mated Deduction, Montreal, Canada, August 2-7, 2009. Proceedings, volume 5663 of Lecture
Notes in Computer Science, pages 485-501. Springer, 2009.

Stephen Prajna and Ali Jadbabaie. Safety verification using barrier certificates. In HSCC,
volume 2993 of LNCS, pages 477—492. Springer, 2004.

M. Putinar. Positive polynomials on compact semi-algebraic sets. Indiana Univ. Math.
Journal, 42:969-984, 1993.

M.V. Ramana, L. Tunccel, and H. Wolkowicz. Strong duality for semidefinite programming.
SIAM J. Optim., 7(3):641-662, 1997.

Greg Reid, Fei Wang, Henry Wolkowicz, and Wenyuan Wu. http://arxiv.org/abs/1504.00931.
http://arxiv.org/abs/1504.00931. Accessed on March 31, 2016.

Pierre Roux. Formal proofs of rounding error bounds. Journal of Automated Reasoning,
pages 1-22, 2015.

Siegfried M. Rump. Verification of positive definiteness. BIT Numerical Mathematics, 46,
2006.

Sriram Sankaranarayanan, Henny Sipma, and Zohar Manna. Constructing invariants for
hybrid systems. Formal Methods in System Design, 32(1):25-55, 2008.

Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Scalable analysis of linear
systems using mathematical programming. In VM CAI, 2005.

Mohamed Amin Ben Sassi, Sriram Sankaranarayanan, Xin Chen, and Erika Abraham. Linear
relaxations of polynomial positivity for polynomial lyapunov function synthesis. IMA Journal
of Mathematical Control and Information, dnv003:39, 2015.

Stefan H. Schmieta and Gabor Pataki. Reporting solution quality for the DIMACS library
of mixed semidefinite-quadratic-linear programs. http://dimacs.rutgers.edu/
Challenges/Seventh/Instances/error_report.html. [Online; accessed
March 23, 2016].

H.D. Sherali and C.H. Tuncbilek. A global optimization algorithm for polynomial pro-
gramming using a reformulation-linearization technique. Journal of Global Optimization,
2:101-112, 1991.

N.Z. Shor. Class of global minimum bounds on polynomial functions. Cybernetics, 23(6):731—
734, 1987. Originally in Russian: Kibernetika (6), 1987, 9-11.

J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones.
Optim. Methods Softw., 11/12(1-4):625-653, 1999. Interior point methods.

J.E. Sturm. Error bounds for linear matrix inequalities. SIAM J. Optim., 10(4):1228-1248
(electronic), 2000.

Alfred Tarski. A decision method for elementary algebra and geometry. Technical report,
Univ. of California Press, Berkeley, 1951.

Levent Tunccel. Polyhedral and semidefinite programming methods in combinatorial op-
timization, volume 27 of Fields Institute Monographs. American Mathematical Society,
Providence, RI, 2010.

https://github.com/frankpermenter/frlib
https://github.com/frankpermenter/frlib
http://arxiv.org/abs/1408.4685
http://arxiv.org/abs/1408.4685
http://arxiv.org/abs/1504.00931
http://dimacs.rutgers.edu/Challenges/Seventh/Instances/error_report.html
http://dimacs.rutgers.edu/Challenges/Seventh/Instances/error_report.html

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

Validating Numerical Semidefinite Programming Solvers 23

Reha H Tiitiincii, Kim C Toh, and Michael J Todd. Solving semidefinite-quadratic-linear
programs using SDPT3. Mathematical programming, 95(2):189-217, 2003.

Lieven Vandenberghe and Stephen Boyd. Semidefinite programming. SIAM Review, 38(1):49—
95, 1996.

H. Waki and M. Muramatsu. A facial reduction algorithm for finding sparse SOS representa-
tions. Oper. Res. Lett., 38(5):361-365, 2010.

H. Waki and M. Muramatsu. Facial reduction algorithms for conic optimization problems. J.
Optim. Theory Appl., 158(1):188-215, 2013.

Hayato Waki, Maho Nakata, and Masakazu Muramatsu. Strange behaviors of interior-
point methods for solving semidefinite programming problems in polynomial optimization.
Computational Optimization and Applications, 53(3):823-844, 2011.

Volker Weispfenning. Quantifier elimination for real algebra—the quadratic case and beyond.
In Applied Algebra and Error-Correcting Codes (AAECC) 8, pages 85-101, 1997.

H. Wolkowicz, R. Saigal, and L. Vandenberghe, editors. Handbook of semidefinite program-
ming. International Series in Operations Research & Management Science, 27. Kluwer
Academic Publishers, Boston, MA, 2000. Theory, algorithms, and applications.

H. Wolkowicz and Q. Zhao. Semidefinite programming relaxations for the graph partitioning
problem. Discrete Appl. Math., 96/97:461-479, 1999. The satisfiability problem (Certosa di
Pontignano, 1996); Boolean functions.

Makoto Yamashita, Katsuki Fujisawa, Kazuhide Nakata, Maho Nakata, Mituhiro Fukuda,
Kazuhiro Kobayashi, and Kazushige Goto. A high-performance software package for semidef-
inite programs: SDPA 7. Technical Report B-460, Tokyo Institute of Technology, Tokyo,
2010.

Q. Zhao, S.E. Karisch, F. Rendl, and H. Wolkowicz. Semidefinite programming relaxations
for the quadratic assignment problem. J. Comb. Optim., 2(1):71-109, 1998. Semidefinite
programming and interior-point approaches for combinatorial optimization problems (Toronto,
ON, 1996).

	Validating Numerical Semidefinite Programming Solvers for Polynomial Invariants.

