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Abstract. Interval analysis seeks static lower and upper bounds on the
values of program variables. These bounds are useful, especially for in-
ferring invariants to prove buffer overflow checks. In practice, however,
intervals by themselves are often inadequate as invariants due to the lack
of relational information among program variables.

In this paper, we present a technique for deriving symbolic bounds on
variable values. We study a restricted class of polyhedra whose con-
straints are stratified with respect to some variable ordering provided by
the user, or chosen heuristically. We define a notion of normalization for
such constraints and demonstrate polynomial time domain operations on
the resulting domain of symbolic range constraints. The abstract domain
is intended to complement widely used domains such as intervals and oc-
tagons for use in buffer overflow analysis. Finally, we study the impact of
our analysis on commercial software using an overflow analyzer for the
C language.

1 Introduction

Numerical domain static analysis has been used to prove safety of programs
for properties such as the absence of buffer overflows, null pointer dereferences,
division by zero, string usage and floating point errors [30, 3, 13]. Domains such
as intervals, octagons, and polyhedra are used to symbolically over-approximate
the set of possible values of integer and real-valued program variables along with
their relationships under the abstract interpretation framework [19,8,11,21,6,
25,17,27]. These domains are classified by their precision, i.e, their ability to
represent sets of states, and tractability, the complexity of common operations
such as union (join), post condition, widening and so on. In general, enhanced
precision leads to more proofs and less false positives, while resulting in a costlier
analysis.

Fortunately, applications require a domain that is “precise enough” rather
than “most precise”. As a result, research in static analysis has resulted in nu-
merous trade-offs between precision and tractability. The octagon abstract do-
main, for instance, uses polyhedra with two variables per constraint and unit
coefficients [21]. The restriction yields fast, polynomial time domain operations.
Simultaneously, the pairwise comparisons captured by octagons also express and
prove many common run time safety issues in practical software [3]. Nevertheless,
a drawback of the octagon domain is its inability to reason with properties that
may need constraints of a more complex form. Such instances arise frequently.



In this paper, we study symbolic range constraints to discover symbolic ex-
pressions as bounds on the values of program variables. Assuming a linear or-
dering among the program variables, we restrict the bound for a variable = to
involve variables of order strictly higher than x. Thus, symbolic ranges can also
be seen as polyhedra with triangular constraint matrices. We present important
syntactic and semantic properties of these constraints including a sound but
incomplete proof system derived through syntactic rewriting, and a notion of
normalization under which the proof system is complete. Using some basic in-
sights into the geometry of symbolic range constraints, we study algorithms for
the various domain operations necessary to carry out program verification using
symbolic range constraints. We also study the practical impact of our domain
on large programs including performance comparisons with other domains.

Related work. Range analysis has many applications in program verification and
optimization. Much work has focused on the interval domain and its applications.
Cousot & Cousot present an abstract interpretation scheme for interval analysis
using widening and narrowing [8]. Recent work has focused on the elimination
of widenings/narrowings in the analysis using linear programming [23], rigorous
analysis of the data flow equations [28], and policy iteration [7,14].

Blume & Eigenmann study symbolic ranges for applications in compiler op-
timizations [4]. Their approach allows ranges that are non-linear with multi-
plication and max/min operators. However, the presence of non-linearity leads
to domain operations of exponential complexity. Whereas polynomial time op-
erations are derived heuristically, the impact of these heuristics on precision is
unclear. Even though some aspects of our approach parallel that of Blume et al.,
there are numerous fundamental differences: we focus on range constraints that
are always linear, convex and triangulated based on a single, explicit variable
ordering. These restrictions vastly simplify the design and implementation of
domain operations while providing some insights into the properties of symbolic
range constraints. Finally, we provide an experimental evaluation of the efficacy
of our domain for eliminating array bounds checks in practical examples.

Symbolic ranges may also be obtained using the LP-based approach of Rugina
& Rinard [23,32]. The bounds obtained relate the current value of a variable and
the values of parameters at the function entry. The advantage of this approach
is its freedom from heuristics such as widening/narrowing. However, the LP-
formulation is based on a weaker proof system for generating consequences of
linear inequalities by directly comparing coefficients, and potentially generates
weaker invariants.

Symbolic range constraints are also used in the path-based analysis tool
ARCHER due to Xie et al. [31]. However, the bounding expressions used in
their approach can involve at most one other variable.

We illustrate symbolic ranges for invariant computation using a motivating
example presented in Fig. 1(a). Assuming that the analysis starts at the function
foo, we analyze whether the assertion at the end of the function holds. Fig. 1(b)
shows the control flow graph for this example after program slicing. Fig. 1(c)
shows an interval analysis computation for this example. In this example, the
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Fig.1. A motivating example

interval analysis is not powerful enough to conclude that the assertion can never
be violated.

Consider the analysis using symbolic ranges, for the variable ordering i,j, x, y
(see Fig. 1(d)). Since symbolic ranges can represent the loop invariant y=x-i+j,
the analysis discovers that for x=y=0 this implies i=j at the point of the as-
sertion. Note also that this assertion cannot be proved using octagons, since the
loop invariant is not expressible in terms of octagonal relationships.

2 Preliminaries

We assume that all program variables are conservatively modeled as reals. Our
analysis model does not consider features such as complex data structures, proce-
dures and modules. These may be handled using well-known extensions [22]. Let
C be the first order language of assertions over free variables , and =C C' x C
denote entailment. An assertion ¢ represents a set of models [[¢]].

Definition 1 (Control Flow Graph). 4 Control Flow Graph (CFG) II :

(x,L, E,c,u,ly) consists of variables € = (x1,...,xy), locations L and edges E
between locations. Each edge E is labeled by a condition c(e) € C, and an update
u(e): & = f(x). Ly € L is the start location.

A state of the program is a tuple (¢,a) where ¢ € L is a location and a
represents a valuation of the program variables . Given a CFG II, an assertion
map 7 : L — C'is a function mapping each location ¢ € L to an assertion n({) €
C. An assertion map characterizes a set of states (¢, a) such that a € [[n(¢)]].
Let my E o it V0 € L, m1(£) = n2(¢). Given an assertion ¢ and an edge e : ¢ —
m € E, the (concrete) post-condition of ¢ wrt e, denoted post(y,e) is given by
the first order assertion post(p,e) : (3 xo) @[xo] N c(e)[xo] A x = u(e)[xo).

Definition 2 (Inductive Assertion Map). An assertion map n is inductive
iff (a) n(ly) = true, and (b) for all edges e : £ — m, post(n(£),e) = n(m).



A safety property I' is an assertion map labeling each location with a property
to be verified. In order to prove a safety property I, we find an inductive assertion
map 7, such that n = I'. “Concrete interpretation” can be used to construct
the inductive invariant map. Consider an iterative sequence of assertion maps

nont N

true, =¥y, i i i
() = {false othefwise. and 0" (6) =n'(0) v \/ post(n*(m), e)

e: m—{

Note that n' = '*1. The iteration converges if (AN > 0) n™ 1 &= N If the
iteration converges in N > 0 (finitely many) steps, the result %V is an inductive
assertion. However, the iteration may not converge for all programs. Further-
more, detecting convergence is undecidable, in general. As a result, concrete
interpretation, as shown above, is impractical for programs. Therefore, we over-
approximate the concrete interpretation in a suitable abstract domain [9,10].

Abstract domains. An abstract domain is a bounded lattice (A, C, ML, T, L).
It is useful to think of A as an assertion language and C as an entailment
relation. The meet M and the join U are approximations of the logical conjunction
and disjunction respectively. Formally, we require functions o : C' — A and
v : A — C known as the abstraction and concretization functions resp. that form
a Galois connection (see [9,10] for a complete description). An abstract post
condition operator post 4(a,e) over-approximates the concrete post condition
such that for all a € A, post(y(a),e) = vy(post 4(a,e)). An abstract domain map
7 : L — A maps each location £ € L to an abstract element 7(¢). The concrete
iteration sequence is generalized to yield an abstract iteration sequence:

m0(f) = {J_’ Otherwize and 7H(0) =7'(¢) U |_| post 4 (7" (m), e) .

e: m—L

Again, 7* T 7't1, and the iteration converges if AN > 0 s.t. #VFT! C 7V If
convergence occurs then it follows that v o 7%V is an inductive assertion. If the
lattice A is of finite height or satisfies the ascending chain condition, convergence
is always guaranteed. On the other hand, many of the domains commonly used
in program verification do not exhibit these conditions. Convergence, therefore,
needs to be forced by the use of widening.

Formally, given ay, as, their widening a1 Vas satisfies as C (a1Uaz). Addition-
ally, given an infinite sequence of objects a1, ..., am,..., the widened sequence
given by by = L, and b;11 = b;V(b; U a;), converges in finitely many steps.
In summary, the abstract iteration requires the following operations: (a) Join
L (meet M) over-approximates the logical or (and), (b) Abstract post condition
post 4 over-approximates post, (¢) Inclusion test C to check for the termination
of the iteration, and (d) Widening operator V to force convergence. In practice,
we also require other operations such as projection and narrowing.



3 Symbolic Range Constraints

Let R represent the reals and R, the set of extended reals ( R U{£oo}). Let @

denote a vector of n > 0 real-valued variables. The ith component of the vector
x is written z;. We use A, B,C to denote matrices. Throughout this section,
we fix a variable ordering given by 1 < z2 < --- < x,, with the index 7 of a
variable x; being synonymous with its rank in this ordering.

A linear expression is of the form e : ¢"x+d where ¢ is a vector of coefficients
over the reals, while d € R™ is the constant coefficient. By convention, a linear
expression of the form c¢"@ + oo is identical to 07x £ oco. For instance, the
expression 2x7 + oo is identical to 0z1 + oo. A linear inequality is of the form
ex0, where 1 € {>, <,=}. A linear constraint is a conjunction of finitely many
linear inequalities ¢ : A, &; > 0.

Given an inequality e > 0, where e is not a constant, its lead variable x; is

the least index ¢ s.t. ¢; # 0. We may write such an inequality in the bounded
form x; X1 e;, where z; is the lead variable and e; = ciie —x;. The sign 51 denotes
the reversal of the direction of the inequality if ¢; < 0. As an example, consider
the inequality 2z + 3x5 + 1 < 0. Its lead variable is x2 and bounded form is
Ty < —%x5 — % We reuse the |= relation to denote entailment among linear
constraints in the first order theory of linear arithmetic.
Definition 3 (Symbolic Range Constraint). A symbolic range constraint
(SRc) is of the form ¢ : N l; < x; < u; where for each i € [1,n], the linear
expressions l;, u; are made up of variables in the set {x;y1,...,xn}. In particular,
I, Uy are constants. The linear assertions false and true are also assumed to be
SRCSs.

The absence of a bound for x; is modeled by setting the bound to +00. Given
an SRC ¢ 1 Aj_; lj < x; < uy, let p denote the assertion AJ_; l; < z; < u;.

Ezxample 1. ¢ : x9+4 < x1 < 2x34T2+4 N —x3 < 29 < 23+4 A —00 < 23 < 0is
a SRC. The variable ordering is z1 < z2 < x3. The bound for x; involves {z3, x3},
x9 involves {z3} and x5 has constant bounds.

Implied constraints & normalization. Given a symbolic range |; < x; < u;, its
implied inequality is |; < u;. Note that the implied inequality |; < u; only involves
variables x;y1,...,Zp.

Definition 4 (Normalization). A SRC is normalized iff for each variable bound
li <z < ug, Pligy E |; < u;. By convention, the empty and universal SRC are
normalized.

Ezample 2. The SRC ¢ from Example 1 is not normalized. The implied constraint
0 < 2z3 derived from the range xo +4 < z1 < 2x3 + 2 + 4 is not implied by
¢p2)- The equivalent SRC ¢’ is normalized:

(plt To+4<z1 <2234+ 2204+4 N —a23<ax3<z234+4 AN 0<23<0



Unfortunately, not every SRC has a normal equivalent. The SRC ¥ : x2 — x3 <
21 <1 AN 0<x3<2 A 0< 23 <2 forms a counter-example. The projection of
¥ on the {x2,x3} is a five sided polygon, whereas any SRC in 2D is a trapezium.

Weak optimization algorithms. Optimization is used repeatedly as a primitive for
other domain operations including abstraction, join and intersection. Consider

the optimization instance min. (e : ¢"@ + d) s.t. . Let ¢ be a satisfiable SrRC

with bound I; < z; < uj; for index 0 < j < n. We let e #J, ¢ denote the

replacement of z; in e by |; (lower bound in ¢) if its coefficient in e is positive,
or u; otherwise.

Formally, ¢’ = e~z +ely, ¢ 20,
e —c¢;z; + cjuj, c; <O0.

. . @,1 @w,n . .
The canonical sequence, given by e —— e;--- —— e,, replaces variables in the
ascending order of their indices. The canonical sequence, denoted in short by

e % en, is unique, and yields a unique result. The following lemma follows from
the triangularization of SRCs:

. @,1 @w,n . .
Lemma 1. For the canonical sequence e —— --- =5 e,, each intermediate

expression e; involves only the variables in {z;11,...,%n}. Specifically, e, € RT.

Ezample 3. Consider the SRC ¢’ defined in Example 2 and the expression e :
—3x1 + 222 + 8x3. This yields the sequence —3x1 + 2x4 + 8z3 Ll —To + 213 —

12 223 25 — 16 223 —16.

It follows that e, under-approximates the minima of the optimization problem,
and if ¢ is normalized, weak optimization computes the exact minima; the same
result as any other LP solver.

Theorem 1 (Weak Optimization Theorem). Given a constraint ¢ and the

® . . .
sequence e — ey, ¢ = e > e,. Furthermore, if ¢ is normalized then e, =
min e s.t. .

Weak optimization requires O(n) rewriting steps, each in turn involving arith-
metic over expressions of size O(n). Therefore, the complexity of weak optimiza-
tion for a SRC with n constraints is O(n?).

Ezample 4. From Theorem 1, —16 is the exact minimum in Example 3. Consider
the equivalent constraint ¢ from Example 1. The same objective minimizes to
—0o0 (unbounded) if performed w.r.t. ¢.

Optimization provides an inference mechanism: given d = min e s.t. ¢, we
infer ¢ = e > d. By Theorem 1, an inference using weak optimization is always
sound. It is also complete, if the constraint ¢ is also normalized. Given SRC ¢,
we write ¢ Ew e > 0 to denote inference of e > 0 from ¢ by weak optimization.
Similarly, ¢ Ew A, e > 0iff (Vi) o Fw e; > 0.
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Fig. 2. Four possible SRC abstractions of a 2D hexagon (among many others).

Optimization for SRCs can also be solved by efficient algorithms such as S1M-
PLEX or interior point techniques. We will henceforth refer to such techniques as
strong optimization techniques. In practice, however, we prefer weak optimiza-
tion since (a) it out-performs LP solvers, (b) is less dependent on floating point
arithmetic, and (c) allows us to draw sound inferences wherever required. As
a curiosity, we also note that well-known examples such as Klee-Minty cubes
and Goldfarb cubes that exhibit worst case behavior for SIMPLEX algorithms
happen to be SRCs [5]. It is unclear if such Srcs will arise in practical verifica-
tion problems. For the rest of the paper, we will assume optimization is always
performed using weak optimization. Nevertheless, any call to weak optimization
can be substituted by a call to strong optimization. Experimental results shown
in Section 6 provide further justification for this choice.

We also use optimization to compare expressions wrt a given SRC ¢. We
write eq >, eg iff ¢ Ew e1 > ey. Expressions are equivalent, written e; =, e,
if ¢ |=e; = es, and incomparable, denoted e ez, if neither inequality holds.
Abstraction. The abstraction function converts arbitrary first-order formulae to
symbolic ranges. In practice, programs we analyze are first linearized. Therefore,
abstraction needs to be defined only on polyhedra. Abstraction is used as a
primitive operation that organizes arbitrary linear constraints into the form of
SRCs.

Let ¥ be a polyhedron represented as a conjunction of linear inequalities
N;ei > 0. We seek a SRC ¢ : «(¢) such that ¢ = ¢. Unfortunately, this
SRC abstraction a(1) may not be uniquely defined. Figure 2 shows possible SRC
abstractions of a hexagon in 2 dimensions that are all semantically incomparable.

Abstraction of a given polyhedron ¢ is performed by sequentially inserting
the inequalities of ¢ into a target SRC, starting initially with the SRC true. The
result is an SRC a(1)).

Inequality Insertion. Let ¢ be a SRC and e; > 0 be an inequality. As a primitive
we consider the problem of deriving an abstraction a(p A e; > 0). We consider
the case wherein z; < b; is the bounded form of e;. The case where the bounded
form is z; > b; is handled symmetrically. Also, let |; < z; < u; be the existing
bounds for z; in ¢.

Using expression comparison, we distinguish three cases, (a) b; >, u; ,
(b) uj >4y, bj and (c) Oy, bj, as depicted in Figure 3. For case (a), the
bound z; < uj entails x; < bj, therefore we need not replace u;. The reverse
holds for case (b), and uj is replaced. However, for case (c), neither bound entails
the other. We call this a conflict.



Fig. 3. Three cases encountered during abstraction. (a) b; >, uj, (b) u; >, b; and
(¢) u;Ob; showing a conflict.

A conflict forces us to choose between two bounds uj,b; where neither is
semantically stronger than the other. Conflicts are due to the lack of a unique
SRC abstraction. We handle conflicts using conflict resolution heuristics provided
by the user. We describe a few possible heuristics below.

Interval Heuristic We consider the worst case interval bound on z; resulting
from either choice of bounds. Let ¢ = max bj; s.t. [y and similarly,
d = max uj s.t. p[j15. If ¢ < d, we replace u; by b;, and retain u; otherwise.
Figure 3(c) shows a geometric interpretation.

Metric Choose the bound that minimizes the volume of the resulting Src, or
alternatively, the distance from a reference set.

LexOrder Choose syntactically according to lexicographic order.

Fixed Always choose to retain the original bound uj, or replace it with b;.

The result of abstraction is not guaranteed to be normalized. If there are
no conflicts in the abstraction process then semantic equivalence of the SRC
to the original polyhedron follows. In summary, the abstraction algorithm is
parameterized by the conflict resolution heuristic. Our implementation uses the
interval heuristic to resolve conflicts and the lexicographic order to break ties.
Let a denote the abstraction function that uses some conflict resolution strategy.

Lemma 2. For a constraint v, a(y) is a SRC and ¢ | a(v).

Each inequality insertion requires us to solve finitely many optimization prob-
lems. Weak optimization requires time O(n?). Therefore, the SRC abstraction a
polyhedron with m inequalities can be computed in time O(n?m).

4 Domain Operations

The implementation of various operations required for static analysis over SRCs
is discussed in this section.

Forced normalization. A SRC ¢ may fail to be normalized in the course of our
analysis as a result of abstraction or other domain operations. Failure of nor-
malization can itself be detected in O(n3) time using weak optimization using
the lemma below:

Lemma 3. A SRC ¢ is normalized iff for each bound |; < xz; < u;, 0 < i < n,
Pli+1] Ew l; <u;. Note that the |=w relation is sufficient to test normalization.



Bottom-up: In general, a SRC that is not normalized may not have a normal
equivalent. However, it is frequently the case that normalization may be achieved
by simply propagating missing information from lower order indices up to the
higher order indices. We consider each bound I; < x; <uj, for j=n—-1,...,1,
and insert the implied inequality |; < u; into ¢fj;1] using the abstraction proce-
dure described in Section 3. This process does not always produce a normalized
constraint. However, the procedure itself is useful since it can sometimes re-
place missing bounds for variables by using a bound implied by the remaining
constraints.

Ezample 5. Recall the SRC ¢ : 29 4+4 < 27 <223+ 20+4 AN —x3 <29 <
x3+4 A —oo < x5 <0 from Example 1. The implied inequality zo +4(< z1) <
2x3 + x5 + 4 simplifies to x3 > 0. When inserted, this yields the normalized SRC
¢’ from Example 2.

Even though bottom-up normalization is not always guaranteed to succeed,

it generally improves the result of the weak optimization algorithm. We therefore
employ it after other domain operations as a pre-normalization step.
Top-down: Add constant offsets a.j, 3; > 0 to bounds |, u; such that the resulting
bounds |; — a; < x; < u; + 3; are normalized. In practice, a;,3; may be
computed by recursively normalizing ¢[j;1; and then using weak optimization.
As a corollary of Lemma 3, top-down technique always normalizes.

Lemma 4. Let ¢ be an SRC and @1, @2 be the results of applying bottom-up and
top-down techniques, respectively to ¢. It follows that ¢ = 1 and ¢ Ew @a.
However, ¢ =w 1 does not always hold.

Following other numerical domains, we note that normalization should never

be forced after a widening operation to ensure termination [21].
Intersection & join. Given two SRCs @1 A @9 their intersection can be performed
by using the abstraction procedure, i.e., 1 M2 = a(p1 A ¢2). In general, the
best possible join 1 U o for SRCs 1,92 can be defined as the abstraction
of the polyhedral convex hull 1, @s. However, convex hull computations are
expensive, even for SRCs. We describe a direct generalization of the interval join
used for value ranges. Let |; < z; < u; be a bound in ¢; (similar analysis
is used for bounds in ¢2). Consider the following optimization problems: cjl- =
min. x; —lj s.t. g, dj = max. z; —uj s.t. Q.

Note that @9 = Ij—l—cjl- <z < uj—l—djl-, while o1 = 1; +0 < 2; < u; +0.
As a result, (@1 Upy) = Ij + min(c},0) < z; < uj 4 max(0,d}). We call such
a constraint the relazation of x; in 1. Let @12 be the result of relaxing each
bound in ¢ wrt @o. Similarly, let w21 be obtained by relaxing each bound in 4
wrt 1. We define the range join as @1 UR @2 : @12 [ p91.

Lemma 5. Given any SRC @1, p2, @i Ew @1Urp2,i = 1,2. Also, p1Mps E ¢;.
However, this containment may not be provable using =y .

Relaxing each constraint requires O(n) optimization, each requiring O(n?) time.
Finally, abstraction itself requires O(n?) time. As a result join can be achieved
in time O(n?).



Ezample 6. Consider the SRCs 1, 2 shown below:

T2 <71 <229 +4 —o0o <71 < X9
1 23 <12 <5 2 : 0<zy<z3+1
—4§I3§4 0§$3§2

The relaxed constraints are given by

—oo <y <229 +4 —oo <z <72+9
w2 § x3—2<22 <5 Y21 : —4 <z <2349
—4<23<4 —4<23<4

The join is computed by intersecting these constraints:
p: —00< 2 <2x94+4 N 23—-2<22<5 N —4<23<4.

Projection. Projection is an important primitive for implementing the transfer
function across assignments and modeling scope in interprocedural analysis. The
“best” projection is, in general, the abstraction of the projection carried out over
polyhedra. However, like convex hull, polyhedral projection is an exponential
time operation in the worst case.

Definition 5 (Polarity). A variable z occurring in the RHS of a bound xj>ab;
has positive polarity if b; is a lower bound and z has a positive coefficient, or
b; is an upper bound and z has a negative coefficient. The variable has negative
polarity otherwise. Variable z with positive polarity in a constraint is written 2z,

and negative polarity as z~ (see Example 7 below).

Direct projection. Consider the projection of z; from SRC ¢. Let |; < z; < uj
denote the bounds for the variable x; in ¢. For an occurrence of z; in a bound
inequality of the form x;xb; : ¢"x+d (note i < j by triangulation), we replace
x; in this expression by one of |;,u; based on the polarity replacement rule:
occurrences of xj are replaced by the lower bound I;, and z; are by u;. Finally,
z; and its bounds are removed from the constraint. Direct projection can be
computed in time O(n?).

Lemma 6. Let ¢’ be the result of a simple projection of x; from . It follows
that ¢’ is an SRC and (3z;) ¢ = ¢'.

Ezample 7. Direct projection of z from p: 27 <z <27 +1 A 27 -2<y<
27 +3 A —oo < z <5, replaces 2T with —oo and 2z~ with 5 at each occurrence,
yielding ¢’ : —co<z <6 A —oco<y<8.

Indirect projection. Direct projection can be improved by using a simple modi-
fication of Fourier-Motzkin elimination technique.

A matching pair for the variable x; consists of two occurrences of variable
x; with opposite polarities in bounds z; Majx;r +e; and xg Majr; + ep with
1 # k. The matching pairs for the SRC ¢ from Example 7 are:

—_——— -
-



There are two matching pairs for the variable z shown using arrows. The match-
ing pair 2t <z and y < 2z~ + 3 can be used to rewrite the former constraint as
y — 3 < x. Similarly the other matching pair can be used to rewrite the upper
bound of z to x < y 4+ 2. An indirect projection of the constraint in Example 7,
using matching pairs yields the result y —3 <z <y+3 A —oco <y < 8.
Matching pairs can be used to improve over direct projection, especially when
the existing bounds for the variables to be projected may lead to too coarse an
over-approximation. They are sound and preserve the triangular structure.
Substitution. The substitution x; — e involves the replacement of every occur-
rence of x; in the constraint by e. In general, the result of carrying out the
replacements is not a SRC. However, the abstraction algorithm can be used to
reconstruct a SRC as ¢’ : a(p[z — €]).
Transfer function. Consider a SRC ¢ and an assignment z; := e, where e =
c"x+d. The assignment is invertible if ¢; # 0, on the other hand the assignment
is non-invertible or destructive if c; = 0. An invertible assignment can be handled
using a substitution ¢ : @[z; — é(% — (e — ¢jz;))]. A destructive update is
handled by first using the projection algorithm to compute ¢’ : 3z; ¢ and then
computing the intersection ¢ : a(¢’ A z; = e) using the abstraction algorithm.
Widening. An instance of widening consists of two SRCs ¢1, @2 such that ¢ |
2. Using standard widening [9], we simply drop each constraint in ¢, that is
not entailed by ¢>. Let z; < u; be an upper bound in ;. We first compute
c; = max. (x; —uj)s.t. o If ¢; > 0 then ¢y FEw x; < uj. Therefore, we need
to drop the constraint. This may be done by replacing the bound u; with co. A
better widening operator is obtained by first replacing each occurrence of ;- (x;
occurring with negative polarity) by a matching pair before replacing u;. Lower
bounds such as x; > |; are handled symmetrically.

Lemma 7. The SRC widening Vg satisfies (a) v1,02 Ew ©1Vre2; (b) any
ascending chain eventually converges (even if Ew is used to detect conver-
gence), i.e., for any sequence V1, ..., 0y, ..., the widened sequence @1, ..., sat-
isfies pN1+1 Ew ©n, for some N > 0.

Narrowing. The SRC narrowing is similar to the interval narrowing on Cousot et
al. [10]. Let @2 = 1. The narrowing ¢ AR @2 is given by replacing every +oo
bound in ¢; by the corresponding bound in .

Lemma 8. For any SRCs @1 and 2, s.t. w3 = p1, 1 AR w2 Ew @1. Further-
more, the narrowing iteration for SRC domain converges.

Equalities. While equalities can be captured in the SRC domain itself, it is bene-
ficial to compute the equality constraints separately. An equality constraint can
be stored as Ax + b = 0 where A is a n X n matrix. In practice, we store A in
its triangulated form assuming some ordering on the variables. Therefore, it is
possible to construct the product domain of SRC and linear equalities wherein
both domains share the same variable ordering. The equality part is propagated
using Karr’s analysis [19].



Using the same variable ordering allows us to share information between the
two domains. For instance, oo bounds for the SRC component can be replaced
with bounds inferred from the equality constraints during the course of the
analysis. The equality invariants can also be used to delay widening. Following
the polyhedral widening operator of Bagnara et al., we do not apply widening if
the equality part has decreased in rank during the iteration [1].

Variable Ordering

We now consider the choice of the variable ordering. The variable ordering used
in the analysis has a considerable impact on its precision. The ideal choice of
a variable ordering requires us to assign the higher indices to variables which
are likely to be unbounded, or have constant bounds. Secondly, if a variable x
is defined in terms of y in the program flow, it is more natural to express the
bounds of z in terms of y than the other way around. We therefore consider two
factors in choosing a variable ordering: (a) ordering based on variable type or
its purpose in the code; and (b) ordering based on variable dependencies.

The determination of the “type” or “purpose” of a variable is made using syn-
tactic templates. For instance, variables used as loop counters, or array indices
are assigned lower indices than loop bounds or those that track array/pointer
lengths. Similarly, variables used as arguments to functions have higher indices
than local variables inside functions. These variables are identified in the front
end during CFG construction using a simple variable dependency analysis.

Variables of a similar type are ordered using data dependencies. A dataflow
analysis is used to track dependencies among a variable. If the dependency infor-
mation between two variables is always uni-directional we use this information
to determine a variable ordering. Finally, variables which cannot be otherwise
ordered in a principled way are ordered randomly.

5 Implementation

We have implemented an analysis tool to prove array accesses safe as part of the
ongoing F-SOFT project [18]. Our analyzer is targeted towards proving numer-
ous runtime safety properties of C programs including array and pointer access
checks. The analyzer is context sensitive, by using call strings to track contexts.
While recursive functions cannot be handled directly, they may be abstracted by
unrolling to some fixed length and handling the remaining calls context insen-
sitively. Our abstract interpreter supports a combination of different numerical
domains, including constant folding, interval, octagon, polyhedron and SRC do-
mains. For our experiments, we used off-the-shelf implementations of the octagon
abstract domain library [20], and the Parma Polyhedron Library [2]. Each library
was used with the same abstract interpreter to carry out the program analysis.

The tool constructs a CFG representation from the program, which is simpli-
fied using program slicing [29], constant propagation, and optionally by interval
analysis. A linearization abstraction converts operations such as multiplication



and integer division into non-deterministic choices. Arrays and pointers are mod-
eled by their allocated sizes while array contents are abstracted away. Pointer
aliasing is modeled soundly using a flow insensitive alias analysis.

Variable clustering. The analysis model size is reduced by creating small clus-
ters of related variables. For each cluster, statements that involve variables not
belonging to the current cluster are abstracted away. The analysis is performed
on these abstractions. A property is considered proved only if it can be proved
in each context by some cluster abstraction. Clusters are detected heuristically
by a backward traversal of the CFG, collecting the variables that occur in the
same expressions or conditions. The backward traversal is stopped as soon as the
number of variables in a cluster first exceeds 20 variables for our experiments.
The number of clusters ranges from a few hundreds to nearly 2000 clusters.
Iteration Strategy. The fixpoint computation is performed by means of an upward
iteration using widening to converge to some fixed point followed by a downward
iteration using narrowing to improve the fixed point until no more improvements
are possible. To improve the initial fixed point, the onset of widening is delayed
by a fixed number of iterations (2 iterations for our experiments). The iteration
strategy used is semi-naive. At each step, we minimize the number of applications
of post conditions by keeping track of nodes whose abstract state changed in the
previous iteration. In the case of the polyhedral domain, the narrowing phase is
cut off after a fixed number of iteration to avoid potential non termination.

6 Experiments

Our experiments involved the verification of C programs for runtime errors such
as buffer overflows, null pointer accesses, and string library usage checks. The
domains are compared simply based on their ability to prove properties.

Small Benchmarks. We first compare the domains on a collection of small
example programs [24]. These programs are written in the C language, and
range from 20-400 lines of code. The examples typically consist of statically or
dynamically allocated arrays accessed inside loops using aliased pointers, and
passed as parameters to string/standard library functions.

Table 1 summarizes the results on these examples. The table on the left shows
the total running times and the number of properties established. The properties
proved by the domains are compared pairwise. The pairwise comparison summa-
rizes the number of properties that each domain could (not) prove as compared
to other domains. In general, the SRC domain comes out slightly ahead in terms
of proofs, while remaining competitive in terms of time. An analysis of the failed
proofs revealed that roughly 25 are due to actual bugs (mostly unintentional) in
the programs, while the remaining were mostly due to modeling limitations.
Comparison of Implementation Choices. Our implementation of SRCs re-
quires heuristics for optimization, variable ordering and conflict resolution while
abstracting. Table 2 compares the proofs and running times for some alternative
strategies for these operations. Each experiment in the table changes one option
at a time, leaving the others unchanged. The choices we made for these strategies



Table 1. Comparison results on small examples. Prog.: Number of programs, #Prp.:
total number of properties, Prf: number of proofs, T: time taken in seconds. Detailed
pairwise comparison of the proofs is shown on the right.

vs. Int. | vs. Oct. | vs. SRC
Oct.||+29/ -5
SRC |[+45/ — 1|4+23/ — 3
Poly||+46/ — 6|+24/ — 8|+7/ — 11

Prog.|#Prp.|| Int. || Oct. || Poly. || SRCs
Prf|T||Prf|T ||Prf|T ||Prf|T
48 480 316(9 |[340|29(|356|413|360|81

Table 2. Comparison of different implementation choices for sSrRc. SIMP: simplex
instead of weak optimization, Random: Random var. ordering, Reverse: reversal of
the implemented var. ordering, Random: Resolve conflicts randomly, Lex: choose
expr. with lower lex order, Argl: Always retain, Arg2: Always replace existing expr.

opt. Var. Ordering Conflict Resolution

SIMP Random Reverse || Random Lex Argl Arg2
Prf|T ||Prf T ||Prf T ||Prf T ||Prf |T|Prf [T |Prf |T
0/0[906||+4/-23|114||+1/-29(132||4+1/-13(80||+2/-4|81||+6/-8|80||+6/-8|68

perform better than the more ad-hoc strategies used in these experiments. In
particular, the difference is most pronounced when the variable ordering used is
exactly the reverse of that suggested by our heuristic.

Network Controller Study. We studied the performance of our analyzer on a
commercial network controller implementation. The analysis is started at differ-
ent root functions assuming an unknown calling environment. Root functions are
chosen based on their position in the global call graph. Each analysis run first
simplifies the model using slicing, constant folding and interval analysis. Table 3
shows each of these functions along with the number of properties sliced away
as a result of all the front-end simplifications. Also note that a large fraction
of the properties can be handled simply by using interval analysis and constant
folding. Slicing the CFG to remove these properties triggers a large reduction in
the CFG size.

Table 4 compares the performance of the SRC domain with the octagon and
polyhedral domains on the CFG simplified by slicing, constant folding and in-
tervals. The interval domain captures many of the easy properties including the
common case of static arrays accessed in loops with known bounds. While the
SRC and octagon domains can complete on all the examples even in the absence
of such simplifications, running interval analysis as a pre-processing step nev-
ertheless lets us focus on those properties for which domains such as octagons,
SRC and polyhedra are really needed. In many situations, the domains produce
a similar bottom line. Nevertheless, there are cases where SRCs capture proofs
missed by octagons and polyhedra. The SRC domain takes roughly 2.5x more
time than the octagon domain. On the other hand, the polyhedral domain proves
much fewer properties than both octagons and SRCs in this experiment, while
requiring significantly more time. We believe that the iteration strategy used,



Table 3. Front end statistics for network controller. #BB: number of basic blocks,
#Fun: number of functions, #BC: Y, . ,, #Contexts(n), # of CFG blocks weighted
by the # of contexts for each block , #Prop: number of properties, Proof: number of
proofs by constant folding + intervals, Time: simplification time (sec), #BC_Simpl:
Block-contexts after simplification.

Name|KLOC|#BB|#Fun|#BC|#Prop Simplifications
x103 x103 Proof|Time |#BC_Simpl
F1 (5.9 1.6 |11 2.0 |441 208 |24 1.6

F2 (64 1.7 19 2.2 |545 223 |77 1.9

F3 (7.2 2.1 |11 2.6 613 424 |58 1.5

F4 (94 3.3 |12 4.8 1995 859 128 1.6

F5 (11.3 (3.8 |16 4.5 |1133 ||644 |268 (3.2

F6 (15.0 |5.3 |15 10.0 |1611 |{1427 |451 2.1

F7 (145 |21 |5 2.5 |733 354 |30 1.5

F8 (257 [9.0 |5 29.6 2675 [|2641 {1266 |2.4

F9 [23.0 |81 |8 11.9 |2461 (|2391 (1350 |2.0

F10 (454 |16.6 |59 60.6 4671 [|4627 |2h30m|6.6

10 164 15878 ||13798|12850

Table 4. Comparing the performance of abstract domains on simplified CFG. Poe::
number of octagon proofs, Toc:: octagon analysis time (seconds), Psrc,Tsrc: SRC
proof and time taken, Ppoiy, TPoly: polyhedron time and proof.

Function||F1 |(F2 (F3 |[F4|F5 |F6 |(F7 (F8|F9|F10|/Tot
Poct 56 [0 |23 |56 |146 |56 (28 (14 (0 |0 379
Toct 11 130.7|9 [3.2|105 (7.7 |10.4|1.3|.9 |.4 ||180
Psrco 56 (12 |22 |56 |146 |56 (28 |14 |0 |14 |/404
Tsrc 18.2159.1|21.0(7.6/291.7|17 |20.7|0.7|1.5(0.5 ||439
Ppoiy 42 [0 |23 |0 |62 |0 [0 |0 [0 |O 127
Tproly 63 |684 |75 |29 |1697 |63.5|51.1{2.7(4.2|1.4 |[2672

especially the fast onset of widening and the narrowing cutoff for polyhedra may
account for the discrepancy. On the other hand, increasing either parameter
only serve to slow the analysis down further. In general, precise widening oper-
ators [1] along with techniques such as lookahed widening [16], landmark-based
widening [26] or widening with acceleration [15] can compensate for the lack of
a good polyhedral narrowing.

7 Conclusion

We have presented an abstract domain using symbolic ranges that captures many
properties that are missed by other domains such as octagons and intervals. At
the same time, our domain does not incur the large time complexity of the poly-
hedral domain. In practice, we hope to use the SRC domain in conjunction with
intervals, octagons and polyhedra to prove more properties with a reasonable
time overhead.



Many interesting avenues of future research suggest themselves. One inter-
esting possibility is to allow for a conjunction of many SRC constraints, each
using a different variable ordering. Apart from checking overflows, the SRC do-
main may also be useful for analyzing the numerical stability of floating point
loops [17]. The constraint handling techniques presented in this paper can be
directly applied to practical tools such as ARCHER [31] and ESP [12].
Acknowledgments. We gratefully acknowledge Ilya Shlyakhter for his useful
insights and the anonymous reviewers for their comments. We acknowledge the
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