
Static Analysis in Disjunctive Numerical

Domains.

Sriram Sankaranarayanan, Franjo Ivančić, Ilya Shlyakhter, Aarti Gupta

NEC Laboratories America,
4 Independence Way, Princeton, NJ

Abstract. The convexity of numerical domains such as polyhedra, oc-
tagons, intervals and linear equalities enables tractable analysis of soft-
ware for buffer overflows, null pointer dereferences and floating point
errors. However, convexity also causes the analysis to fail in many com-
mon cases. Powerset extensions can remedy this shortcoming by consid-
ering disjunctions of predicates. Unfortunately, analysis using powerset
domains can be exponentially more expensive as compared to analysis
on the base domain.
In this paper, we prove structural properties of fixed points computed in
commonly used powerset extensions. We show that a fixed point com-
puted on a powerset extension is also a fixed point in the base domain
computed on an “elaboration” of the program’s CFG structure. Using
this insight, we build analysis algorithms that approach path sensitive
static analysis algorithms by performing the fixed point computation on
the base domain while discovering an “elaboration” on the fly. Using re-
strictions on the nature of the elaborations, we design algorithms that
scale polynomially in terms of the number of disjuncts. We have imple-
mented a light-weight static analyzer as a part of the F-Soft project with
encouraging initial results.

1 Introduction

Static analysis over numerical domains has been used to check programs for
buffer overflows, null pointer references and other violations such as division by
zero and floating point errors [25, 4, 12]. Numerical domains such as intervals,
octagons and polyhedra maintain information about the set of possible values
of integer and real-valued program variables along with their inter-relationships.
The convexity of these domains makes the analysis tractable. On the other hand,
fundamental limitations arising out of convexity leads to imprecision in the anal-
ysis, ultimately yielding many false alarms. Elimination of these false alarms is
achieved through path-sensitive analysis by means of disjunctive domains ob-
tained through powerset extensions. Such extensions can be constructed sys-
tematically from the base domain using standard techniques [14, 8].

Powerset extensions of numerical domains consider a disjunction of predicates
at each program location. While the presence of these disjuncts helps surmount
convexity limitations, the complexity of the analysis can be exponentially higher

due to more complex domain operations and also due to the large number of
disjuncts that can be produced during the course of the analysis. Furthermore,
the presence of disjuncts require special techniques to lift the widening from the
base domain up to the disjunctive domain [2].

Controlling the production of disjuncts during the course of the analysis is
one of the key aspects of managing the complexity of the analysis. The design of
such strategies can be performed by techniques that annotate data flow objects
by partial trace information such as trace partitioning [20, 16], and other path-
sensitive data-flow analysis techniques that implicitly manage complexity by
joining predicates only when the property to be proved remains unchanged as a
result [11], or “semantically” by careful domain construction [19, 2].

In this paper, we first show that fixed points computed over powerset exten-
sions correspond to fixed points over the base domain computed on an “elab-
oration” of the CFG. As a result, the complexity of flow-sensitive analysis can
also be controlled by means of a strategy for producing elaborations of the CFG
being analyzed. We consider analysis techniques that perform the fixed point
iteration hand in hand with the construction of the elaboration that character-
izes the fixed point. As an application, we consider bounded elaborations, that
correspond to power-set extensions wherein the number of disjuncts in each ab-
stract object is bounded by a fixed number K. We discuss the implementation
our ideas in a light weight static analyzer for the C language as a part of the
F-Soft project and demonstrate promising results.

This paper is organized as follows: Section 2 presents preliminary concepts
of abstract interpretation and presents numerical domains along with their lim-
itations. Powerset extensions are presented in Section 3. Section 4 presents the
notion of an elaboration and techniques for constructing an elaboration while
performing the analysis. Section 5 describes our implementation and results over
some benchmark programs.

2 Preliminaries

We present basic notions of abstract interpretation and numerical domains.

Programs and Invariants

Since the paper focuses on static analysis over numerical domains, we may
regard programs as purely ranging over integer or real-valued variables. Let
V = {x1, . . . , xn} denote integer-valued program variables, collectively referred
to as x. The program operations over these variables include numerical opera-
tions such as addition and multiplication. We shall assume first-order predicates
over the program state belonging to an appropriate language. Given such a
predicate ψ, the set of valuations to x satisfying ψ is denoted JψK. A program
is represented by its Control-flow graph(CFG).

Definition 1 (Control-flow Graphs (CFGs)). Formally, a CFG is a tuple
Π : 〈V, L, T , ℓ0, Θ〉:

– L: a set of locations (cutpoints);
– T : a set of transitions (edges), where each transition τ : ℓi → ℓj is an edge

between the pre-location ℓi and a post-location ℓj. Each transition models
the changes in the values of program variables using a transition relation.

– ℓ0 ∈ L: the initial location; Θ is an assertion over x representing the initial
condition.

A state s of the program maps each variable xi to an integer value s(xi). Let
Σ denote the set of program states. The relational semantics of a transition can
be modeled using the notion of a (concrete) post condition:

Definition 2 (Post Condition). Let S ⊆ Σ be a set of states. The (concrete)
post condition S′ : postΣ(S, τ) across a transition τ is a set of states S′ ⊆ Σ.
The post condition models the effect(s) of executing τ on each state satisfying S.

An assertion ψ over x is an invariant of a CFG at a location ℓ iff it is satisfied
by every state reachable at ℓ. An assertion map associates each location of a CFG
with a predicate. An assertion map η is invariant if η(ℓ) is an invariant, for each
ℓ ∈ L. Invariants are established using the inductive assertions method due to
Floyd and Hoare [13, 17].

Definition 3 (Inductive Assertion Maps). An assertion map η is inductive
iff it satisfies the following conditions:

Initiation: JΘK ⊆ Jη(ℓ0)K,
Consecution: For each transition τ : ℓi → ℓj,

postΣ(Jη(ℓi)K , τ) ⊆ Jη(ℓj)K .

It is well known that any inductive assertion map is invariant. However, the
converse need not be true. The standard technique for proving an assertion
invariant is to find an inductive assertion that strengthens it.

Abstract Interpretation

Abstract interpretation [7] is a generic technique for computing inductive asser-
tions of CFGs using an iterative process. In order to compute an inductive map,
we start from an initial map and repeatedly weaken the predicates mapped at
each location to converge to a fixed point. The assertions labeling each location
can be shown to be inductive when the fixed point is reached.

Abstract Domain. In order to carry out an abstract interpretation, we define
an abstract domain along with some operations on the elements of the abstract
domain known as the domain operations. Informally, an abstract domain is a
lattice of predicates Γ over the program state including the assertions ⊤ and
⊥ representing true and false respectively. The domain is defined by the ab-
stract lattice 〈Γ, |=〉 and the concrete lattice of sets of program states ordered
by inclusion

〈
2Σ,⊆

〉
along with the abstraction function α : 2Σ 7→ Γ and the

concretization (or the meaning) function γ : Γ 7→ 2Σ. A key requirement is
that α, γ form a Galois connection (see [7, 9] for comprehensive surveys). The
abstract domain operations include:

Join Given d1, . . . , dm ∈ Γ , their join d : d1 ⊔ . . . ⊔ dm ∈ Γ satisfies di |= d.
Meet (Intersection) Given d1, . . . , dm ∈ Γ , their meet d : d1 ⊓ . . . ⊓ dm

satisfies d |= di.
Post-Condition Given d ∈ Γ and a transition τ , its abstract post condition

d′ : postΓ (d, τ) satisfies

postΣ(γ(d), τ) ⊆ γ(postΓ (d, τ)) .

Note that if the abstract domain is clear from context, we may drop the
subscript from the abstract post condition.

Inclusion Test Given objects d1 and d2, decide if d1 |= d2.
Widening Given d1, d2 ∈ Γ such that d1 |= d2, their widening d : d1∇d2 over

approximates the join, i.e., d1 ⊔ d2 |= d. Repeated applications of widening
on an increasing sequence of abstract objects, guarantees convergence to a
fixed point in a finite number of iterations.

Other operations of interest include projection, which is commonly used to
eliminate variables that are out of scope in interprocedural analysis and the
weakest precondition, which may be used to refine the abstraction in case of
failure to prove a property.

Forward Propagation. An abstract assertion map η : L 7→ Γ labels each CFG
location ℓ with an abstract object η(ℓ) ∈ Γ . An abstract assertion map η is
inductive iff the map γ ◦ η is an inductive assertion map. Given a CFG Π along
with an abstract domain Γ , forward propagation seeks to construct an inductive
abstract assertion map, iteratively as follows:

Initial Step The initial map η(0) is defined as follows:

η(0)(ℓ0) =

{
Θ, ℓ = ℓ0,

⊥, otherwise.

Iterative Step The iterative step computes the join of the current assertion at
a location ℓ with the post-condition of all its incoming transitions

η(i+1)(ℓ) = η(i)(ℓ) ⊔
⊔

τj : ℓj→ℓ

postΓ (η(i)(ℓj), τj) .

For convenience, we denote this as η(i+1) = F(η(i)). Note that F is monotonic
w.r.t |=, i.e., η(i)(ℓ) |= η(i+1)(ℓ) for all ℓ ∈ L.

Convergence Convergence occurs if η(i+1)(ℓ) |= η(i)(ℓ) for each ℓ ∈ L.

For the sake of simplicity, we do not consider the use of narrowing to improve
the fixed point in this discussion. Given an initial map η(0), forward propagation

computes η(i+1) iteratively as F(η(i)) until convergence η(i+1)(ℓ) |= η(i)(ℓ). Such
a map is a fixed point w.r.t F. It can be shown that a fixed point map is also
inductive. Hence, if the forward propagation converges, it results in an inductive
assertion at each cutpoint. Convergence is guaranteed in finitely many iterative
steps if the domain satisfies the ascending chain condition. Examples of such
domains include finite domains and notably the domain of linear equalities [18].
On the other hand, domains such as intervals and polyhedra do not satisfy
this condition. Hence, the widening operation ∇ is used repeatedly to force
convergence in finitely many steps.

Numerical Domains. Numerical domains such as intervals, octagons and poly-
hedra reason about the values of integer or real-valued program variables. These
domains are widely used to check programs for buffer-overflows, null pointer
dereferences, division-by-zero, floating point instabilities [4].

The interval domain consists of interval predicates of the form
∧

i xi ∈ [li, ui]
with the possibility of open intervals. The complexity of the domain operations is
linear in the number of variables. Analysis techniques for this domain have been
widely studied [6, 21]. The octagon domain due to Miné consists of assertions of
the form

∧
±xi ± xj ≤ c along with interval constraints over the variables. The

nature of the constraints in this domain permits a graphical representation and
the computation of many domain operations using the shortest path algorithm
as a primitive. The operations in this domain are at most cubic in the number of
variables. The polyhedral domain consists of convex polyhedra over the program
variables represented by constraints of the form

∧
a0+a1x1 + · · ·+anxn ≥ 0 [10,

15]. Domain operations over this domain are expensive (exponential space in the
size of the polyhedra). However, relaxations of the operations and the structure
of the constraints in the domain can yield polynomial time approximations to
these operations [24, 23, 22, 5].

One of the key properties of these domains is that of convexity. Convex-
ity makes the domain operations tractable. However, it also limits the ability
of these domains to represent sets of states. For instance, consider a convex
predicate including states A and B represented as points x1,x2 in Rn. Such a
predicate necessarily includes states that lie on the line joining these two points.
In many cases, the reachable states of a program form a non convex set in Rn.
Therefore, convex abstract domains cannot represent such sets without the ad-
dition of spurious states. Such a drawback leads to cases wherein the domain
is fundamentally unable to compute an invariant that proves the property of
interest.

Example 1. Figure 1 shows a program that stores the result of a condition 0 ≤
i ≤ 10 in a variable x. The table to the right shows the invariants computed after
each labeled location. Note that the invariant i ≤ 10, required at L4 to prove the
absence of overflows, cannot be established. Although the program is free from
overflows, convex numerical domains will not be able to establish correctness.

Powerset extensions are used to remedy the problem of convexity.

int a[10]
if (i ≥ 0 ∧ i < 10) then

L1: x := 1
else

L2: x := 0
end if

L3: · · ·
if x = 1 then

L4: a[i] := · · ·

end if

Location Invariant

L1 i ≥ 0 ∧ i ≤ 10 ∧ x = 1
L2 x = 0
L3 0 ≤ x ∧ x ≤ 1
L4 x = 1

Fig. 1. Example program (left) and the octagon domain invariants (right)

3 Powerset Extensions

Given a base abstract domain of predicates, a powerset extension of the domain
consists of disjunctions of the base domain predicates.

Definition 4 (Powerset extension). A powerset extension of an abstract do-

main 〈Γ, |=〉 is given by the domain
〈
Γ̂ , |̂=

〉
such that

Γ̂ = {S = 〈d1, . . . , dm〉 | di ∈ Γ, m ≥ 0} .

The concretization function γ̂ for a powerset extension is defined as γ̂(S) =⋃
d∈S γ(d). The abstraction function α̂(X) can be defined in many ways, for

instance α̂(X) = {α(X)}. The ordering relation |̂= may be defined in many
ways to derive different extensions. However, any such definition needs to be

faithful to the semantics induced by γ̂, i.e. if S1 |̂=S2 then γ̂(S1) ⊆ γ̂(S2).

Extending Partial Orders. The natural powerset extension is obtained by con-

sidering
〈
Γ̂ , |=n

〉
such that S1 |=n S2 iff γ̂(S1) ⊆ γ̂(S2). This is the partial

order induced by the concrete domain on the abstract domain through γ̂. The
Hoare powerset extension |=p is a partial order defined as follows:

S1 |=p S2 ⇐⇒ (∀d1 ∈ S1) (∃ d2 ∈ S2) d1 |= d2 .

Informally, we require that every object in S1 be “covered” by some object in
S2. This can be refined to yield a Egli-Milner type partial order |=em [1, 2]

S1 |=em S2 ⇐⇒ S1 = ∅ or (S1 |=p S2 and (∀ d2 ∈ S2) (∃ d1 ∈ S1) d1 |= d2) .

In addition to S1 |=p S2, each element in S2 must cover some element in S1.

Example 2. Consider the interval domain 〈I,⊑〉 over variables x1, x2. Let S1 =
{ϕ1 : x1 ∈ [0, 1]} and S2 = {ψ1 : x1 ∈ [12 , 2], ψ2 : x1 ∈ [−1, 1

2]}. It is easily

seen that S1 ⊑n S2, however S1 6⊑p S2 since each element of S2 is incomparable
with the element in S1.

On the other hand let S3 = {ξ1 : x1 ∈ [0, 2], ξ2 : x1 ∈ [−1, 0]}. Note that
S1 ⊑p S3 since ϕ1 ⊑ ξ1. On the other hand ξ2 does not cover any object in S1,
hence S1 6⊑em S3.

Consider the interval domain 〈I,⊑〉 of conjunctions of closed, open and half-
open intervals over the program variables and its natural powerset extension〈
Î ,⊑n

〉
. It is computationally hard to decide the ⊑n relation.

Theorem 1. Given S1, S2 ∈ Î, deciding if S1 ⊑n S2 is co-NP-hard.

Proof. We perform a reduction from the problem of proving universality of
DNF formulas. We introduce a variable xi corresponding to each proposition
pi. The literal pi is represented by the predicate xi ∈ [0,∞) and ¬pi by xi ∈
(−∞, 0). Each DNF clause translates into a interval domain predicate

∧
xi ∈

(li, ui).Therefore, the validity of the propositional formula can be reduced to
checking the inclusion {⊤} ⊑n {T (D1), . . . , T (Dm)}, wherein T (Di) represents
the interval predicate modeling the DNF clause Di. �

The hardness of |=n extends to natural powerset extensions of most numeri-
cal domains and many non-numerical domains that are sufficiently powerful to
enable the translation above. Other partial orders |=p and |=em are easier to
compute using O(|S1| + |S2|)2 many base domain (|=) comparisons.

The domain operations in a powerset domain can be defined by suitably
lifting the base domain operations. Notably, the join operation in a powerset
domain reduces to a set union. The meet operation S1⊓̂S2 is given by the pairwise
meet of elements from S1, S2. Post condition is computed element-wise; i.e., if
S = {d1, . . . , dk} ∈ Γ̂ , p̂ost(S, τ) = {post(d1, τ), . . . , post(dk, τ)}.

Widening operations can be obtained as extensions of the widening on the
base domain using carefully crafted strategies [2]. The use of such widening
operators frequently results in fixed points which satisfy inclusion using the |=p
or even the |=em ordering. Thus, even if a domain were designed to use joins
over a stronger partial order, the final fixed point obtained may be over |=p or
the |=em ordering.

Example 3. Consider the program below:

s := −1
while · · · do
s := −s { Invariant: (s = 1 ∨ s = −1) }

end while

The invariant s = 1 ∨ s = −1 is a fixed point in the powerset extension of the
interval domain using the ⊑p ordering.

CFG Elaboration

We now prove a simple connection between the fixed point obtained on a domain〈
Γ̂ , |=p

〉
using forward propagation on a CFG Π and the fixed point in the

base domain using the notion of an “elaboration”. Intuitively, an elaboration of
a CFG replicates each location of the CFG multiple times. Each such replication
preserves all the outgoing transitions from the original location.

Definition 5. Consider CFGs Πe : 〈Le, Te, ℓ
′

0, Θ〉 and Π : 〈L, T , ℓ0, Θ〉 over
the same set of variables V . The CFG Πe is an elaboration of Π iff there exists
a map ρ : Le 7→ L such that

– The initial location in Πe maps to the initial location of Π: ρ(ℓ′0) = ℓ0.
– Consider locations ℓ ∈ Π and ℓe ∈ Πe such that ρ(ℓe) = ℓ. For each outgoing

transition τ : ℓ→ m ∈ T , there is an outgoing transition τe : ℓe → me ∈ Te

such that ρ(me) = m. Furthermore every outgoing transition τe : ℓe → me ∈
Te is a replication of some transition τ : ρ(ℓe) → ρ(me) ∈ T .

Each ℓe ∈ Le is said to be a replication of ρ(ℓe) ∈ L. Note that every outgoing
transition of ρ(ℓe) is replicated in ℓe. We denote the replication of the transition
τ : ℓ → m starting from ℓe as τ(ℓe) : ℓe → me. An elaboration resembles a
(structural) simulation relation between Πe and Π.

Example 4. The figure below shows a CFG Π from Example 3 along with an
elaboration. The dashed line shows the relation ρ.

s = −1 s := −1

· · · · · · · · ·

s := −s s := −s s := −s

We shall now prove that every fixed point assertion map on a powerset do-

main
〈
Γ̂ , |=p

〉
on a CFG Π corresponds to a fixed point in the base domain

〈Γ, |=〉 on some elaboration Πe and vice-versa.

Definition 6 (Collapsing). Let ηe : Le 7→ Γ be an assertion map on the
elaboration Πe in the base domain. Its collapse C(ηe) is a map on the original
CFG Π, L 7→ Γ̂ such that for each ℓ ∈ L,

C(ηe)(ℓ) = {η(ℓe) | ρ(ℓe) = ℓ} .

The collapsing operator computes the disjunction of the domain objects at each
replicated location.

Lemma 1. If ηe is a fixed point map for Πe in the domain 〈Γ, |=〉 then C(ηe)

is a fixed point map for Π in the domain
〈
Γ̂ , |=p

〉
.

Proof. (Sketch) For convenience we denote ηc = C(ηe). It suffices to show initi-
ation Θ |=p ηc(ℓ0) and consecution for each transition τ : ℓi → ℓj , we require

p̂ost(ηc(ℓi), τ) |=p ηc(ℓj). Initiation is obtained by noting that initial states must
be replicated in an elaboration. Expanding the definition for LHS,

p̂ost(ηc(ℓi), τ) = p̂ost({ηe(ℓe)|ρ(ℓe) = ℓi}, τ)
= {post(ηe(ℓe), τ)|ρ(ℓe) = ℓi}

Similarly the RHS is expanded ηc(ℓj) = {ηe(ℓ
′

e) | ρ(ℓ′e) = ℓe}. In order to show
the containment, note that an elaboration requires that τ(ℓie) : ℓie → ℓje should
be an outgoing transition for each replication ℓie with ρ(ℓie) = ℓi and ρ(ℓje) = ℓj .

Using the fact that ηe is a fixed point map, we note that each element
post(ηe(ℓie), τ) on the LHS is contained in the element ηe(ℓje) from the RHS. �

Conversely, the fixed point in
〈
Γ̂ , |=p

〉
induces an elaboration of the CFG.

Definition 7 (Induced Elaboration). Let η̂ be a fixed point map for Π in the

domain
〈
Γ̂ , |=p

〉
. Such a fixed point induces an elaboration Πe and a induced

map ηe defined as follows:

– Locations: Let η̂(ℓ) = {d1, . . . , dm}. The elaboration contains replicated loca-
tions 〈ℓ, 1〉 , . . . , 〈ℓ,m〉 ∈ Le, one per disjunct such that ρ(〈ℓ, j〉) = ℓ. Also,
ηe(〈ℓ, j〉) = dj .

– Transitions: For each transition τ : ℓi → ℓj we require an outgoing transition
τ(ℓi, k) : 〈ℓi, k〉 → 〈ℓj , l〉 for some l. The target index l is defined using the

proof of consecution of η̂ under τ : p̂ost(η̂(ℓi), τ) |=p η̂(ℓj).
Let η̂(ℓi) = {d1, . . . , dm} and η(ℓj) = {e1, . . . , en} (Note that we may repre-
sent the empty set equivalently by the singleton {⊥}). We require

p̂ost({d1, . . . , dm}, τ) |=p {e1, . . . , en} .

However, p̂ost({d1, . . . , dm}, τ) = {post(d1, τ), . . . , post(dm, τ)}. By defini-
tion of |=p order, we require for each k,

(∀ k ∈ [1,m])(∃ l ∈ [1, n]) post(dk, τ) |= el .

Therefore, we set τ(ℓi, k) : 〈ℓi, k〉 → 〈ℓj, l〉. It immediately follows that ηe

satisfies consecution for this transition in the base domain 〈Γ, |=〉. Note that
since the choice of a target index l is not unique, there may be many induced
elaborations for a given assertion map.

Example 5. The elaboration shown in Example 4 is induced by the fixed point
shown in Example 3.

Lemma 2. Given a fixed point map ηc for Π in the domain
〈
Γ̂ , |=p

〉
, its in-

duced map ηe is a fixed point for the induced elaboration Πe in the base domain
〈Γ, |=〉.

Proof. The proof follows from the definition above.

Thus, elaborations are structural connections among the disjuncts of the final
fixed point made explicit using a syntactic representation. In fact, interesting
structural connections can be defined for powerset domains with other partial
orders such as |=em or |=n. Making these connections explicit enables us to
get around the NP-hardness of checking |=n. We defer the discussion of such
extensions to an extended version of this document.

4 On-the-fly Elaborations

In the previous section, we have demonstrated a close connection between fixed
points in a broad class of powerset domains and the fixed point in the base
domain computed on a structural elaboration of the original CFG. As a result,
analysis in powerset domains can be reduced to the process of an analysis on
the base domain carried out on some CFG elaboration. As a caveat, we observe
that even though it is possible to find some elaboration that produces the same
fixed point as in the powerset extension with some widening operator, an apriori
fixed elaboration scheme may not be able to produce the same fixed point.

In order to realize the full potential of a powerset extension, the process
of producing an elaboration of the CFG needs to be dynamic, by considering
partial elaborations of the CFG as the analysis progresses. Such a scheme can
also be seen as a powerset extension wherein the containment relations between
the individual disjuncts in a predicate are explicitly depicted.

Partial Elaboration A partial elaboration 〈Πe, U〉 of a CFG Π : 〈L, T , ℓ0〉 is
a tuple consisting of a CFG Πe : 〈Le, Te, ℓ0e〉 and an unresolved set U ⊆ Le ×T
of pairs, each consisting of a location from Πe and a transition from Π .

As with a CFG elaboration, each location ℓe ∈ Πe is a replication of some
location ρ(ℓe) ∈ Π . Furthermore, for each transition τ : ℓi → ℓj ∈ Π and each
ℓie ∈ Le replicating ℓi, exactly one of the following holds:

– There exists a replicated transition τ(ℓie) : ℓie → ℓje ∈ Te, or else,
– 〈ℓie, τ〉 ∈ U .

In other words, U contains all the outgoing transitions of Π which have not
been replicated in a given location of Πe. A partial elaboration is a (complete)
elaboration iff U = ∅. Given a CFG Π , an initial partial elaboration Π0

e is
given by L0

e = {ℓ0}, Te = ∅ and U = {〈ℓ0, τ〉 | τ : ℓ0 → ℓi}; in other words, the
initial location of Π is replicated exactly once and all its outgoing transitions are
unresolved. Two basic transformations are permitted on a partial elaboration:

Location Addition: We add a new location ℓie to Le replicating some node
ρ(ℓie) ∈ L, i.e., L′

e = Le ∪ {ℓie}. Furthermore, all transitions in T outgoing
from ℓi are treated as unresolved, i.e., U ′ = U ∪ {〈ℓie, τ〉 | τ : ρ(ℓie) → ℓj}.

Transition Resolution: Given a pair 〈ℓie, τ : ℓi → ℓj〉 ∈ U , we replicate τ in
Πe as τ(ℓie) : ℓie → ℓje for some replication ℓje of the target location ℓj .

Our analysis at each stage consists of a partial elaboration
〈
Π

(i)
e , U (i)

〉
along

with an abstract assertion map η(i) : Le 7→ Γ . Each iteration involves an update
to the map η(i) followed by an update to the partial elaboration.

Consider an unresolved entry 〈ℓe, τ : ℓi → ℓj〉 ∈ U (i). Its resolution involves
the choice of a target node ℓje replicating ℓj . Let d : post(η(i)(ℓie), τ) denote
the result of the post condition of the unresolved transition. Furthermore, let
ℓ(j,1), . . . , ℓ(j,m) ∈ Le denote the existing replications of the target location ℓj

and dk = η(i)(ℓ(j,k)) denote the kth disjunct. The choice of a target location
for the transition τ(ℓie) depends on the post condition d and the assertions
d1, . . . , dm. The target can either be chosen from the existing target replications
ℓ(j,1), . . . , ℓ(j,m), or a new node ℓ(j,m+1) can be added as a new replication of the
target. We shall assume a merging heuristic MergeHeuristic (d, 〈d1, . . . , dm〉) to
compute the index i s.t. 1 ≤ i ≤ m+ 1 for the target location of the transition.

Formally, at each step we first update the map η(i) = F(η(i−1)) as described

in Section 2. The partial elaboration
〈
Π

(i)
e , U (i)

〉
is then refined by first choosing

an unresolved pair 〈ℓie, τ : ℓi → ℓj〉 ∈ U , and then applying a merging heuristic

ℓj,∗ = MergeHeuristic
(
post(η(i)(ℓie), τ),

〈
η(i)(ℓje) | ℓje replicates ℓj

〉)
.

The transition τ(ℓie) is resolved as a result, and the entry 〈ℓie, τ〉 is removed from
U (i). If the merging heuristic results in a new location ℓj,∗, then new entries are
added to U (i) to reflect unresolved outgoing transitions from the newly added
location. If there are no more unresolved pairs in U (i+1), the partial elaboration
is also a full elaboration. Thenceforth, the map η is simply propagated on this
elaboration until fixed point is reached.

Upon termination, we guarantee that U (i) = ∅, i.e., the partial elaboration
is a full elaboration and the map η(i) is a fixed point map on this elaboration.
Termination of the scheme depends mainly on the nature of the merging heuris-
tic chosen. Since a transition from U is resolved at each step, termination is
guaranteed as long as the creation of new locations ceases at some point in the
analysis. A simple way to ensure this requirement is to bound the number of
replications of each location to a prespecified limit K > 0.

Merging Heurstics. Formally a merging heuristic MergeHeuristic (d, 〈d1, . . . , dm〉)
chooses an index 1 ≤ i ≤ m+1 ≤ K in order to compute the join di ⊔d if i ≤ m

or create a new location in the partial elaboration as described above. The key
goal of a merging heuristic is that the resulting join add as few extraneous
concrete states as possible. Such extraneous states arise since the join is but an
approximation of the disjunction of concrete states: γ(d1) ∪ γ(d2) ⊆ γ(d1 ⊔ d2).

In numerical domains, the states of the program can be viewed as points in
Rn. It is possible to correlate the extraneous concrete states with a distance
metric on the abstract objects. Let k(d, d′) be a distance metric defined on Γ

and α ∈ R be a distance cutoff. Let dmin = argmin{k(d, di)|1 ≤ i ≤ m} be the
“closest” abstract object to d w.r.t k. The merging heuristic induced by k, α is
defined as

MergeHeuristic (d, 〈d1, . . . , dm〉) =

{
dm+1, m < K and k(d, dmin) ≥ α

dmin, m = K or k(d, dmin) < α

In other words, a new location is spawned whenever it is possible to do so (i.e.,
m < K) and the closest object is farther than α apart in terms of distance. Failing
these, the closest object is chosen as the target of the unresolved transition. The
cutoff α ensures that newly formed disjuncts are initially well separated from
the others in terms of the metric k.

The Hausdorff distance, is a commonly used measure of distance between
two sets. Given P,Q ⊆ Rn, their Hausdorff distance is defined as

Hausdorff(P,Q) = maxx∈P {miny∈Q { ||x − y||}} .

While such metrics provide a good measure of the accuracy of the join, they are
hard to compute. We shall use a range-based Hausdorff distance metric.

Range Distance Metric. Let x1, . . . , xn be the program variables and d1, d2 be
abstract objects. For each variable xi, we shall compute ranges I1 : [p1, q1] and
I2 : [p2, q2] of the values of xi. Such ranges may be efficiently computed for
most numerical domains including the polyhedral domain by resorting to linear
programming. The ranges are said to be incompatible if one of the two intervals
is open in a direction where the other interval is closed, i.e., their Hausdorff dis-
tance is unbounded (∞). If the ranges are compatible, the Hausdorff distance is
computed based on their end points. The overall distance is a lexicographic tuple
〈m, s〉 wherem is the number of dimensions along which d1, d2 have incompatible
ranges while s is the sum of the distances along the compatible dimensions.

Example 6. Consider the polyhedra p1 : 1 ≤ x ≤ 5 ∧ y ≥ 0 and p2 : −1 ≤
y ≤ 1 ∧ 10 ≤ x ≤ 20. The ranges along x, [1, 5] and [10, 20] have a Hausdorff
distance of 9. On the other hand the ranges along y are [0,∞) and [−1, 1] are
incompatible. The overall distance between p1, p2 is therefore (1, 9).

Widening. Widening is applied to loops formed on the partial elaboration of the
CFG by identifying cutpoints, i.e., a set of CFG locations that cut every loop
in the CFG. Note that any loop in the partial elaboration results from a loop in
the original CFG:

Lemma 3. If Ce be a loop in a partial elaboration Πe, then ρ(Ce) is a loop in
the original CFG.

The converse is not true. Therefore, not all loops in a CFG be replicated as
a loop in the partial elaboration. However, once a loop is formed in a partial
elaboration, it remains a cycle regardless of the other edges or locations that

may be added to it. Furthermore, the post condition computed along such new
edges can only accelerate the termination once the widening phase has begun.
These observations can be used to simplify the use of widening to that on the
base domain, to reuse widening strategies available on the base domain to partial
elaborations and finally, to limit the number of applications of widening. This
is one of the key advantages of maintaining structural connections among the
disjuncts in terms of a partial elaboration.

5 Applications

We consider an application of our ideas to a intra-procedural static analyzer for
checking run time errors of systems programs such as buffer overflows and null
pointer dereferences. Our prototype analyzer constructs a CFG representation
by parsing while performing memory modeling for arrays and data structures
using a flow insensitive pointer analysis. This is followed by model simplification
using constant folding and range analysis. A linearization abstraction converts
operations such as multiplication, integer division, modulo and bitwise logical
operations into non-deterministic choices. Similarly, arrays and pointers are mod-
eled by their allocated sizes while their contents are abstracted away.

Our analyzer is targeted towards proving buffer overflows and string access
patterns of systems code. The analyzer is context insensitive; all function calls
are inlined using caller ID variables to differentiate between calling contexts. All
variables are assumed to have global scope. Reduction in the number of variables
in the model is achieved by tracking live variables during the analysis and by
creating small clusters of related variables. Clusters are detected by backward
traversal of the CFG, collecting the variables that occur in the same expressions
or conditions. The maximum number of variables in each cluster is artificially
limited by a user specified parameter. For each cluster, statements involving
variables that do not belong to the current cluster are abstracted away. The
analysis is performed on each of these clusters. A property is considered proved
only if it can be proved on at least one of the abstractions.

The analysis is performed using the polyhedral domain using base domain
operations implemented in the PPL library [3] and relaxations described in our
previous work [22]. The maximum number of disjunctsK and the maximum clus-
ter sizes are parameters to this analysis. The merging heuristic used is induced
by a slight modification of the range Hausdorff distance described previously.
Back edges are tracked dynamically in the partial elaboration thereby avoiding
unnecessary widening operations.

We analyzed a variety of benchmark programs using our analysis for differ-
ent values of K. Table 1 shows the performance comparisons for a selection of
benchmark programs. For each program “#Prop” indicates the total number of
properties to be checked, “#C” indicates the number of clusters. We employ a
clustering strategy wherein the number of variables per clusters is kept uniformly
close to 15. For each value of K, we report the time taken (T) and the number of
proofs(“#P”). Timings were measured on an Intel Pentium 3GHz processor with

Table 1. Performance comparison using benchmark programs.

Name KLOC #Prop #C K = 1 K = 2 K = 5 K = 10
T #P T #P T #P T #P

code1 1.5 136 56 143 44 134 76 233 77 370 77
code2 1.5 126 46 51 65 115 67 193 68 343 68
code3 2 189 92 207 84 232 81 367 84 600 83
code4 2 187 91 205 83 221 86 360 86 587 86
code5 1.9 142 10 31 44 42 44 101 50 191 52
code6 15 634 22 215 176 270 176 375 182 652 184

4GB RAM. The gains produced by the use of disjunctive invariants are tangible
and pronounced in some cases. The lack of monotonicity of our scheme, evident
in “code3”, can be remedied by performing the analysis for smaller values of K
before attempting a large value. For small number of disjuncts, the overhead of
merging disjuncts seems to be linear in K.

The false positive rate in our analysis is high, primarily due to the coarseness
of the abstractions currently employed and the lack of a clustering strategy that
performs uniformly well on all the benchmarks. We hope to improve our abstrac-
tion by providing better approximations for integer division, modulo and some
bitwise operators, tracking the null terminators of strings and modeling contents
of arrays and strings. These refinements can substantially reduce the number of
false positives for our analyzer. We also hope to study disjunctive interprocedural
analysis on more tractable domains such as octagons and intervals.

References

1. Abramsky, S., and Jung, A. Domain theory. In S.Abramsky and D.M. Gab-
bay and T.S.E. Maibum, editors, Handbook of Logic in Computer Science, vol. 3.
Clarendon Press, Oxford, UK, 1994, ch. 1, pp. 1–168.

2. Bagnara, R., Hill, P. M., and Zaffanella, E. Widening operators for power-
set domains. In Proceedings of the fifth International Conference on Verification,
Model Checking and Abstract Interpretation (VMCAI 2004) (2004), vol. 2947 of
LNCS, pp. 135—148.

3. Bagnara, R., Ricci, E., Zaffanella, E., and Hill, P. M. Possibly not closed
convex polyhedra and the Parma Polyhedra Library. In SAS (2002), vol. 2477 of
LNCS, Springer–Verlag, pp. 213–229.

4. Blanchet, B., Cousot, P., Cousot, R., Feret, J., Mauborgne, L., Miné, A.,

Monniaux, D., and Rival, X. A static analyzer for large safety-critical software.
In ACM SIGPLAN PLDI’03 (June 2003), vol. 548030, ACM Press, pp. 196–207.

5. Clarisó, R., and Cortadella, J. The octahedron abstract domain. In Static
Analysis Symposium (2004), vol. 3148 of LNCS, Springer–Verlag, pp. 312–327.

6. Cousot, P., and Cousot, R. Static determination of dynamic properties of
programs. In Proceedings of the Second International Symposium on Programming
(1976), Dunod, Paris, France, pp. 106–130.

7. Cousot, P., and Cousot, R. Abstract Interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
ACM Principles of Programming Languages (1977), pp. 238–252.

8. Cousot, P., and Cousot, R. Systematic design of program analysis frame-
works. In Symposium on Principles of Programming Languages (POPL 1979)
(1979), ACM Press, New York, NY, pp. 269–282.

9. Cousot, P., and Cousot, R. Comparing the Galois connection and widen-
ing/narrowing approaches to Abstract interpretation, invited paper. In PLILP ’92
(1992), vol. 631 of LNCS, Springer–Verlag, pp. 269–295.

10. Cousot, P., and Halbwachs, N. Automatic discovery of linear restraints among
the variables of a program. In ACM POPL (Jan. 1978), pp. 84–97.

11. Das, M., Lerner, S., and Seigle, M. ESP: Path-sensitive program verifica-
tion in polynomial time. In Proceedings of Programming Language Design and
Implementation (PLDI 2002) (2002), ACM Press, pp. 57–68.

12. Dor, N., Rodeh, M., and Sagiv, M. CSSV: Towards a realistic tool for statically
detecting all buffer overflows in C. In Proc. PLDI’03 (2003), ACM Press.

13. Floyd, R. W. Assigning meanings to programs. Proc. Symposia in Applied
Mathematics 19 (1967), 19–32.

14. Giacobazzi, R., and Ranzato, F. Optimal domains for disjunctive abstract
intepretation. Sci. Comput. Program. 32, 1-3 (1998), 177–210.

15. Halbwachs, N., Proy, Y., and Roumanoff, P. Verification of real-time systems
using linear relation analysis. Formal Methods in System Design 11 (1997), 157–
185.

16. Handjieva, M., and Tzolovski, S. Refining static analyses by trace-based par-
titioning using control flow. In SAS (1998), vol. 1503 of LNCS, Springer–Verlag,
pp. 200–214.

17. Hoare, C. A. R. An axiomatic basis for computer programming. Commun. ACM
12, 10 (1969), 576–580.

18. Karr, M. Affine relationships among variables of a program. Acta Inf. 6 (1976),
133–151.

19. Manevich, R., Sagiv, S., Ramalingam, G., and Field, J. Partially disjunctive
heap abstraction. In Static Analysis Symposium (SAS) (2004), vol. 3148 of LNCS,
Springer–Verlag, pp. 265–279.

20. Mauborgne, L., and Rival, X. Trace partitioning in abstract interpretation
based static analyzers. In ESOP (2005), vol. 3444 of LNCS, Springer–Verlag,
pp. 5–20.

21. Rugina, R., and Rinard, M. Symbolic bounds analysis of pointers, array in-
dices, and accessed memory regions. In Proc. Programming Language Design and
Implementation (PLDI’03) (2000), ACM Press.

22. Sankaranarayanan, S., Colón, M., Sipma, H. B., and Manna, Z. Efficient
strongly relational polyhedral analysis. In VMCAI (2006), LNCS, Springer–Verlag,
pp. 111–125.

23. Sankaranarayanan, S., Sipma, H. B., and Manna, Z. Scalable analysis of
linear systems using mathematical programming. In Verification, Model-Checking
and Abstract-Interpretation (VMCAI 2005) (January 2005), vol. 3385 of LNCS.

24. Simon, A., King, A., and Howe, J. M. Two variables per linear inequality as
an abstract domain. In LOPSTR (2003), vol. 2664 of Lecture Notes in Computer
Science, Springer, pp. 71–89.

25. Wagner, D., Foster, J., Brewer, E., , and Aiken, A. A first step towards
automated detection of buffer overrun vulnerabilities. In Proc. Network and Dis-
tributed Systems Security Conference (2000), ACM Press, pp. 3–17.

