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Abstract

In this paper, we investigate formalisms for specifying periodic signals using time and fre-
quency domain specifications along with algorithms for the signal recognition and generation
problems for such specifications. The time domain specifications are in the form of hybrid au-
tomata whose continuous state variables generate the desired signals. The frequency domain
specifications take the form of an “envelope” that constrains the possible power spectra of the
periodic signals with a given frequency cutoff. The combination of time and frequency do-
main specifications yields mixed-domain specifications that constrain a signal to belong to the
intersection of the both specifications.

We show that the signal recognition problem for periodic signals specified by hybrid automata
is NP-complete, while the corresponding problem for frequency domain specifications can be
approximated to any desired degree by linear programs, which can be solved in polynomial time.
The signal generation problem for time and frequency domain specifications can be encoded into
linear arithmetic constraints that can be solved using existing SMT solvers. We present some
preliminary results based on an implementation that uses the SMT solver Z3 to tackle the signal
generation problems.

1 Introduction

The combination of time and frequency domain specifications often arises in the design of analog
or mixed signal circuits [16], digital signal processing systems [20] and control systems [3]. Circuits
such as filters and modulators often specify time-domain requirements on the input signal. Common
examples of time domain specifications include setup time and hold time requirements for flip-flops,
the slew rate for clocks and bounds on the duty cycle for pulse width modulators [16]. Likewise,
the behavior of many components are also specified in terms of their frequency responses. Such
requirements concern the effect of a subsystem on the various frequency components of a input
signal. The problem of combining these specification styles is therefore of great interest, especially
in the runtime verification setting.

In this paper, we study models for specifying real-valued periodic signals using mixed-domain
specifications. Such specifications combine commonly used automata-theoretic models that can
specify the characteristics of a signal over time with frequency-domain specifications that constrain
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the distribution of amplitude (or the power) of the sinusoidal components over some range of
frequencies. Given such a mixed-domain specification, we consider the signal recognition and
generation problems. The signal generation problem seeks test cases for an analog or a mixed-
signal circuit from its input specifications. Since specifications are often non-deterministic, an
exhaustive generator explores all the possible cases encoded in the specification by generating a set
of representative signals. Likewise, the signal recognition or monitoring problem decides whether
a given signal conforms to specifications.

In this paper, we present an encoding that reduces both problems to constraints in linear
arithmetic. While such an encoding is easily obtained time domain specifications, a naive encoding
of the frequency domain constraints yields a system of non-linear constraints that are hard to solve.
We demonstrate how such non-linear constraints can be systematically approximated to arbitrary
precision using constraints from linear arithmetic. Finally, we present some preliminary results on
a prototype implementation of our technique that uses the SMT solver Z3 to solve the resulting
constraints [5]. Owing to space restrictions, we have omitted some of the finer details including
proofs of key lemmas. An extended version containing proofs along with supplementary material
containing the source code and models for our experiments are available upon request.

Related Work Automata, especially timed and hybrid automata, are quite natural formalisms for
specifying the behavior of signals over time [1, 12]. Likewise, the study of Fourier transforms and
power spectra of signals forms the basis for specifying analog and mixed signal systems [20]. The
problem of matching observations to runs for timed and hybrid automata was studied by Alur et
al. [2]. Whereas Alur et al. study the problem of matching a trace consisting of a set of events
generated by discrete transitions, the traces here are partial observations over the run, sampled
discretely. Therefore, while the timestamp generation problem is shown to be polynomial time by
Alur et al., its analog in our setting is NP-complete.

Monitoring algorithms for discrete-time Boolean valued signals have been well-studied [26, 13,
10, 9, 7]. Such specifications can capture Boolean abstractions of discrete-time signals sampled
over the output signals generated by hybrid/embedded systems. An off-line algorithm for temporal
logic analysis of continuous-time signals was proposed by Nickovic et al. [15] and extended to
an on-line algorithm [19]. Thati et al. [26] and Kristoffersen et al. [13] presented algorithms for
monitoring timed temporal logics over timed state sequences. While fragments temporal logics and
a restricted class of automata are well known to be efficiently monitorable, it is not easy to express
properties of oscillators such as periodicity, rise times, duty cycles and bounds on derivatives in
these fragments without introducing extraneous constraints or quantifiers. Fainekos et al. [6],
considered the problem of monitoring continuous-time temporal logic properties of a signal based
solely on discrete-time analysis of its sampling points. Tan et al. [24, 25] consider hybrid automaton
specifications for synthesizing monitors for embedded systems, wherein the monitor’s execution is
synchronized with the model of the system during run-time. Specification and verification of the
periodicity of oscillators has been considered by Frehse et al. [8] and Steinhorst et al.[23].

On the other hand, specification formalisms for frequency domain properties of systems have
not received as much attention. Hedrich et al. [11] study the problem of verifying frequency domain
properties of systems with uncertain parameters. Our encoding for frequency domain specifications
is similar to techniques used in regression, wherein the goal is to find a function from a given family
that best fits a given set of points, wherein the “best fit” can be defined as the sum of the distances
between the data points and the function under some norm. The connection between regression
and optimization is discussed in many standard textbooks on convex optimization [4].
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2 Signals and Automata

Let R denote the set of real numbers. A signal f(t) is a function f : R 7→ R. A signal is periodic iff
there is a time period T > 0 such that for all t ≥ 0, f(t+ T ) = f(t). Let Σ represent the set of all
signals f : R 7→ R. Note that in most applications, the domain of a signal is the continuous time
domain t ∈ R≥0. Let ~τ = 〈t0, t1, . . . , tk〉 be some set of time instants such that 0 ≤ t0 < t1 . . . < tk.
A sample of a signal f at the time instants ~τ is given by f(~τ) = 〈f(t0), f(t1), . . . , f(tk)〉.
Hybrid Automaton: Our discussion will focus mostly on hybrid automata with dynamics specified
by rectangular differential inclusions.

Definition 2.1 (Linear Hybrid Automata). A Linear Hybrid Automaton H consists of a tuple
〈Q,~x,T ,D,I, q0,Θ〉:

1. Q is a finite set of discrete modes,

2. ~x is a vector of finitely many continuous system variables.

3. T is a set of discrete transitions. Each transition τ ∈ T is a tuple τ : 〈s, t, ρτ 〉 where s, t ∈ Q
are the pre- and the post-modes respectively and ρτ [~x, ~x

′] is a transition relation that relates
the current value of ~x with the next state values ~x′.

4. D maps each q ∈ Q to a rectangular differential inclusion ~ℓ(q) ≤ d~x
dt

≤ ~u(q).

5. I maps each mode q ∈ Q to a mode invariant set I(q).

6. q0 is the start state and Θ is a logical assertion over ~x that specifies the initial conditions for
the continuous variables.

A state of the hybrid automaton is a pair (s, ~x) consisting of a discrete mode s ∈ Q and a
continuous state ~x ∈ I(q). The semantics of a hybrid automaton are defined in terms of runs. In
this paper, we will describe periodic signals by means of finite runs of a hybrid system.

Definition 2.2 (Runs). A finite run of a linear hybrid automaton H is a finite sequence of states

and actions: σ : (s0, ~x0)
a1−→ (s1, ~x1)

a2−→ (s2, ~x2)
a3−→ · · · aN−−→ (sN , ~xN ), wherein each action ai is of

the form τ for some discrete transition or (tick(δi), fi), for some time interval δi ≥ 0 and function
fi : [0, δi) 7→ R

n, such that:

• If action ai is a discrete transition τi then τi must be of the form 〈si−1, si, ρi〉 (i.e, the transition
must take us from state si−1 to state si) and (~xi−1, ~xi) |= ρi, i.e., the continuous variables
change according to the transition relation.

• If ai is a “tick” of the form (tick(δi), fi), wherein si = si−1 (i.e., no mode change can occur).
The function fi : [0, δi] 7→ R

n is a continuous and piecewise differentiable function such that:
(1) fi(0) = ~xi, fi(δi) = ~xi+1, (2) fi(t) satisfies the mode invariant I(si) for all t ∈ [0, δ), and
(3) dfi

dt
∈ [ℓ(si), u(si)] at all instances t ∈ [0, δ) where fi is differentiable.

Example 2.1. Consider the following signal specification for a square wave generator: (1) The
signal has two stable phases: high (5± 0.5V ) or low (−5± 0.5V ). (2) If the signal transitions from
one phase to another, the value of v at the start of the transition must be in the range [−4.6, 4.6].
(3) The signal remains a minimum of 0.5 seconds in each mode. (4) The rate of signal rise during
transition from low to high lies within [5, 7.5]V/s. (5) The rate of signal fall during transition from
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high

V ∈ [4.5, 5.5]

−.6 ≤ dV

dt
≤ .6

dT

dt
= 1

highToLow

V ∈ [−5.5, 5.5]

−8 ≤ dV

dt
≤ −6.3

dT

dt
= 1

lowToHigh

V ∈ [−5.5, 5.5]

5 ≤ dV

dt
≤ 7.5

dT

dt
= 1

low

V ∈ [−5.5,−4.5]

−.6 ≤ dV

dt
≤ .6

dT

dt
= 1

v ≤ 4.6

true

v ≥ −4.6

true

Figure 1: Hybrid automaton model for example signal specification.

high to low lies within [−6.3,−8]V/s. (6) In any stable phase, the rate of change lies between
[−.6, .6]V/s.

Figure 1 shows a hybrid automaton that specifies the signal. The modes high and low specify
the stable phases for the signal. Similarly, the modes highToLow and lowToHigh represent the
transitions.

3 Periodic Signals In Time Domain

We will now explore the use of hybrid automata with piecewise constant dynamics to specify periodic
signals. We will observe that the problem of checking if a sampled signal can be generated by some
run of a hybrid automaton is NP-Complete. In fact, the problem of checking if a given path through
the automaton generates the samples of a given signal is itself NP-complete. As a result, barring
restrictions, linear hybrid automata by themselves are too rich a formalism for use in monitoring of
signals. Thereafter, we focus on signal generation, presenting techniques for generating runs using
a systematic exploration of the state-space of the automaton using LP solvers.

We augment the basic hybrid automaton by designating a set of modes as final modes and an
output function ~y = f(~x) that specifies the output signal as a function of the continuous state
variables. Additionally, we require that the runs of the automaton σ : (~x0, s0) → (~x1, s1) → · · · →
(~xN , sN ), satisfy the following constraints:

1. There is a minimum dwell time δmin for each mode such that whenever a run enters a mode
q, it will remain in that mode for time at least δmin before taking a transition.

2. The terminal mode sN ∈ F .

3. The initial state (s0, ~x0) and the terminal state (sN , ~xN ) yield the same output f(~x0) = f(~xN),
so that the signal is periodic.

The minimum dwell time requirement seems quite natural for signal specifications, and fur-
thermore, it considerably simplifies the complexity of signal membership checking and generation
problems that we will discuss subsequently (also Cf. [2]). As a result of the requirements above, the
output ~y(t) obtained on any finite run of the automaton can be thought of as constituting a single
period of the signal. Repeating this output with time shifted yields the overall periodic signal.

Definition 3.1 (Time Domain Periodic Signal Specification). A time domain period signal spec-
ification consists of a hybrid automaton H with a set of final modes F ⊆ Q, an output function
~y = f(~x) and a minimum dwell time δmin.
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0 TT1 T2 · · · Tm

τ1 τ2 τm

~x0 ~x1 ~x
′
1 ~x2 ~x

′
2 ~xm ~x′m ~xm+1

s0 s1
sm

Figure 2: Run Encoding along a path π with transitions τ1, . . . , τm.

Constraints Remarks
Θ[~x0] Initial condition
f(~x0) = f(~xm+1) Periodicity of the trace
∧m

i=1
Ti − Ti−1 ≥ δmin Minimum Dwell Time.

∧m

k=1

(

~ℓ(sk)(Tk+1 − Tk) ≤ (~xk+1 − ~x′

k)

(~xk+1 − ~x′

k ≤ ~u(sk)(Tk+1 − Tk)

)

~x′

k reachable from ~xk in mode sk
∧m

k=1

[

Isk−1
(~xk) ∧ Isk(~x′

k)
]

Invariants for mode sk

Figure 3: Constraints encoding the existence of a run along a path. Note: The guards, invariant
sets, initial conditions of H are convex polyhedra. The function f is affine.

3.1 Run Encoding

Let 〈H, F, f, δmin〉 be a hybrid automaton for a signal specification. Consider a syntactic path

through π : s0
τ1−→ s1

τ2−→ · · · sm−1
τm−−→ sm such that s0 is initial, sm ∈ F and m ≤

⌊

T
δmin

⌋

. We

wish to encode the (possibly empty) set of runs that yield a periodic signal of time period T along
the path π in terms of a linear program (LP) ΨT,π. We describe the variables that will be used in
our encoding, as depicted in Figure 2. (A) T1, . . . , Tm represent the transition times. We add two
constants T0 = 0 and Tm+1 = T to denote the start and end times of the trace, respectively. (B)
~x0 and ~xm+1 denote the initial and terminal values for continuous variables. (C) ~x1, ~x

′
1, . . . , ~xm, ~x′m

encode the continuous states before and after each of the m discrete transitions. The overall
encoding is a conjunction of linear inequalities as described in Figure 3. This encoding is similar
to the timestamp generation encoding provided by Alur et al. [2].

Note that the encoding yields a linear program ΨT,π, assuming that all transition relations,
mode invariants are polyhedral and the output function f is affine. Note that models of ΨT,π, if
they exist, do not fully specify a run of the hybrid automaton. A run σ of H corresponds to a
model (~x0, ~x

′
1, T1, ~x1, . . . , ~x

′
m, Tm, ~xm, ~xm+1) of ΨT,π if the initial, terminal states, switching times

and states before/after the discrete transitions of σ coincide with those specified by the model.

Theorem 3.1. The encoding of a run ΨT,π is a linear assertion such that (a) each model of ΨT,π

corresponds to a run σ of duration T , and (b) conversely, every run σ of duration T along the path
π corresponds to a model of ΨT,π .

3.2 Testing Membership

We first consider the problem of deciding signal membership given N samples of periodic signal g(t)
with time period T , sampled at some fixed rate δs =

T
N

for a single time period. Let g0, . . . , gN−1

be the signal values at times 0, δs, . . . , (N − 1)δs, respectively. Since the signal is periodic, we have
gN = g(Nδs) = g0. We assume that δs the sampling time, is strictly less than δmin, the minimum
dwell time.
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0 TT1 T2 · · · Tm

τ1 τ2 τm

~x0 ~x1 ~x
′
1 ~x2 ~x

′
2 ~xm ~x′m ~xm+1

s0 s1
sm

~y0 ~y1

δs

~y2

2δs

~y3

3δs

~y4

4δs

~y5

5δs

~yN−1

(N − 1)δs

~yN

Nδs

Figure 4: Encoding membership of a sampled trace.

We use the following strategy to search for a run σ of the hybrid automaton H that coincides
with the samples of g(t).

1. Explore paths from s0 to a final state sm ∈ F explicitly 1.

2. For each path π with transitions τ1, . . . , τm, we encode the existence of a run along the path
using ΨT,π, and

3. We conjoin ΨT,π with a formula Γπ,g that encodes that the samples g0, . . . , gN−1 conform to
the run encoded in Ψ.

We encode the unknown continuous state at time t = iδs by variable ~yi. The encoding for Γπ,g

will contain the following clauses:

Continuous State and Output: The signal value gi at t = iδs, i ∈ [0, N ] must correspond to the
continuous state: f(~yi) = gi.

Mode change rule: If a discrete transition happens between time ((i−1)δs, iδs) then ~xj is reachable
from ~yi−1 and likewise, ~yi is reachable from ~x′j .

m
∧

i,j=1

[

(i− 1)δs ≤ Tj∧
Tj < iδs

]

⇒
[

(iδs − Tj)ℓ(sj) ≤ (~yi − ~x′j) ≤ u(sj)(iδs − Tj) ∧
(Tj − (i− 1)δs)ℓ(sj−1) ≤ (~xj − ~yi−1) ≤ u(sj−1)(Tj − (i− 1)δs)

]

On the other hand, if no mode change happens in the interval [(i− 1)δs, iδs) then the mode at
time iδs is the same as that at time (i+1)δs. Furthermore, it is possible to reach the state ~yi from
~yi−1 by evolving according to the dynamics at this mode:

N
∧

i=1

m
∧

j=1

[(

Tj < (i− 1)δs ∧
Tj+1 ≥ iδs

)]

⇒
[

δsℓ(sj) ≤ (~yi − ~yi−1) ≤ δsu(sj)
]

Simplifying the Encoding: The encoding presented above can be simplified considerably by noting
the minimum dwell time requirement on the runs. As a result of this requirement, we may deduce
that the switching time for the jth transition Tj must lie in the range [jδmin, T − (m+ 1− j)δmin],
wherein δmin is the minimum dwell time. As a result, some of the antecedents of the implications
for the mode change rule are always false. This allows us to reduce the size of the encoding, in
practice.

Let g0, . . . , gN−1 be the signal samples at times 0, δs, 2δs, . . . , (N−1)δs, wherein we assume that
δs is smaller than the minimum dwell time. Let us assume that Γg,π is the formula obtained over
variables ~x0, . . . , ~xm+1, ~y0, . . . , ~yN , T1, . . . , Tm using the encoding presented in this section.

1This search can also be encoded implicitly as a SAT formula.
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Theorem 3.2. The samples g0, . . . , gN−1 of a periodic signal with sample time δs < δmin are
generated by some run of the hybrid automaton H if and only if the linear arithmetic formula
Γπ ∧ ΨT,π is satisfiable for some path π from an initial mode s0 to a final mode sm ∈ F with
m ≤

⌊

T
δ

⌋

discrete transitions.

Given samples g0, . . . , gN of a signal, the algorithm thus far searches for a path π, a sequence
of switching times and values of continuous states ~x0, . . . , ~xm+1, ~y0, . . . , ~yN by solving a linear
arithmetic formula using a SMT solver. Naturally, it is worth asking if there is an efficient algorithm
for signal recognition using hybrid automata. We show that this is unlikely by proving the NP-
completeness of the signal recognition problem. We observe the following surprising result for the
seemingly simply problem of deciding if a given feasible path π can yield a run generating the
samples g0, . . . , gN .

Theorem 3.3. Let g0, . . . , gN be samples of a periodic signal g(t) and π be a path from initial
to final mode in H. Deciding if the given samples are generated by some run of along path π is
NP-complete.

Membership in NP is clear from the SMT encoding to a linear arithmetic formula which can
be solved by a non-deterministic polynomial time TM coupled with a LP solver which operates
in polynomial time. The proof of NP-hardness is by reduction from CNF-SAT problem and is
presented in an extended version of this paper available upon request. Our results show that
significant restrictions are required on the linear hybrid automaton model to make it suitable for
signal monitoring. For instance, such restrictions have to go beyond simply restricting the number
of paths from the initial to the final mode.

3.3 Signal Generation

We will now consider the problem of generating signals at random from a given hybrid automaton
specification. The signal generator explores all the paths in the hybrid automaton up to a depth
bound. For each path π, the set of signals form a convex set given by the convex polyhedron
ΨT,π (Cf. Section 3.1). The notion of sampling uniformly at random from a convex set is defined
rigorously in most standard textbooks [21]. Our generator samples a fixed number of solutions
uniformly at random.

1. Systematically explore paths of length m ≤
⌊

T
δ

⌋

from initial to a final mode.

2. For each path π, encode the formula ΨT,π to generate switching times and continuous state
values ~xi, ~x

′
i before and after transitions (Cf. Section 3.1).

3. Extract solutions uniformly at random from ΨT,π.

4. For each solution, generate sampled signals according the dynamics of each mode.

Extracting Random Solutions from Linear Programs
As shown in Section 3.1, let ΨT,π be the LP for path π over variables ~x0, ~x1, ~x

′
1, . . ., T1, . . . , Tm

that we shall collectively refer to as ~y. We assume that Ψ is feasible. Our goal is to extract solutions
at random from the polyhedron that represents all feasible solutions of Ψ. This is achieved by a
simple Monte-Carlo sampling scheme known as hit-and-run sampling [21]. Let ~y0 be some feasible
point in Ψ obtained by using a LP solver. At each step, we generate a new solution ~yi+1, at random,
from the current sample ~yi (Cf. Fig. 5):
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Figure 6: Periodic signals generated for the automaton in Example 2.1.

(1) Choose a random unit vector ~v uniformly. A simple scheme is to generate a vector ~h whose
entries are uniform random numbers in [0, 1] and compute ~v = 1

||~h||2
~h.

(2) Discover the interval [l, u], such that ∀λ ∈ [l, u], ~yi + λ~v ∈ [[Ψ]]. In other words, ~v yields a
line segment containing the point x along the directions ±~v and [l, u] represent the minimum and
maximum offsets possible along the direction ~v starting from ~yi. Since [[Ψ]] is a polyhedron, bounds
[l, u] may be obtained by simply by substituting ~x 7→ ~yi + λ~v in each inequality wherein λ is an
unknown. This yields upper and lower bounds on λ.
(3) Finally, we choose a value λ ∈ [l, u] uniformly at random. The new

~yi

~v

~yi + l~v

~yi + u~v

~yi+1

Figure 5: Hit-and-
run sampling.

solution sample is ~yi+1 = ~yi + λ~v.
The analysis of this scheme and proof of convergence to the uniform

distribution follows from the theory of Markov Chain Monte Carlo sam-
pling [21, 22]. However, care must be taken to ensure that the polyhedron
Ψ is not skewed along some direction ~r. In the worst case, we may imagine
Ψ as a straight line segment. In such cases, it is essential to ensure that
random unit vectors at each step belong to any subspace that Ψ itself is
contained in. Finally, the scheme works best if the initial point ~y0 is an
interior point. Lovasz et al. [14] analyze the convergence of hit-and-run
samplers for generating uniformly distributed points belonging to a convex
set.

From Switching Times To Sampled Signal
Thus far, we have presented a scheme for encoding runs by means of a linear program ΨT,π and

choosing solutions at random efficiently from the polyhedron representing Ψ by means of hit-and-
run samplers. The next step is to construct signal samples g0, . . . , gN−1 given the switching times
T1, . . . , Tm, the continuous states ~x0, ~xm+1 at the beginning and end of the run, and the continuous
states ~xj, ~x

′
j before and after transition τj, respectively.

Let δs be the sampling time. We will first generate the continuous state values ~y0, . . . , ~yN
corresponding to the samples and thereafter, compute gi = f(~yi).

From the switching times, it is known that all samples in the time interval (Tj , Tj+1) will belong
to the mode sj (Cf. Figure 2). Our goal is to generate values ~yi, . . . , ~yi+k that lie between these
time intervals, to ensure that (A) ~yi is reachable from ~x′j in time iδs − Tj evolving according to the
mode sj; (B) ~yi+l for 1 ≤ l ≤ k is reachable from ~yi+l−1 in time δs; and (C) ~xj+1 is reachable from
~yi+k.

Once again, these requirements can be encoded as a linear program since the dynamics at mode
sj and the number of samples in the interval (Tj , Tj+1) are all known. We may then use hit-and-run
sampler to choose values for the continuous variables ~yi, . . . , ~yi+k and thereafter, the signal samples
by applying the function f .

Example 3.1. Consider the signal in Example 2.1. We will designate the state high as both the
start and the end states. Figure 6 plots two signals that were generated using the models obtained

8



for two paths π1, π2 of lengths 4 and 8 going around the cycle once and twice, respectively. For
each path, we generate one solution for the switching times and one set of samples.

4 Frequency Domain Specifications

We will now consider the specification of periodic signals in the frequency domain by specifying
constraints on its power spectrum. Let g(t) be a continuous signal with time period T > 0. Its
unique frequency domain representation can be derived by its Fourier series representation:

g(t) = a0 +

∞
∑

k=1

(

ak sin

(

2kπt

T

)

+ bk cos

(

2kπt

T

))

The coefficient a0 represents D.C component of the signal and coefficients ak, bk represent the
amplitude variable for the components at frequency f = k

T
= kf0. We will term f0 = 1

T
as the

fundamental frequency. The amplitude at frequency fk = kf0 is given by
√

a2k + b2k.

Let G : [0, fmax] 7→ R≥0 be a function mapping each frequency f ∈ [0, fmax] to a non-negative
number G(f). We assume that G is a computable function so that G(f) can be computed for any
given f to arbitrary precision. The function G along with the maximum frequency fmax are said to
form a power spectral envelope. Consider periodic signal g(t) with fundamental frequency f0 and
Fourier coefficients a0, a1, b1, . . . , an, bn.

Definition 4.1 (Membership in Power Spectral Envelope). The signal g belongs to the power
spectral envelope 〈fmax, G〉, defined by G : [0, fmax] 7→ R≥0 if and only if:

1. The amplitudes vanish for all frequency components in (fmax,∞): ∀ k ∈ N, (k ·f0 > fmax) ⇒
ak = bk = 0.

2. The amplitudes for all frequency components in (0, fmax] are bounded by G(f):

∀ k ∈ N, 0 < kf0 < fmax ⇒
√

a2k + b2k ≤ G(kf0) .

In other words, the possible values of ak, bk lie inside a circle of radius G(kf0) centered at
(0, 0).

3. The D.C component is bounded by G(0), i.e, −G(0) ≤ a0 ≤ G(0).

In many situations, we are interested in signals being approximated within some tolerance
limit by a signal that belongs to a given power spectral envelope 〈fmax, G〉. Therefore, we define
membership with ǫ-tolerance for some ǫ ≥ 0.

Definition 4.2 (Membership with ǫ-tolerance). A signal s(t) satisfies 〈fmax, G〉 with a tolerance ǫ ≥
0 iff s has a time period T and there exists a signal g that satisfies the frequency domain specification
〈fmax, G〉 such that the distance between s and g is bounded by ǫ, i.e, (∀ t ∈ [0, T ]), |s(t)−g(t)| ≤ ǫ.

Let δs be a sampling time period. We say that s(t) satisfies to a specification with a sample

tolerance of ǫ iff |s(kδs)− g(kδs)| ≤ ǫ, ∀ k ∈ [0,
⌊

T
δs

⌋

].

It is possible to relate continuous time tolerance to sample tolerance, provided absolute bounds
may be placed on the derivatives of the signals s and g.

Theorem 4.1. Let s, g be two signals with sample distance of ǫ and sample time δs. Let |ds
dt
| ≤ Ds

and |dg
dt
| ≤ Dg. For all t ≥ 0, |g(t) − s(t)| ≤ ǫ+ δs

2 (Ds +Dg).
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ak
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Figure 7: Relaxations and restrictions of amplitude constraint by polyhedral constraints.

A proof is provided in the extended version. Likewise, we prove that any signal belonging to a
frequency domain specification 〈fmax, G〉 has absolute bounds on its derivative.

Theorem 4.2. The derivative of a signal s with time period T > 0, whose Fourier series repre-
sentation belongs to 〈fmax, G〉, is bounded:

∣

∣

∣

∣

ds

dt

∣

∣

∣

∣

≤ πGmaxfmax(1 + Tfmax) , where Gmax = sup0≤f≤fmax
G(f) .

Example 4.1. Consider the function G(f) =







1 + 8f f ∈ [0, 0.5]
7− 4f f ∈ [0.5, 1]
0 f > 1

. We specify the set of all

periodic signals whose time periods are in the range T ∈ [5, 100] seconds, belonging to the envelope
〈1Hz,G〉 with a tolerance of 0.01.

4.1 Encoding Membership

Let g be some periodic signal with time period T > 0, sampled with time period δ > 0. We represent
s in terms of its N = T

δ
samples g0, g1, . . . , gN−1 wherein gk = g(kδ). The sampling frequency 1

δ

is assumed to be at least 2fmax, the Nyquist limit to enable reconstruction of the original signal
from its samples [20]. We wish to ascertain whether g belongs to a given power spectral envelope
〈fmax, G〉, with a given sample tolerance of ǫ ≥ 0. Membership is encoded in terms of linear
inequality constraints over the unknown coefficients of the Fourier series representation of the
signal g(t).

Let f0 = 1
T

be the fundamental frequency. We will assume that f0 < fmax (otherwise, mem-

bership is trivial). Let m =
⌊

fmax

f0

⌋

represent the total number of potentially non-zero frequency

components. We introduce the variables a0, a1, . . . , bm. The encoding consists of the following
constraints:

Sample Tolerance: We encode that at each time instant t = jδ, where 0 ≤ j < N , sj is approxi-
mated by the Fourier series:

N−1
∧

j=0

−ǫ ≤
(

gj −
m
∑

k=1

[ak sin(2πkf0jδ) + bk cos(2πkf0jδ)] − a0

)

≤ ǫ .

Note that since j and δ are known, the values of the trigonometric terms can be computed to
arbitrary precision. As a result, the constraints above are linear inequalities over the unknowns
a0, a1, b1, . . . , bm.

D.C. Component: We encode requirements on a0, −G(0) ≤ a0 ≤ G(0)

Amplitude Constraint: For each k ∈ [1,m], we wish to encode
√

a2k + b2k ≤ G(kf0). However,

such a constraint is clearly non-linear. We present linear approximations of this constraints such

10



that if any solution can be found for the linear restriction, then the solution satisfies the amplitude
constraint above.

Geometrically, the constraint
√

a2k + b2k ≤ G(kf0) encodes that the feasible values of (ak, bk)

belong to the circle centered at origin of radius G(kf0) (see Figure 7). Let P (r) be a polygon
that under-approximates the circle of radius r centered at the origin, and Q(r) be a polygon that
over-approximates the unit circle. It is well-known 2 that such polygons can approximate the circle
to any desired accuracy. Therefore, we may restrict the constraint above by linear constraints
(ak, bk) ∈ P (G(kf0)), or relax it by linear constraints (ak, bk) ∈ Q(G(kf0)). The overall encoding
yields a linear program by conjoining the constraints above. The under approximate encoding is
given by choosing (ak, bk) ∈ P (rk), wherein rk = G(kf0), whereas the over approximate encoding
is given by choosing the constraints (ak, bk) ∈ Q(rk).

Signal Recognition: Given a power spectral envelope 〈fmax, G〉, a time period T and signal samples
g0, . . . , gN−1 with timestep δ, let Uǫ(fmax, G, T, g, δ) be the restricted system and Oǫ(fmax, G, T, g, δ)
represent the relaxed constraints.

Theorem 4.3. If Uǫ is satisfiable then the signal g(t) belongs to 〈fmax, G〉 with sample tolerance
ǫ. If Oǫ is unsatisfiable, then the signal g(t) does not belong to 〈fmax, G〉 with sample tolerance ǫ.

Signal Generation: Signal generation uses the same encoding (Oǫ, Uǫ) with g0, . . . , gN−1 as un-
known variables as opposed to known samples of a signal. Once again, the hit-and-run sampling
scheme used for choosing solutions at random can be employed to generate multiple samples.

Mixed Domain Specifications The problem of signal recognition can be solved by considering signal
membership individually, in the time and frequency domains.

The encodings presented can be combined to generate signals. Let us assume that we are
interested in generating a signal g(t) with a fixed time period T . We choose some fixed sampling
interface δs, satisfying the Nyquist sampling criteria such that δs < 1

2fmax
. Let gi, i ∈ [0, N − 1]

denote the unknown signal sample to be generated at time iδs. Once again, we generate the
encodings ΨT,π along paths π to generate switching times and states before/after switching (Cf.
Section 3.1). Next we generate LP Γg,π that encodes the time domain correspondence of the signal
samples w.r.t the run along path π (Cf. Section 3.2). The sampled values from ΨT,π are used to
simplify Γg,π. The overall signal samples are generated by picking solutions from the LP Γg,π ∧ Uǫ

using a hit-and-run sampler.

5 Experiments

We will now report on our implementation, as a preliminary proof-of-concept for the ideas in this
paper and some initial experimental results using these ideas.

Implementation: Our implementation reads in a hybrid automaton specification along with a
frequency domain specification. The envelope function G is specified by pairs fj, G(fj) for a finite
set of frequencies fj. The value of G(f) for f ∈ (fj, fj+1) is computed by linear interpolation. Our
implementation first searches over paths in the hybrid automaton from the initial to the final states,
constructing the LP ΨT,π for each path. If this is found to be feasible, our approach constructs a
SMT formula Γ that encodes the existence of a signal sample corresponding to π. Currently, our
approach uses Yices to obtain a single solution. Once such a solution is obtained, we may use the
hit-and-run sampler to obtain other solutions. In fact, this process does not need further calls to

2Going back to the Greek mathematician Archimedes and the ancient Egyptians before him!
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Table 1: Running times for signal generation benchmarks with various sets of time periods and
sampling times. Legend: #M: # discrete modes, #Tr: # transitions, #Samp: # samples per
period, TP: Time Period, #FC: Fourier Coefficients, Time: Signal generation time (Seconds),
#Path: Paths explored, #Sat: satisfiable paths.

Name Time Freq. Time Domain Only Time + Freq Domain
#M #Tr #Samp TP #FC Time #Path #Sat Time #Path #Sat

SquareWave 4 4 10 10 7 0 5 1 0.2 5 1
15 15 13 .2 7 2 30 7 0
20 20 13 .5 10 3 1300 10 0

PulseWidth 6 8 10 10 7 .7 10 8 6.9 10 8
15 15 11 8.7 15 13 391 15 7
20 20 13 71.5 20 15 - T/O -

Sq+SawtoothWave 8 12 10 10 21 2.7 255 127 4.9 255 40
15 15 31 149 8191 4095 1097 8191 32
20 20 41 6349 262143 131071 - T/O -

RoomHeater 5 6 40 76 - 136 38 4 - n/a -

start

v̇ = ẋ = 0
ṫ = ˙td = 0

on

td ∈ [0, 8],
v ∈ [4, 5]
v̇ ∈ [−.1, .1]
ṫ = ˙td = 1
ẋ = 1

on-to-off

t ∈ [0, .5],
v ∈ [.5, 4]
v̇ ∈ [−10,−7]
ṫ = 1, ṫd = 0
ẋ = 0

finish

td ∈ [5, 8]
v̇ = ẋ = 0
ṫ = ˙td = 0

off

td ∈ [0, 8],
v ∈ [.5, 4]
v̇ ∈ [−.1, .1]
ṫ = 1, ˙td = 0
ẋ = −1

off-to-on

v ∈ [0.5, 4],
t ∈ [0, .5]
v̇ ∈ [7, 10]
ṫ = 1, ṫd = 0
ẋ = 0

t := 0

td := 0

td := 0

t := 0

t := 0

t := 0

freq

ampl.

1f0 2f0 3f0 4f0

0

1

3

5

1f0 2f0 3f0 4f0 5f0 6f0

0

1

3

5

Figure 8: PWM signal time + frequency domain specification along with generated signals.

the solver. The alternative and potentially less expensive strategy of fixing a set of switching times
by sampling from ΨT,π and checking the conjunction of the time and frequency domain constraints
remains to be implemented. The resulting samples are printed out in a suitable format that can
be loaded into an environment such as Matlab. The encoding used in our implementation supports
signal recognition as well.

We collected a set of benchmarks for commonly used specifications of various waveforms that
are used in circuits including square waves that are commonly used to clock digital circuits (Cf.
Example 2.1), sawtooth waves that are used in video monitors, the specification of a pulse-width
modulator (PWM) waveform and a specification of an external disturbance temperature signal for
testing the room heating benchmark available in Simulink/Stateflow(tm).

Pulse-Width Modulator Waveform Figure 8 shows time domain and frequency domain specifi-
cations for signals generated by a PWM waveform. The waveform consists of a square pulse
represented by v that alternates between on and off. An associated signal x rises whenever the v
is high and falls when v is low. In effect, x represents the waveform v by a sequence of 1s and 0s
represented by v. We add two requirements (a) the % of time period v must be high (also known
as the duty cycle) must be between 50% − 80%, and (b) the waveform v must belong to one of
the two power-spectral envelopes shown in Fig. 8(right). Note that while the former is a time

12



0 1 2 3 4 5 6 7 8 9 10
−1

0

1

2

3

4

5

Time

Va
lu

e

0 1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Time

Va
lu

e

0 2 4 6 8 10 12 14 16 18 20
−5

−4

−3

−2

−1

0

1

2

3

4

5

Time

Va
lu

e

0 2 4 6 8 10 12 14 16 18 20
−8

−6

−4

−2

0

2

4

6

Time

Va
lu

e

Figure 9: Some signals generated for the PWM specification in Figure 8. The time domain samples
(blue) and the frequency domain samples (red) are overlaid on each other.

domain constraint on v, the latter is a frequency domain constraint on x. Fig 9 shows some of
the waveforms output by our implementation. The sample tolerance between time and frequency
domain signals was specified to be 0.1 and the sampling rate was chosen to be roughly 2.5fmax

(slightly larger than the Nyquist rate).
Table 1 shows some of the results obtained by running the benchmark examples. Three of

the examples have frequency domain specifications while the room heating benchmark had no
frequency domain part. Overall, the benchmarks show that it is possible to exhaustively explore
relatively small time domain specifications to obtain sample signals. Nevertheless, the complexity
of exploration using SMT solvers is quite sensitive to the sampling rate. The addition of frequency
domain constraints increases the complexity of these specifications many-fold. We believe that the
handling of large floating point coefficients using exact arithmetic in tools such as Yices and Z3 is a
bottleneck for frequency domain constraints and also to a limited extent for time domain constraints.
A new generation of SMT solvers that combine the efficiency of floating point solvers with exact
arithmetic solvers to guarantee the results may hold promise for tackling these constraints [17]. We
are currently implementing strategies that avoid the use of SMT solvers by first fixing the transition
timings by sampling from ΨT,π and then finding if signal samples exist.

6 Conclusion

The overall goal of this paper was to explore the very first steps towards combining time domain
and frequency domain specifications for mixed signal and DSP systems. In the future, we wish
to consider restrictions of the time domain specifications for efficient monitoring. The generation
of non-periodic signals by specifying the shape of their Fourier transforms is a natural next step.
The results in this paper will be integrated into our ongoing work on Monte Carlo Methods for
falsification of safety properties for hybrid systems [18].
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A Continuous Time Tolerance vs Sample Tolerance

In this section we present an auxiliary lemma to guarantee that the signal we produce does not
exhibit any deviant behavior. The section culminates with a lemma that guarantees that no sudden
spikes in the signal we generate occur between sample points.

Definition A.1. Let g : R≥0 → R and r : R≥0 → R be two signals. Let δs be the time between
samples. We say that g and r are within ǫ sampling tolerance if at every sample time iδs: |g(iδs)−
r(iδs)| ≤ ǫ.

Unfortunately, this constraint is not sufficient to ensure the quality of the generated signal.
Although two signals may be close to each other at sample points, they move arbitrarily far apart
at intermediate point.

In order to ensure that the overall tolerance between sample points is bounded, we will impose
restrictions on the derivatives of the signals. For any signal g(t) we will require that at any time
t0 ∈ R≥0 the derivative dg

dt is in the range [−Dg,Dg] for some real constant Dg.

Claim A.1. Let g(t) and r(t) be two signals within ǫ sampling tolerance with bounded derivatives
−Dg ≤ dg

dt
≤ Dg and −Dr ≤ dr

dt
≤ Dr for some real constants Dg and Dr. Then the difference

signal (g − r)(t) is bounded from above by δs
2 (Dr +Dg) + ǫ and from below by − δs

2 (Dr +Dg)− ǫ.

Proof. Without loss of generality, the claimed upper bound follows from the fact that the greatest
increase in the differential signal (g − r)(t) occurs when g(t) and r(t) begin ǫ distance apart, g(t)
increases at maximum rate Dg for δs/2 time then decreases at −Dg rate while r(t) decreases at
maximum rate −Dr then increases at rate Dr so that the signals end up ǫ distance apart at the
next sample point.

Since (g− r)(t) increases at maximum rate Dg +Dr half of the time and decreases for the rest,
the difference signal achieves a maximum of δs

2 (Dg +Dr) + ǫ.

Analogously, the signal achieves an inter-sample point minimum of − δs
2 (Dg +Dr)− ǫ.

This result guarantees a bound on the differential signal provided that the derivatives are
bounded. Next, we state a lemma that guarantees some bounds on the derive of a signal based on
the envelope frequency spectrum function.

Lemma A.1. Let g(t) be a signal and G be the envelope spectrum function with fundamental
frequency f0 and maximum cutoff frequency fmax. Let Gmax denote the maximum value achieved
by G. Then the derivative of g(t) is in the range:

−πGmaxfmax

f0
(fmax + f0) ≤

dg

dt
≤ πGmaxfmax

f0
(fmax + f0)

Proof. Begin with the Fourier series expansion for g:

g(t) = a0 +

m
∑

k=1

(ak sin(2πkf0t) + bk cos(2πkf0t))

= a0 +

m
∑

k=1

√

a2k + b2k sin(2πkf0t+ φ)

where m = fmax/f0 and φ =















arcsin

(

bk√
a2
k
+b2

k

)

, if ak ≥ 0

π − arcsin

(

bk√
a2
k
+b2

k

)

, if ak < 0

Note that the last step is obtained by repeated application of the trigonometric identity.
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Let us now consider the derivative dg
dt :

dg

dt
=

m
∑

k=1

√

a2k + b2k(2πkf0) cos(2πkf0t+ φ)

where
√

a2k + b2k ≤ Gmax, for all k = 1, . . . ,m

≤
m
∑

k=1

Gmax(2πkf0) cos(2πkf0t+ φ)

= Gmax(2πkf0)

m
∑

k=1

k cos(2πkf0t+ φ)

where −1 ≤ cos(2πkf0t+ φ) ≤ 1 for all k, and

m
∑

k=1

k =
m(m+ 1)

2

≤ Gmax2πf0
m(m+ 1)

2

=
πGmaxfmax

f0
(fmax + f0).

Analogously, we can show the lower bound holds.
Therefore,

−πGmaxfmax

f0
(fmax + f0) ≤

dg

dt
≤ πGmaxfmax

f0
(fmax + f0)

.

Together LemmaA.1 and ClaimA.1 guarantee that a signal stays within a certain range between
sample point and no sudden (unbounded) spikes are allowed.

B NP-Completeness of Path Signal Recognition

Let (H, F, f) be a time domain specification and g0, . . . , gN−1 be the samples of a periodic signal
g(t) with time period T and sampling rate δ. Let π be a path

π : s0
τ1−→ s1

τ2−→ · · · τm−−→ sm

from the initial mode of H to a final mode sm ∈ F . The Path Signal Recognition problem asks if
there exist switching times for taking the transition and a run σ along path π such that generates
the signal g. Formally, we specify the problem as follows:

Inputs: Time domain specification (H, F, f), path π and signal samples g0 = g(0), g1 = g(δ), . . . , gN−1 =
g((N − 1)δ) with period T = Nδ.

Output: Yes, if there is a set of transition timings T1, . . . , Tm, valuations to continuous variables
~xi, ~x

′
i before and after taking transition τi, initial state ~x0, terminal state ~xm+1 and valuations

to continuous state variables ~y0, . . . , ~yN such that f(~yi) = g(iδ) = gi. No, otherwise.

Theorem B.1. The Path Signal Recognition Problem belongs to the class NP.
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Figure 10: Signal fragment and modes of automaton corresponding to the variable selection gadget.

Proof. Proof follows directly from the encoding to linear arithmetic constraints in Section 3.2. It is
easy to show that any formula ϕ that consists of arbitrary Boolean combination of linear arithmetic
constraints can be solved as follows:

• Assign truth values to the atomic formulae, non-deterministically.

• Use an LP solver to check that the assignments are indeed consistent.

By the direction of reduction, we conclude membership of the signal recognition problem in the
class NP.

Theorem B.2. The Path Signal Recognition Problem is NP-hard.

Proof. The overall proof is by reduction from 3-CNF-SAT.Let ϕ be a given 3-CNF-SAT problem
with variables x0, . . . , xn and clauses C1, . . . , Cm. Each clause has at most distinct literals, wherein
each literal is of the form xi or its negation xi.

Our proof will create a path π with 2n+3 modes and transitions, and signal samples g, sampled
at some fixed sampling rate ǫ = 1

K
for some large enough integer constant K > 20n (say). The

time period of the signal is 2n+ 3 with a minimum dwell time smaller than 1− ǫ.
The discrete modes are as follows:

1. Modes down(k) and up(k) that will be used to represent variable choices for the variable xk
where k ∈ [0, n].

2. Final mode m.

The continuous variables include:
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Cj : (· · · ∨ xk ∨ · · · )

2k + 1− ǫ
cj = −2ǫ

2k + 1 + ǫ

cj = 2ǫ

Cj : (· · · ∨ xk ∨ · · · )

2k + 1− ǫ
cj = 2ǫ

2k + 1 + ǫ

cj = −2ǫ

Figure 11: Effect of transition switching time for gadget xk on clause variable Cj . [top (left,right)]
xk is part of Cj and [bottom (left,right)]) xk is part of Cj . Likewise, [left (top,bottom)] effect
of assigning xk := true by switching at t = k+1−ǫ and [right (top,bottom)] effect of assignming
xk := false by switchign at time t = k + 1 + ǫ.

1. Clause variables c1, . . . , cm, wherein ci represents the ith clause.

2. Variable t that acts as a timer.

3. Variable s that corresponds directly to the output signal, i.e, the output function f(t, s, c1, . . . , cm) =
s.

The signal samples are chosen as follows:

• For any time interval t ∈ [2k, 2k+2] where our construction will mimic truth value choice for
variable xk, the signal samples are all gl = 2 except for samples at two times 2k + 1− ǫ and
2k + 1 + ǫ where gl = 1.

• For the last one second in its period t ∈ [2n + 2, 2n + 3] all samples are gl = 2.

The signal samples are so designed that a transition can either occur at time 2k + 1 − ǫ or
2k+1+ ǫ where the value of the signal dips to 1 but not both. We will use this to model the truth
assignment choice for xk throught the variable selection gadget.

Figure 10 shows the variable selection gadget for variable xk where 0 ≤ k ≤ n. Informally, the
gadget consists of two modes up(k) and down(k). The guards coming in and out of the gadget
ensures that

1. The value of timer entering up(k) is precisely t = 2k.

2. Exactly two seconds are spent between modes up(k) and down(k).

3. Finally, the transition between up(k) and down(k) happens when the value of the variable
s ≤ 1. Furthermore, the mode invariants ensure that t ∈ [2k + 1 − ǫ, 2k + 1 − ǫ] when the
switch takes place.
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Figure 10 also shows the signal fragment during the times [2k, 2k + 2] in connection with the
modes that will be encountered. As a result, we conclude that the transition between up(k) and
down(k) can happen either at t = 2k + 1 − ǫ or at t = 2k + 1 + ǫ (but not both, of course). We
will use the former choice to mimic the variable assignment xk := true and the latter to mimic
xk := false. This is achieved by setting the derivatives of the clause variables as follows:

1. For each clause Cj that contains the literal xk, we set ċk = −1 in mode up(k) and ċk = +1
in mode down(k).

2. For each clause Cj that contains the literal xk, we set ċk = 1 in mode up(k) and ċk = −1 in
mode down(k).

3. For each clause Cj that does not contain either xk or xk, we set ċj = 0 in both modes.

The dynamics for t are always ṫ = 1 in all modes and finally the dynamics of s are in the range
[−1
ǫ
, 1
ǫ
] so that s can rise of fall by at least 1 unit within any timeframe of ǫ.

For j = 1, . . . ,m let cj(t) represent the values of the continuous variable cj at time t. We are
interested in the difference cj(2k+2)− cj(2k) as a function of the choice of switching time between
down(k) and up(k).

Lemma B.1. If the switching time from up(k) to down(k) occurs at time t = 2k + 1− ǫ then

• For every clause Cj containing the literal xk, we have cj(2k + 2)− cj(2k) = +2ǫ.

• For every clause Cj containing the literal xk, we have cj(2k + 2)− cj(2k) = −2ǫ.

• If a clause contains neither xk or xk its value is preserved.

Proof. Since we switch at t = 2k+1− ǫ, we spend 1− ǫ time in up(k) and 1+ ǫ time in down(k).
If xk is contained positively in clause Cj then

cj(2k + 2)− cj(2k) = (1− ǫ)
dcj
dt

|up(k) + (1 + ǫ)
dcj
dt

|down(k)

= (1− ǫ)(−1) + (1 + ǫ)1
= +2ǫ

Proof is pictorially depicted as part of Figure 11 (top left, top right).

Lemma B.2. If the switching time from up(k) to down(k) occurs at time t = k + 1 + ǫ then

• For every clause Cj containing the literal xk, we have cj(2k + 2)− cj(2k) = −2ǫ.

• For every clause Cj containing the literal xk, we have cj(2k + 2)− cj(2k) = 2ǫ.

• If a clause contains neither xk or xk its value is preserved.

Proof is pictorially depicted as part of Figure 11 (bottom left, bottom right).
Finally, the overall automaton H consists of n+ 1 copies of the variable gadget corresponding

to the choice of variables x0, . . . , xn and a final mode m with the invariant

t ≥ 2(n + 1) ∧ c1 ≥ −4ǫ ∧ c2 ≥ −4ǫ ∧ · · · cm ≥ −4ǫ

The dynamics of all variables are ċj = 0, ṫ = 0, ṡ = 0 at the final mode.
All variables cj are set to 0 initially. The time t is set to zero and the variable s is set to 2.
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Informally, every clause has at most three distinct literals in it. As a result, the value of a clause
may change in three of the gadgets that correspond to the variables in it. In each gadget, it may
increase by +2ǫ if the choice of the variable reflected in the choice of switching time from up(k) to
down(k) satisfies the clause. Otherwise, the value decreases by −2ǫ. Therefore, a clause Cj has at
least one of its literals to be true iff the value of the corresponding variable cj is at least −4ǫ when
the final mode m is entered.

Lemma B.3. If there is a satisfiable assignment, then the signal samples are recognized by a run
along the path π.

Proof. Let us assume that a satisfiable assignment γ is given. If γ(xk) is true for a variable xk then
the choice of switching time from up(k) to down(k) is set to k + 1 − ǫ. Otherwise, the switching
time is set to k+1+ ǫ. We see that the samples for the first 2n+2 seconds correspond to the signal
samples. We now observe that cj ≥ −4ǫ for each j = 1, . . . ,m when the final mode is entered. This
is because, each clause Cj has at least one literal that is satisfied. Therefore, the run would have
increased the value of cj variable by 2ǫ. The smallest possible value for cj is therefore −4ǫ.

Lemma B.4. If there is a run along the path π that generates the given samples then there is a
satisfiable assignment.

Proof. First we gather that the switching times from each mode up(k) to down(k) must be at
t = k+1− ǫ or t = k+1+ ǫ. We can take the former to denote xk := true and the latter to denote
xk := false. Given that the final mode is reached, we conclude that cj(2k)− cj(0) ≥ −4ǫ for all cj .
From this, we gather that at least one of the values of the three literals in Cj must be true.

This concludes the reduction from 3-SAT to the Path Signal Recognition problem and as a
result, the problem is NP-hard.

Combining the NP-hardness and membership in NP, we conclude the NP-completeness of the
path signal recognition problem.
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