
Collecting Statistics over Runtime Executions ∗

Bernd Finkbeiner
Max-Planck-Institut für Informatik, Saarbrücken, Germany

Fachrichtung Informatik, Universität des Saarlandes, Saarbrücken, Germany

Sriram Sankaranarayanan and Henny B. Sipma
Computer Science Department, Stanford University, Stanford, CA 94305, USA

Abstract. We present an extension to linear-time temporal logic (LTL) that com-
bines the temporal specification with the collection of statistical data. By collecting
statistics over runtime executions of a program we can answer complex queries,
such as “what is the average number of packet transmissions” in a communication
protocol, or “how often does a particular process enter the critical section while
another process remains waiting” in a mutual exclusion algorithm. To decouple the
evaluation strategy of the queries from the definition of the temporal operators,
we introduce algebraic alternating automata as an automata-based intermediate
representation. Algebraic alternating automata are an extension of alternating au-
tomata that produce a value instead of acceptance or rejection for each trace. Based
on the translation of the formulas from the query language to algebraic alternating
automata, we obtain a simple and efficient query evaluation algorithm. The approach
is illustrated with examples and experimental results.

1. Introduction

Runtime verification [13, 14, 23] is an alternative approach to program
verification in which individual program traces are checked against a
specification. Given a trace of a program execution, we report success
if the trace satisfies the program specification, and failure if a fault is
detected. Often, however, it is more helpful to watch indicators of an
impending failure, such as the number of packet retransmissions in a
network, than to wait for an actual violation of the specification.

In this paper, we present an extension to linear-time temporal logic
that combines the temporal specification with the collection of statis-
tical data. Instead of checking properties like “there are only finitely
many transmissions for each packet” (which is vacuously true over finite
traces) we evaluate queries like “what is the average number of packet
transmissions,” or “what is the throughput,” which provide a good
picture of the current network status.

Statistical measures on traces can be useful in many different set-
tings. As program specifications, they can express important additional

∗ This research was supported in part by NSF(ITR) grant CCR-01-21403, by NSF
grant CCR-99-00984-001, by ARO grant DAAD19-01-1-0723, and by ARPA/AF
contracts F33615-00-C-1693 and F33615-99-C-3014.

c© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

runtime.tex; 29/05/2004; 18:59; p.1

2

properties. For example, observing more memory deallocation calls
than memory allocations in a C program indicates an error in the
program’s handling of dynamically allocated memory. In testing, sta-
tistical measures can help discriminate important test cases from the
less significant cases, by measuring the closeness of each test case to
some ideal case specified by the designers. Another application area is
performance profiling. Using the extended logic we can, for example,
easily determine the execution time for different function calls.

In our framework, queries are constructed from experiments, which
form basic observations at individual trace positions, and aggregate
statistics, which combine the results of multiple experiments. This
query language is defined in Section 2. We discuss examples from a
communication protocol and a mutual exclusion algorithm in Section 3.
Next, we develop an automata-theoretic solution for the evaluation of
queries. Algebraic alternating automata are an extension of alternating
automata that produce a value instead of acceptance or rejection for
each trace. We introduce algebraic alternating automata in Section 4
and discuss their evaluation over traces. The translation of queries to
automata is described in Section 5. Section 6 discusses experimental
results from our prototype implementation. Section 7 concludes the
discussion and points to some useful extensions.

Related Work

Program profiling has a long history, exemplified in popular tools like
gprof [11]. However, this research has concentrated mostly on certain
specific types of data like running time and memory leaks. Our ap-
proach can be used to develop flexible profiling tools that evaluate
user-defined temporal queries.

Runtime verification with linear-time temporal logic has received
growing attention recently [13, 14, 23]. Examples include the commer-
cial system Temporal Rover [7], a tool that allows the specifications to
be embedded in C, C++, Java, Verilog and VHDL programs. Runtime
verification algorithms have also been applied in guiding the Java model
checker Java PathFinder developed at NASA [12].

Linear-time temporal logic is a widely used formalism for the spec-
ification and verification of reactive and concurrent systems [17]. For
static analysis, other extensions to quantitative queries have first been
studied in the context of real time systems [8, 9]. Recent work along
the same lines includes [1, 5]. Our query language can be seen as a gen-
eralization of the logic MinMax Ctl [5]. Temporal logics are also the
basis for industrial property specification standards such as openvera

assertions [21]. Property specifications for important protocols like PCI

runtime.tex; 29/05/2004; 18:59; p.2

3

are now available commercially with built-in support for specifying and
collecting certain statistical data.

Alternating automata [6] are a generalization of nondeterministic au-
tomata and ∀-automata [16]. Because of their succinctness they are an
efficient data structure for many problems in specification and verifica-
tion [25, 24]. The algebraic alternating automata we define in Section 4
are inspired by the extended alternating automata of [4]. There, ex-
tended alternating automata are used for static Query Checking, which
determines the set of propositional formulas that satisfy a temporal
query over a program. Our general framework for using alternating
automata for runtime verification was reported in [10]. In this paper
we concretize the general approach by providing a query language and
a translation from queries to alternating automata.

2. Specifying Runtime Statistics

2.1. Programs, States and Traces

In our framework, runtime verification consists of posing queries about
program traces. These queries typically contain expressions over pro-
gram variables. Neither the queries nor their evaluations depend any
further on the program’s internal structure. Therefore, it is sufficient
to formalize our notion of states and traces. For the sake of simplicity,
we assume that all variables are global in scope. Informally, a program
state s is some valuation to the program variables. Each variable x

receives a valuation s(x) of the appropriate sort. We also extend a
state to map well-typed expressions over variables to their appropriate
values. Thus, given an expression e, and a state s, s(e) denotes the
value of the expression e in state s.

Formally, let Σ be a many-sorted algebraic signature and P be a
program with a finite set of variablesX. Each variable x ∈ X is assumed
to have a fixed sort τx. A query expression e is a term in the term algebra
T (Σ, X). Given a Σ-algebra V, a V-state of a program P is a map
s : X 7→ V such that each variable x ∈ X is assigned a value of sort τx in
V. We extend a state s to the unique homomorphism s : T (Σ, X) 7→ V
that extends s. This allows us to evaluate expressions over variables
using the information from s. Therefore, if e is an expression, s(e) is
defined by this homomorphism.

An expression with sort boolean is called an assertion. The entail-
ment relation

�
is defined such that a state satisfies an assertion ψ,

written s
�
ψ, if and only if s(ψ) = true.

Queries are evaluated over program traces. Formally, a (P -)trace σ

of length n is a sequence of states s0, s1, . . . , sn−1. Queries may return

runtime.tex; 29/05/2004; 18:59; p.3

4

a value or they may fail. For example, a query in our formalism could
be: “The event e must occur at least once in the trace; what is the
earliest time of its occurrence?” If e occurs at least once, then the
query succeeds, and the appropriate time is returned. If not, we need
to signal failure by returning a special value. Hence, we assume that
all sorts contain a special element ⊥ to indicate the failure of a query.

We classify queries into two levels. Experiments yield a value for
each position in the trace. Aggregate statistics combine the results of
experiments from multiple positions by computing a statistical measure
for a part of the trace or the full trace. We first describe experiments,
and then move on to aggregate statistics.

2.2. Experiments

Experiments express basic observations about the program trace at a
particular position in the trace.

Syntax Given a set of program variables V , and a signature Σ, exper-
iments are defined inductively as follows:

− Base case (state expression): p : δ is an experiment, where p is an
assertion over V and δ a well-typed expression over V ;

− Inductive case: if ψ1 and ψ2 are experiments, so are

ψ1 ∧g ψ2 (Conjunction)
ψ1 ∨g ψ2 (Disjunction)
¬c ψ1 (Negation)

�
f ψ1 (Next)

ψ1 Uf ψ2 (Until)

where f is a unary function, g is a binary function, and c is a
constant in Σ.

Semantics Experiments are interpreted over program traces in a Σ-
algebra V. The value of an experiment ψ over a trace σ : s0, s1, s2, . . . sn

at position 0 ≤ j ≤ n, written [ψ](σ,j) is defined as follows:

For a state expression:

[p : δ](σ,j) =

sj(δ) if sj
�
p

⊥ otherwise

runtime.tex; 29/05/2004; 18:59; p.4

5

that is, if the assertion p holds at position j, the value of the experiment
is the value of δ in sj; if p does not hold the experiment is a failure,
and its value is ⊥.

For the boolean connectives:

− Conjunction:

[ψ1 ∧g ψ2](σ,j) =

g([ψ1](σ,j), [ψ2](σ,j)) if [ψ1](σ,j) 6= ⊥
and [ψ2](σ,j) 6= ⊥

⊥ otherwise

that is, the value of the experiment at position j is the result of
function g applied to the values of ψ1 and ψ2 at position j, provided
both ψ1 and ψ succeed at j. Otherwise the experiment is a failure.

− Disjunction:

[ψ1 ∨g ψ2](σ,j) =

g([ψ1](σ,j), [ψ2](σ,j)) if [ψ1](σ,j) 6= ⊥
or [ψ2](σ,j) 6= ⊥

⊥ otherwise

that is, the value of the experiment at position j is the result
of function g applied to the values of ψ1 and ψ2 at position j,
provided at least one of ψ1 and ψ2 succeeds at j. Otherwise the
experiment is a failure. It is assumed that g is defined when one
of the arguments is ⊥.

− Negation:

[¬cψ1](σ,j) =

c if [ψ1](σ,j) = ⊥

⊥ otherwise

that is, the experiment has the value of c in V if experiment ψ1 is
a failure (returns ⊥) at j; the experiment is a failure otherwise.

For the temporal operators:

− Next:

[
�

f ψ1](σ,j) =

f([ψ1](σ,j+1)) if [ψ1](σ,j+1) 6= ⊥
and j 6= n

⊥ otherwise

runtime.tex; 29/05/2004; 18:59; p.5

6

that is, the value of the experiment at position j is the result
of applying function f to the result of the experiment ψ1 at po-
sition j + 1, provided that experiment succeeded. Otherwise the
experiment is a failure.

− Until:

[ψ1 Uf ψ2](σ,j) =

f([ψ2](σ,k)) where k is the least k,
j ≤ k ≤ n, such that
[ψ2](σ,k) 6= ⊥ and
[ψ1](σ,i) 6= ⊥
for every i, j ≤ i < k, or

⊥ if no such k exists

that is, the value of the experiment at position j is the result of
applying the function f to the value of ψ2 at the earliest position
where ψ2 succeeds, provided ψ1 succeeds continuously up to that
point. Otherwise the experiment is a failure.

EXAMPLE 1. Consider the trace

σ : 〈1, 1〉, 〈1, 2〉, 〈1, 3〉, 〈2, 3〉, 〈5, 3〉, 〈4, 3〉

where each state 〈x, y〉 gives the values of two integer variables x and
y. The following are examples of simple experiments:

− The experiment
[x < y : x](σ,0)

expressing: “the value of x in the first state of σ if x < y holds”,
has the value ⊥, since the first state does not satisfy x < y.

− The experiment
[x ≤ y : 〈x, y〉](σ,0)

expressing: “the tuple 〈x, y〉 in the first state of σ if x ≤ y”, has
the value 〈1, 1〉, because x ≤ y holds in the first state and 〈1, 1〉 is
the value of 〈x, y〉 in the first state.

− The experiment

[(x ≤ y : x) ∧+ ((x ≤ y : true) U id (y = x+ 2 : y))](σ,0)

has the value 4, the sum of the value of x in the first state and the
value of y in the third state, as 〈1, 3〉 is the first state such that
y = x+ 2 is true and x ≤ y in the first two states.

runtime.tex; 29/05/2004; 18:59; p.6

7

Remark We can view linear-time temporal formulas with their usual
interpretation over traces as a special case of statistical experiments.
We translate an assertion p to the state expression p : true; for the
boolean connectives, we associate the function T(x, y) = true with
conjunction ∧T and disjunction ∨T, and the constant true with nega-
tion ¬true; for the temporal operators, the identity function id(x) = x

is associated with Next
�

id and Until Uid .
By this translation we obtain a statistical experiment that has value

true if the temporal formula is satisfied and that fails otherwise. Such
experiments occur often as part of complex queries. In the remainder
of the paper we will use temporal formulas directly as subformulas,
omitting the constant true and the functions T and id .

2.3. Aggregate Statistics

Aggregate statistics combine the outcome of experiments at multiple
positions by computing a statistical measure for a part of the trace
or the full trace. Examples of aggregate statistics are the minimum or
maximum value of all successful experiments on a trace, or the sum of
all outcomes, or just a count of all successful experiments. We assume
that these aggregate statistics can be computed in an incremental fash-
ion and that the evaluation order, forward or backward, does not affect
the final value.

Syntax An aggregate expression is defined inductively as follows.

− Base case (experiment): An experiment is an aggregate expression.

− Inductive case: if ψ1 and ψ2 are aggregate expressions and ϕ is
an experiment with sort boolean, then the following are aggregate
expressions:

ψ1 ∧g ψ2 (Conjunction)
ψ1 ∨g ψ2 (Disjunction)
Cα ψ1 (Unconditional Collection)
ψ1 Iα ϕ (Interval Collection)

where g is a binary function in Σ and α is an incrementally com-
putable statistic over finite sequences.

An incrementally computable statistic is a function α over traces
σ : s0, s1, . . . , sn, such that there exists a binary function fα such that

α(σ) = fα(. . . (fα(fα(⊥, sn), sn−1), . . .), s0).

runtime.tex; 29/05/2004; 18:59; p.7

8

Examples of incrementally computable statistics are minimum, which
returns the minimum non-⊥ value in the trace, maximum, which re-
turns the maximum non-⊥ value in the trace, sum, which returns the
sum of all non-⊥ values in the trace, and count, which returns the
number of non-⊥ values in the trace. These functions can be computed
incrementally by the following binary functions:

fmin (x, y) = if x < y then x else y,
fmax (x, y) = if x < y then y else x,
fsum(x, y) = x+ y,

fcount (x, y) = x+ 1,

with

fα(x,⊥) = fα(⊥, x) = x

for α ∈ {min ,max , sum} and

fcount (⊥, x) = 1,
fcount (x,⊥) = x.

Semantics Like experiments, aggregate statistics are interpreted over
program traces. The value of an aggregate statistic ψ over a trace σ :
s0, s1, . . . sn at position 0 ≤ j ≤ n, written [ψ](σ,j) is defined as follows:

− Conjunction and Disjunction are the same as for experiments.

− Unconditional Collection:

[Cα ψ1](σ,j) = fα([Cα ψ1](σ,j+1) , [ψ1](σ,j))

with [Cα ψ1](σ,n+1) = ⊥,

− Interval Collection:

[ψ1 Iα ϕ](σ,j) =

fα([ψ1 Iα ϕ](σ,j+1) , [ψ1](σ,j)) if sj
�
ϕ

⊥ otherwise

with [ψ1Iα ϕ](σ,n+1) = ⊥,

where fα is a binary function that incrementally computes the func-
tion α.

runtime.tex; 29/05/2004; 18:59; p.8

9

EXAMPLE 2. Consider the trace

σ : 〈1, 1, 2〉, 〈1, 2, 2〉, 〈1, 3, 1〉, 〈2, 3, 1〉, 〈5, 3, 1〉, 〈5, 3, 2〉

where each triple 〈x, y, z〉 identifies the values of three integer variables
x, y and z. To illustrate the aggregate statistics, we show how some
questions about this trace can be expressed as aggregate expressions. For
each expression we show its evaluation in terms of the application of
the statistic to the values of the experiments involved in the expression.

− What is the number of positions in which the value of x is the
same as the value of y?

[Ccount (x = y)](σ,0) = count (T,⊥,⊥,⊥,⊥,⊥) = 1

− What is the minimum value of x+ y in the trace?

[Cmin (true : x+ y)](σ,0) = min (2, 3, 4, 5, 8, 8) = 2

− What is the average value of x+ y?
We define the average of a quantity as the quotient of its sum and
its count, i.e.,

Cavg ϕ = Csum ϕ ∧÷ Ccount ϕ .

Then the average value of x+ y can be written as

[Cavg (true : x+ y)](σ,0) = 30 ÷ 6 = 5.

− What is the maximum sum of the values of x in intervals where
z = 2?

[Cmax ((true : x) Isum (z = 2))](σ,0)

This expression shows a nesting of aggregate expressions. We will
first evaluate the inner expression at all positions in the trace:

[(true : x) Isum (z = 2))](σ,0) = sum(1, 1) = 2
[(true : x) Isum (z = 2))](σ,1) = sum(1) = 1
[(true : x) Isum (z = 2))](σ,2) = ⊥
[(true : x) Isum (z = 2))](σ,3) = ⊥
[(true : x) Isum (z = 2))](σ,4) = ⊥
[(true : x) Isum (z = 2))](σ,5) = sum(5) = 5

resulting in

Cmax ((true : x) Isum (z = 2))](σ,0) = max (2, 1,⊥,⊥,⊥, 5) = 5.

runtime.tex; 29/05/2004; 18:59; p.9

10

local x : integer where r = 1

`0: loop forever do

`1: noncritical

`2: request r

`3: critical

`4: release r

||

m0: loop forever do

m1: noncritical

m2: request r

m3: critical

m4: release r

–P1– –P2–

Figure 1. Program mux-sem (mutual exclusion by semaphores)

3. Examples

To illustrate the collection of statistics of running programs, we present
a mutual exclusion and a communication protocol and some examples
of relevant statistics for these programs. The programs are written in
the Simple Programming Language (SPL) of [17], which is a Pascal-
like language with constructs for concurrency. Statements are labeled
to allow explicit reference to control locations.

3.1. Mutual Exclusion

Figure 1 shows an SPL program that ensures mutually exclusive ac-
cess to the critical section of two processes by means of a semaphore
[17]. The request statement is enabled only if r is positive, and when
executed, it decrements r by 1. The release statement increments r
by 1. The following are some example queries on traces of the mutual
exclusion algorithm.

− Semaphore values: In a correct implementation, the maximum
value of r should not exceed 1. The expression

Cmax (true : r)

can be used to monitor whether this is indeed the case.

− Mutual exclusion: The expression

Cmax (at `3 : 1 ∨+ at m3 : 1)

records the maximum number of processes present in the critical
section at any one time. The predicate at `3 is true when process
P1 is in location `3; similarly, at m3 is true when process P2 is
in location m3. If the value of this expression exceeds 1, mutual
exclusion is violated.

runtime.tex; 29/05/2004; 18:59; p.10

11

− Bias: The expression

Ccount(at `3 ∧
�

¬at `3) ∧÷ Ccount(at m3 ∧
�

¬at m3)

returns the ratio of the number of visits by P1 to the critical section
to the number of visits of P2 to the critical section.

− Overtaking: Program mux-sem does not put a bound on how often
one process can enter the critical section while the other process is
waiting to enter. In practice, one may want to monitor the number
of times a process is overtaken. The expression

Cmax ((¬at m3 ∧
�

at m3) Icount at `2)

records the maximum number of times P2 visits the critical section
during any period where P1 idles at `2.

3.2. Communication Protocol

Figure 2 shows an SPL implementation (adapted from [18]) of the
Alternating Bit Protocol, a communication protocol that guarantees
data delivery to the receiver across a lossy channel, first proposed in
[2]. Two processes, a sender and a receiver execute in parallel. The
sender sends data items via the asynchronous data channel dchan; each
data item is accompanied by a boolean value seq (the alternating bit).
It then waits for the receiver to send an acknowledgement, consisting
of one bit, on the asynchronous acknowledgement channel achan, or it
times out (we assume that statement `4 is taken a fixed amount of time
after it becomes enabled). If an ack was received and its value is equal
to the seq bit, the sender assumes the data was received and it moves
on to the next data item, simultaneously flipping the value of seq. If no
ack was received, or its value was not equal to seq, the same data item
is sent again. The receiver retrieves the data items from dchan. If the
accompanying seq bit is equal to its local ack bit, it accepts the data
by moving its pointer to the next data item, and flips its ack bit. We
assume that both achan and dchan may lose items, but do not corrupt
or reorder items. The following are some example queries on traces of
this protocol.

− Throughput: The total number of data items successfully sent, can
be expressed by

Ccount (at `6 ∧
�

¬at `6).

runtime.tex; 29/05/2004; 18:59; p.11

12

local dchan : channel [1..] of (integer,boolean)
local achan : channel [1..] of boolean

Sender ::

local data : array [1..] of integer

local i : integer where i = 1
local seq, ack : boolean where seq = true

local timeout : boolean where ¬timeout

`0: loop forever do

`1: dchan⇐ (data[i], seq)

`2:

`3: achan⇒ ack

or

`4: timeout := true

`5: if ¬timeout ∧ ack = seq

`6: (i, seq) := (i+ 1,¬seq)
`7: timeout := false

||

Receiver ::

local recvd : array [1..] of integer

local j : integer where j = 1
local seq, ack : boolean where ack = true

m0: loop forever do

m1: dchan⇒ (recvd[j], seq)
m2: if seq = ack then

m3: (j, ack) := (j + 1,¬ack)
m4: achan⇐ seq

Figure 2. Program abp: Alternating Bit Protocol

− Sent vs. received: The number of items sent by the Sender versus
the number of items received by the Receiver is recorded by

Ccount (at `1 ∧
�

¬at `1) ∧〈.,.〉 Ccount (at m1 ∧
�

¬at m1).

− Maximum transmissions: The maximum number of transmissions
for any one packet is expressed by

Cmax ((at `1 ∧
�

¬at `1) Icount at `{1...5,7}).

The expression counts the number of times statement `1 is exe-
cuted in any interval in which control resides at control locations
`1, . . . , `5, or `7, but not at `6, where the sender moves to the next
data item. It then takes the maximum over all intervals.

runtime.tex; 29/05/2004; 18:59; p.12

13

− Average transmissions: The average number of transmissions per
packet can be expressed by a similar expression,

Cavg (at `{0,6} ∧π2

�
((at `1 ∧

�
¬at `1) Icount at `{1...5,7})).

In each position, the interval collection computes the number of
transmissions for the current packet. The conjunction with at `{0,6}

ensures that we count each packet only once in computing the av-
erage, as the value of the conjunction is non-⊥ only in the positions
where the sender moves from `0 to `1 or from `6 to `7 and hence
starts with a new data item.

4. Evaluating Statistics

Queries are evaluated over traces. To decouple the evaluation strategy
from the definition of the temporal operators, we introduce algebraic
alternating automata as an intermediate representation. Algebraic al-
ternating automata are an extension of alternating automata that pro-
duce a value instead of acceptance or rejection for a given trace. We
split the evaluation of an expression over a trace into two steps: first,
the expression is translated into an equivalent automaton; then, that
automaton is evaluated over the trace.

4.1. Alternating Automata

Alternating automata were first introduced in [6]. They provide a con-
cise representation for temporal properties: an LTL formula can be
translated into an equivalent alternating automaton that is linear in
the length of the formula [20, 26]. In fact, there is a one-to-one relation-
ship between the subformulas of the temporal formula and the states
of the automaton, which provides a good intuition for manipulating
the automaton in relation to the corresponding formula. Alternating
automata have been represented in various ways in the literature. Here
we use the definition of [19].

DEFINITION 1 (Alternating Automaton). An alternating automaton
A is defined as follows:

A ::= εA empty automaton
| 〈ν, δ, f〉 single node
| A ∧ A conjunction of two automata
| A ∨ A disjunction of two automata

runtime.tex; 29/05/2004; 18:59; p.13

14

where ν is a state formula, δ is an alternating automaton expressing the
next-state relation, and f indicates whether the node is accepting (de-
noted by +) or rejecting (denoted by −). We require that the automaton
be finite.

4.2. Algebraic Alternating Automata

Algebraic alternating automata are an extension of alternating au-
tomata. We distinguish two types of single nodes: terminal nodes, which
correspond to nodes with next-state relation εA in Definition 1, and
transient nodes, which correspond to single nodes with a next-state
relation that is different from the empty automaton. A terminal node
is labeled with an assertion and an expression, where the type of the
expression determines the type of the automaton. A transient node is
labeled with a unary function and has a next-state relation. Conjunc-
tion and disjunction of automata is associated with a binary function.
Finally, an automaton can be constructed by function application to
another automaton. Note that conjunction, disjunction, and function
application do not add any new nodes to the automaton.

DEFINITION 2 (Algebraic Alternating Automaton). Let Σ be a many-
sorted algebraic signature and X be a set of program variables. An
algebraic alternating automaton of sort τ is defined as follows:

A : τ ::= 〈p, δ〉 terminal node
with assertion p and δ : τ ∈ T (Σ, X)

| 〈A : τ1, f〉 transient node
| A : τ1 ∧g A : τ2 conjunction
| A : τ1 ∨g A : τ2 disjunction
| f(A : τ1) function application

where f : τ1 → τ and g : τ1×τ2 → τ are a unary and a binary function,
respectively.

EXAMPLE 3. Figure 3 shows an example of an algebraic alternating
automaton over the signature Σ, containing as single sort the natural
numbers, a single constant ⊥ for the undefined value, and the functions
π2, fmin and id. Nodes without outgoing edges denote terminal nodes;
nodes with an outgoing edge are transient nodes 〈A, f〉, with the edge
leading to the next-state automaton A. Conjunction of two automata is
indicated by an arc connecting the two branches. Thus, the automaton
in Figure 3 has three nodes: two terminal nodes (n0 and n2) and one
transient node (n1). Automaton A0 is a conjunction of A1 and A2 and
automaton A2 is a disjunction of A3 and A4.

runtime.tex; 29/05/2004; 18:59; p.14

15

n0 : p : x

n1 : id n2 : q : y

A0 : A1 ∧π2
A2

A2 : A3 ∨min A4A1

A3 : 〈id ,A0〉 A4

Figure 3. Algebraic Alternating Automaton

DEFINITION 3 (Value). Given a trace σ : s0, . . . , sn and a position
j, 0 ≤ j ≤ n, the value of the algebraic alternating automaton A at
position j, written [A](σ,j) is defined as follows:

− For a terminal node:

[〈p, δ〉](σ,j) =

sj(δ) if sj
�
p

⊥ otherwise

that is, the value is equal to the evaluation of δ at position j in the
trace, if the assertion p holds at j.

− For a transient node:

[〈A1, f〉](σ,j) =

f([A1](σ,j)) if [A1](σ,j+1) 6= ⊥
and j 6= n

⊥ otherwise

that is, the value is equal to the application of the function f to the
value of the next-state automaton A1, or ⊥ if j is the last position
in the trace, or if the value of the next-state automaton is ⊥.

− For a conjunction:

[A1 ∧g A2](σ,j) =

g([A1](σ,j), [A2](σ,j))
if [A1](σ,j) 6= ⊥ and [A2](σ,j) 6= ⊥

⊥ otherwise

that is, the value of a conjunction of automata is equal to the
function g applied to the values of the two sub-automata, provided
both evaluate to non-⊥ values.

runtime.tex; 29/05/2004; 18:59; p.15

16

− For a disjunction:

[A1 ∨g A2](σ,j) =

g([A1](σ,j), [A2](σ,j))
if [A1](σ,j) 6= ⊥ or [A2](σ,j) 6= ⊥

⊥ otherwise

that is, the value of a disjunction of automata is equal to the func-
tion g applied to the values of the two sub-automata, provided at
least one of them evaluates to a non-⊥ value.

− For function application:

[f(A1)](σ,j) = f([A1](σ,j))

that is, the value is equal to the result of applying f to the value
of A1, where f(⊥) may have a non-⊥ value and the result of f
applied to a non-⊥ value may be ⊥.

EXAMPLE 4. Consider again the automaton A0 in Figure 3 and let
V be the Σ-Algebra with carrier set A = N ∪{⊥}, where N is the set of
natural numbers, function π2(x1, x2) = x2, fmin the minimum function
over integers that returns the non-⊥ value if one of the arguments is
⊥, and id the identity function. Figure 4 shows the evaluation tree of
A0 over the trace shown on the right of the figure. The trace shows the
values of two variables x and y in each position and the satisfaction of
two assertions p and q over the program variables.

Starting at position 6, the end of the trace, values for the terminal
nodes n0 and n2 are computed directly based on the values of p, q,
x, and y at that position. The value of the transient node n1 at each
position is computed based on the result of the value of A0 in the next
position. The value of n1 at the end of the trace is ⊥. The value of A0

over the whole trace is 1, the minimum of the values at nodes n1 and
n2 at position 0.

4.3. Evaluation on Traces

Evaluation can proceed in the forward direction or in the backward
direction. The former strategy traverses the trace from the beginning
to the end. The automaton is evaluated recursively, as dictated by
the equations in Definition 3. Unfortunately, the complexity of forward
evaluation is exponential in the length of the trace. This can be avoided,
as pointed out by Rosu and Havelund [22], by traversing the trace
backwards.

runtime.tex; 29/05/2004; 18:59; p.16

17

�

n0 : 3

�

n1 : 2

�

n0 : 1

�

n1 : ⊥

�

n0 : 2

�

n1 : ⊥

�

n0 : ⊥

�

n1 : ⊥

�

n0 : ⊥

	

n1 : ⊥

n0 : ⊥

�

n1 : 0

�

n0 : 1

n1 : ⊥ n2 : 0

n2 : 2

n2 : ⊥

n2 : 3

n2 : ⊥

n2 : 2

n2 : 1

position

0

1

2

3

4

5

6

〈p, q〉

〈T, T 〉

〈T, T 〉

〈T, F 〉

〈F, T 〉

〈F, F 〉

〈F, T 〉

〈T, T 〉

〈x, y〉

〈3, 1〉

〈1, 2〉

〈2, 1〉

〈2, 3〉

〈0, 3〉

〈6, 2〉

〈1, 0〉

Figure 4. Evaluation tree for A0 and the trace shown on the right

In the case of backwards traversal, the value of each terminal node
is computed for the last state of the trace and all transient nodes are
initialized with ⊥. Then, for each previous state in the trace the new
values of the nodes can be computed from the state information at that
position and the values of the sub-automata at the previous position.
Therefore, it is possible to perform a backwards evaluation while storing
the values of all automata at the current and the next positions only.

runtime.tex; 29/05/2004; 18:59; p.17

18

5. Translating Specifications to Automata

In this section, we describe the translation of formulas of the query lan-
guage to the algebraic alternating automata described in the previous
section. We assume that the algebraic signature Σ contains a binary
function fα for the incremental computation of each aggregate statistic
α. In addition, to model the negation operator, we assume that for each
constant c in Σ there exists a function negate c defined as

negatec(v) =

{

⊥ if v 6= ⊥
c otherwise.

We also assume that each sort has the identity function id .

5.1. Experiments

An experiment ψ is translated into its corresponding algebraic alter-
nating automaton AA(ψ) as follows.

For a state expression:

AA(ψ : e) = 〈ψ, e〉

the corresponding automaton is a single terminal node.

For the boolean connectives:

− Conjunction of experiments is translated into conjunction of au-
tomata:

AA(ψ1 ∧g ψ2) = AA(ψ1) ∧g AA(ψ2)

− Likewise, disjunction of experiments is translated into disjunction
of automata:

AA(ψ1 ∨g ψ2) = AA(ψ1) ∨g AA(ψ2)

− Negation is translated into function application:

AA(¬c ψ) = negatec(AA(ψ))

For the temporal operators:

− The Next operator is translated into a transient node:

AA(
�

f (ψ)) = 〈AA(ψ), f〉

runtime.tex; 29/05/2004; 18:59; p.18

19

f

AA(ψ2)

AA(ψ1)
id

A1 ∨g

∧π2

Figure 5. Automaton for ψ1 Uf ψ2

− An Until expression is translated into an automaton with a loop
as follows:

AA(ψ1 Uf ψ2) = f(A1)

with

A1 = AA(ψ2) ∨g (AA(ψ1) ∧π2
〈A1, id〉)

where

g(x, y) =

x if x 6= ⊥

y otherwise

and π2(x, y) = y. The construction is illustrated in Figure 5.

5.2. Aggregate Statistics

Aggregate expressions can be translated to automata in a similar way as
experiments. The construction for conjunction and disjunction is iden-
tical to those for experiments. The constructions for the unconditional
and interval collection are as follows:

− For unconditional collection:

AA(Cα(ψ)) = AA(ψ) ∨fα
〈AA(Cα(ψ)), id 〉

as illustrated in Figure 6. The transient node labeled with id col-
lects the value of the aggregate statistic from the next state; with
the disjunction this value is combined with the value of AA(ψ) in
the current state.

runtime.tex; 29/05/2004; 18:59; p.19

20

AA(Cα(ψ))

id
AA(ψ)

∨fα

AA(ψ Iα ϕ)

id
AA(ψ)

AA(ϕ)
∨fα

∧π1

Figure 6. Automata for Cα(ψ) and ψ Iα ϕ

− For interval collection:

AA(ψ Iα ϕ) = (〈 AA(ψ Iα ϕ), id 〉 ∨fα
AA(ψ)) ∧π1

AA(ϕ)

as illustrated in Figure 6. The construction is the same as for
unconditional collection except that the transmission of the value
from the rest of the trace is broken by the conjunction when the
value of AA(ψ2) is ⊥.

EXAMPLE 5. Figure 7 shows the automaton for the aggregate statistic

Cmax ((at `1 ∧
�

¬at `1) Icount at `{1...5,7})

expressing the maximum number of transmissions in the communica-
tion protocol example from Section 3.2.

6. Experimental Results

The evaluation algorithm from Section 4.3 has been implemented in
Java, making use of existing software modules for expression pars-
ing and propositional simplification available in the STeP (Stanford
Temporal Prover) system [3]. The formulas described in the mutual
exclusion and alternating bit protocol examples of Section 3 were man-
ually translated following the construction from Section 5. Traces were
generated by simulating the SPL programs, executing at each position
a single step of a randomly chosen process. We measured the running
time of the backward evaluation over traces of varying length. The

runtime.tex; 29/05/2004; 18:59; p.20

21

id

at `{1...5,7} : true

id

at `1 : true id

at `1 : true

∨fmax

∧π1

∨fcount

∧T

negate true

Figure 7. Automaton for Cmax ((at `1 ∧
�

¬at `1) Icount at `{1...5,7}

results are shown in Figure 8. The times were measured on a 1.7GHz
PC, running SuSE Linux v9.0 and Sun JDK 1.5.0.

7. Conclusions & Future Work

We have presented an expressive query language along with a cor-
responding automata-based representation. Similar to the standard
construction of alternating automata from LTL formulas, the transla-
tion from our query language to algebraic alternating automata works
incrementally by translating subformulas and produces an automaton
that is linear in the size of the formula.

It would be very useful to extend our query language to include
statistical measures that cannot be computed incrementally, such as
the median, quantiles, histograms, modes, and correlations. Computing
such measures on a long trace can be expensive in terms of memory, or
downright infeasible in terms of time. However, many randomized and
approximation algorithms exist that allow the user to compute good
approximations fast, guaranteed to be within a certain accuracy bound
with a high probability [15]. The performance of these algorithms can

runtime.tex; 29/05/2004; 18:59; p.21

22

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 200000 400000 600000 800000

bias
overtaking

mutual exclusion
semaphore values

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 200000 400000 600000 800000

average transmissions
sent vs. received

maximum transmissions
throughput

ru
n
n
in

g
ti
m

e
[m

s]

trace length [states]

Figure 8. Running times for queries from the mutual exclusion example (left) and
the communication protocol example (right).

be traded-off against its time and space complexity. Such algorithms
could be used as building blocks to provide a performance guaranteed
algorithm for complex statistical measures.

Acknowledgements

We would like to thank the referees for their thorough reading of our
submission and their many constructive comments and suggestions.
Many thanks to Prof. Zohar Manna and the STeP group for their
support and constructive comments.

References

1. Alur, R., S. L. Torre, K. Ettessami and D. Peled, Parametric temporal logic

for model measuring, in: J. Wiedermann, P. van Emde Boas and M. Nielsen,
editors, ICALP’99, Prague, Czech Republic, LNCS 1644 (1999), pp. 159–168.

2. Bartlett, K., R. Scantlebury and P. Wilkinson, A note on reliable full-duplex

transmission over half-duplex links, Communications of the ACM 12 (1969),
pp. 260–261.

3. Bjørner, N. S., A. Browne, M. Colón, B. Finkbeiner, Z. Manna, H. B. Sipma
and T. E. Uribe, Verifying temporal properties of reactive systems: A STeP

tutorial, Formal Methods in System Design 16 (2000), pp. 227–270.
4. Bruns, G. and P. Godefroid, Temporal logic query checking, in: Proc. 16th IEEE

Symp. Logic in Comp. Sci. (2001), pp. 409–417.

runtime.tex; 29/05/2004; 18:59; p.22

23

5. Chakrabarti, P., P. Dasgupta, J. Deka and S. Sankaranarayanan, Min-max

computation tree logic, Artificial Intelligence 127 (2001), pp. 137–162.
6. Chandra, A. K., D. C. Kozen and L. J. Stockmeyer, Alternation, J. ACM 28

(1981), pp. 114–133.
7. Drusinsky, D., The Temporal Rover and the ATG Rover, in: K. Havelund,

J. Penix and W. Visser, editors, SPIN Model Checking and Software Verifica-

tion, 7th Int’l SPIN Workshop, LNCS 1885 (2000), pp. 323–330.
8. Emerson, A., A. Mok, A. P. Sistla and J. Srinivasan, Quantitative temporal

reasoning, Real Time Systems 4 (1993), pp. 334–351.
9. Emerson, A. and R. Trefler, Generalized quantitative temporal reasoning: An

automata-theoretic approach, in: TAPSOFT: 7th International Joint Confer-

ence on Theory and Practice of Software Development, 1997.
10. Finkbeiner, B. and H. Sipma, Checking finite traces using alternating automata,

in: K. Havelund and G. Rosu, editors, Electronic Notes in Theoretical Computer

Science, Electronic Notes in Theoretical Computer Science 55 (2001), pp. 1–17.
11. Graham, S. L., P. B. Kessler and M. K. McKusick, gprof: a call graph execution

profiler, in: SIGPLAN Symposium on Compiler Construction, 1982, pp. 120–
126.

12. Havelund, K., Using runtime analysis to guide model checking of java programs,
in: K. Havelund, J. Penix and W. Visser, editors, SPIN Model Checking and

Software Verification, 7th Int’l SPIN Workshop, LNCS 1885 (2000), pp. 245–
264.

13. Havelund, K. and G. Rosu, editors, “Runtime Verification 2001,” Electronic
Notes in Theoretical Computer Science 55, Elsevier Science Publishers, 2001.

14. Havelund, K. and G. Rosu, editors, “Runtime Verification 2002,” Electronic
Notes in Theoretical Computer Science 70, Elsevier Science Publishers, 2002.

15. Manku, G. S., Rajagopalan, S. and B. G. Lindsay. Random Sampling Tech-

niques for Space Efficient Online Computation of Order Statistics of Large

Datasets, in: Proc. ACM SIGMOD, vol. 27(2), pp. 251–262, 1998.
16. Manna, Z. and A. Pnueli, Specification and verification of concurrent programs

by ∀-automata, in: B. Banieqbal, H. Barringer and A. Pnueli, editors, Temporal

Logic in Specification, number 398 in LNCS, Springer-Verlag, Berlin, 1987
pp. 124–164, also in Proc. 14th ACM Symp. Princ. of Prog. Lang., Munich,
Germany, pp. 1–12, January 1987.

17. Manna, Z. and A. Pnueli, “Temporal Verification of Reactive Systems: Safety,”
Springer-Verlag, New York, 1995.

18. Manna, Z. and A. Pnueli, “Temporal Verification of Reactive Systems:
Progress,” Springer-Verlag, New York, 1996, draft manuscript.

19. Manna, Z. and H.B. Sipma, Alternating the Temporal Picture for Safety, In: U.
Montanari, J. D. Rolim, and E. Welzl (eds.): Proc. 27th Intl. Colloq. Aut. Lang.

Prog., Vol. 1853. Geneva, Switzerland, pp. 429–450, Springer-Verlag, 2000.
20. Muller, D.E., A. Saoudi, and P.E. Schupp. Weak alternating automata give a

simple explanation of why most temporal and dynamic logics are decidable in

exponential time, In Proc. 3rd IEEE Symp. Logic in Comp. Sci., pages 422–427,
1988.

21. Synopsys inc., “openvera (tm) Assertions,” http://www.open-vera.com.
22. Rosu, G. and K. Havelund, Synthesizing dynamic programming algorithms from

linear temporal logic formulae, RIACS Technical Report TR 01-15, 2001.
23. Sokolsky, O. and M. Viswanathan, editors, “Runtime Verification, 2003,” Elec-

tronic Notes in Theoretical Computer Science 89, Elsevier Science Publishers,
2003.

runtime.tex; 29/05/2004; 18:59; p.23

24

24. Vardi, M. Y., Alternating automata and program verification, in: J. van
Leeuwen, editor, Computer Science Today. Recent Trends and Developments,
LNCS 1000, Springer-Verlag, 1995 pp. 471–485.

25. Vardi, M. Y., An automata-theoretic approach to linear temporal logic, in:
F. Moller and G. Birtwistle, editors, Logics for Concurrency. Structure versus

Automata, LNCS 1043 (1996), pp. 238–266.
26. Vardi, M. Y., Alternating automata: Checking truth and validity for temporal

logics, In Proc. of the 14th Intl. Conference on Automated Deduction, LNCS
1249, Springer-Verlag, July 1997.

runtime.tex; 29/05/2004; 18:59; p.24

