
Static Analysis for Probabilistic Programs: Inferring
Whole Program Properties from Finitely Many Paths.

Sriram Sankaranarayanan

University of Colorado, Boulder.

srirams@colorado.edu

Aleksandar Chakarov

University of Colorado, Boulder.

aleksandar.chakarov@colorado.edu

Sumit Gulwani

Microsoft Research, Redmond.

sumitg@microsoft.com

Abstract

We propose an approach for the static analysis of probabilistic pro-
grams that sense, manipulate, and control based on uncertain data.
Examples include programs used in risk analysis, medical deci-
sion making and cyber-physical systems. Correctness properties of
such programs take the form of queries that seek the probabilities
of assertions over program variables. We present a static analysis
approach that provides guaranteed interval bounds on the values
(assertion probabilities) of such queries. First, we observe that for
probabilistic programs, it is possible to conclude facts about the be-
havior of the entire program by choosing a finite, adequate set of
its paths. We provide strategies for choosing such a set of paths and
verifying its adequacy. The queries are evaluated over each path
by a combination of symbolic execution and probabilistic volume-
bound computations. Each path yields interval bounds that can be
summed up with a “coverage” bound to yield an interval that en-
closes the probability of assertion for the program as a whole. We
demonstrate promising results on a suite of benchmarks from many
different sources including robotic manipulators and medical deci-
sion making programs.
Categories and Subject Descriptors D.2.4 [Software Engineer-
ing] Software/Program Verification.
Keywords: Probabilistic Programming, Program Verification, Vol-
ume Bounding, Symbolic Execution, Monte-Carlo Sampling.

1. Introduction

The goal of this paper is to study static analysis techniques for
proving properties of probabilistic programs that manipulate un-
certain quantities defined by probability distributions. Uncertainty
is a common aspect of many software systems, especially systems
that manipulate error-prone data to make medical decisions (eg.,
should the doctor recommend drugs or dialysis to a patient based on
the calculated eGFR score?); systems that predict long term risks
of catastrophic events such as floods and earthquakes (eg., should
a nuclear power plant be built at a certain location?); and control
systems that operate in the presence of sensor errors and external
environmental disturbances (eg., robotic manipulators and air traf-
fic control systems). It is essential to learn how the presence of
uncertainty in the inputs can affect the program’s behavior.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PLDI’13, June 16–19, 2013, Seattle, WA, USA.
Copyright c© 2013 ACM 978-1-4503-2014-6/13/06. . . $10.00

In general, the problem of reasoning about uncertain systems
is quite challenging due to (a) real-valued variables that are used
to model physical quantities such as space, time and temperature;
(b) imprecision in the input, modeled by different distributions
such as uniform, Poisson and Gaussian; and (c) control flow that
is mediated by conditions over the program variables and random
variables. These aspects make the resulting programs infinite state,
requiring techniques that go beyond the exhaustive exploration of
concrete sets of states.

In this paper, we study infinite state programs that manipulate
real-valued variables and uncertain quantities belonging to a wide
variety of distributions. Our modeling approach is simple: we use
standard imperative programs augmented with probabilistic con-
structs to model uncertainties. The overall goal of our approach is
to answer questions about the probability of assertions at the exit
of the program.

Monte-Carlo simulation [34] can be used to answer this ques-
tion upto some desired level of precision. However, these tech-
niques do not provide formal guarantees on the accuracy of the
answers. In this work, we provide a static analysis approach that
can place guaranteed interval bounds on the possible values of the
assertion probabilities. As a side effect, our approach can perform
a stratified sampling to provide more accurate answers than stan-
dard rejection sampling. Our static analysis approach has two main
components: (A) choosing an adequate set of paths and (B) path
probability bound computation.

Adequate Set of Paths: Unlike static analysis in the non-
probabilistic case, it suffices to consider a carefully chosen finite
set of adequate program paths for estimating probability bounds.
Let us assume that a set of syntactic program paths S is provided
with a lower bound c on their combined path probabilities. We
can proceed to estimate the probability of any assertion ϕ over the
finitely many paths in the set S and know that the contribution from
the unexplored paths is at most 1− c.

Therefore, given some target “coverage” probability c (eg., c =
0.95), we wish to find a set S of syntactic program paths (if such a
set exists) such that an execution of the program yields a path in the
set S with probability at least c. We achieve this in two steps: (a)
we use a statistical procedure to find a set S that achieves the cov-
erage bound with high confidence, and (b) we then compute a for-
mal lower bound on the actual coverage of S. Using a two-step ap-
proach guarantees that the symbolic execution is always performed
over feasible program paths. Secondly, executing probabilistic pro-
grams is a natural way of sampling the paths of the program ac-
cording to their path probabilities.

Path Probability Computation: We use symbolic execution
along the chosen paths to compute bounds on the path probabil-
ity: i.e, the probability that an execution of the program follows
the chosen path. In turn, this reduces to finding the probability of

satisfaction for a system of constraints, given probability distribu-
tions on the individual variables. This is a hard problem both in
theory and in practice [2]. Therefore, rather than compute the pre-
cise answer, we seek to bound the probability of satisfaction. We
present a scheme that can estimate probability bounds for linear as-
sertions over integers and reals. Furthermore, given more time our
technique can generate bounds that are tighter.

Our overall framework weaves the two ideas together to yield
upper and lower bounds for the probability of the assertion for the
program as a whole. The paper makes the following contributions:

1. We present an approach to infer bounds on assertion probability
for the whole program by considering a suitably chosen finite
set of program paths.

2. We present branch-and-bound techniques over polyhedra to
derive tight bounds on path and assertion probabilities.

3. We present an experimental evaluation of our approach over a
set of small but compelling benchmarks. We showcase some
of the successes of our approach and identify limitations to
motivate future work.

However, we have by no means solved every aspect of the complex
problem of probabilistic program analysis.

1. Our approach is restricted to programs with linear assignments
and conditionals (see Figure 3 in Section 3). As such, the high
level ideas presented here directly extend to programs with non-
linearities that arise from multiplications, exponentiations and
bitwise operations. The current limitation lies in the volume
computation technique (Section 4.2) that handles convex poly-
hedra over reals and integers.

2. We support the generation of random variables with known
distributions and known correlations specified, for instance,
by a given covariance matrix. However, our framework does
not handle non-deterministic uncertainties or distributions with
unknown (arbitrary) correlations.

3. Our focus is on estimating probability bounds for safety prop-
erties. We do not consider liveness properties (termination) or
expectation queries in this paper.

2. Approach At A Glance

In this section, we first motivate the main contributions of this paper
using an example from medical decision making. The probabilis-
tic programming language and its semantics are described in the
subsequent section.

Estimating Kidney Disease Risk in Adults Chronic kidney dis-
ease in adults is characterized by the gradual loss of kidney func-
tion. A common measure of chronic kidney disease is a quantity
called the Estimated Glomerular Filtration Rate (eGFR), which is
computed based on the age, gender, ethnicity and the measured
serum Creatinine levels of the patient 1. There are many formu-
lae that are used for computing eGFR, which is typically a log-
linear function of its inputs. Figure 1 shows the function that com-
putes the value of eGFR according to the widely used CKD-EPI
formula 2 . Kidney disease risk in adults is typically diagnosed if
log(eGFR) < 4.5, or equivalently eGFR < 90. However, the
values of age and measured serum Creatinine levels can be erro-
neous. Age is typically rounded up or down causing a ±1 variation,
while the lab values of serum Creatinine levels are assumed to have
a 10% variation. While gender and ethnicity are often mistake-free,
it is sometimes possible to record a wrong gender or ethnicity due to

1 Cf. http://www.kidney.org/kidneydisease/aboutckd.cfm

2 Cf. http://nephron.com/epi_equation.

1 real estimateLogEGFR(real logScr, int age,
2 bool isFemale, bool isAA){
3 var k,alpha: real;
4 var f: real;
5 f= 4.94;
6 if (isFemale) {
7 k = -0.357;
8 alpha = -0.329;
9 } else {

10 k = -0.105;
11 alpha = -0.411;
12 }
13

14 if (logScr < k) {
15 f = alpha * (logScr - k);
16 } else {
17 f = -1.209 * (logScr - k);
18 }
19 f = f - 0.007 * age;
20

21 if (isFemale) f = f + 0.017;
22 if (isAA) f = f + 0.148;
23 return f;
24 }

Figure 1. A program that computes the logarithm of the eGFR
given the logarithm of the measured serum Creatinine value
(logScr), the patient’s age, whether the patient is female (isFemale)
and whether the patient is African American (isAA). We assume
that the inputs to the function are noisy and wish to know how the
noise affects the output value f.

1 void compareWithNoise(real logScr, real age,
2 bool isFemale, bool isAA) {
3 f1 = estimateLogEGFR(logScr, age, isFemale,isAA);
4 logScr = logScr + uniformRandom(-0.1, 0.1);
5 age = age + uniformRandomInt(-1,1);
6 if (flip(0.01))
7 isFemale = not(isFemale);
8 if (flip(0.01))
9 isAA = not(isAA);

10 f2 = estimateLogEGFR(logScr, age, isFemale,isAA);
11 estimateProbability (f1 - f2 >= 0.1);
12 estimateProbability (f2 - f1 >= 0.1);
13 }

Figure 2. A probabilistic program that simulates noise in patient
data, comparing the error between original and noisy outputs.

transcription mistakes in the (electronic) medical record. Figure 2
shows a model that adds the appropriate amount of noise to the in-
puts of the eGFR calculation. Given these input uncertainties, one
naturally worries about the problem of patients being mis-classified
purely due to the noise in the recorded patient data. Therefore, we
ask the question: what is the probability that the presence of noise
causes 10% or larger variation in the EGFR values (≥ 0.1 absolute
variation in the logarithmic scale)? Such a query is expressed at the
end of the function compareWithNoise in Figure 2.

Modeling Input Distributions: The distributions of serum Cre-
atinine values are highly correlated with age, gender and race. A
detailed population survey is provided by Jones et al. [19]. For il-
lustration, we assume a 50% chance of the person being female and
10% chance of being African American. Based on these outcomes,
different distributions are chosen for the patients based on their
gender. We model input serum Creatinine levels as drawn from a
normal distribution around the mean with a fixed standard devi-

http://www.kidney.org/kidneydisease/aboutckd.cfm
http://nephron.com/epi_equation

ation of 0.1 around a mean that varies based on gender: 1.0 for
women and 1.2 for men. A full model based on population data
can be constructed and used in our static analysis. Table 3 summa-
rizes the two basic primitives that we expect from any distribution
supported by our analysis.

Estimating Probability of Assertions: For the example at hand,
our approach proceeds in three steps:

1. We first generate a finite, adequate set of paths S such that the
probability that a random execution yields a path in S is at least
c for some fixed c. Fixing c = 0.95, we use the procedure in
Algorithm 2 to yield 49 distinct paths.

2. Next, we analyze each of these paths and estimate intervals
for the path probability and the probability for each of the
assertions. For the example at hand, this requires less than 5
seconds of computational time for all paths and assertions.

3. We add up the path probability intervals for individual paths in
the set S to infer a bound of [0.98117, 0.98119] on the total
probability of paths in S. This means that the paths in S are
guaranteed to be encountered with probability at least 0.98117.
Therefore, the probability of drawing a path not in S is at most
0.01883. We will make use of this fact in the next step.

4. We add up path probability intervals for the assertion f1-f2 >=
0.1 to obtain a bound [0.12630, 0.126306]. However, since we
did not cover all paths in the program, this bound is not valid
for the whole program. To address this, we add 0.01883, an
upper bound on the probability of encountering a path outside
S. This yields a guaranteed bound of [0.126306, 0.145136] for
the probability that a given execution satisfies the assertion.
Likewise, the probability of the assertion f2-f1 >= 0.1 is
estimated at [0.08503, 0.10386].

5. We simulated the program for 1, 000, 000 iterations in Matlab
and estimated the probability of the assertions, taking nearly as
much time as our static analysis. The bounds obtained by our
analysis are confirmed.

Thus, our analysis provides bounds on the probability of obtaining
a 10% or larger deviation in the computed risk score due to errors
in the input data.

The rest of the paper is organized as follows: Section 3 presents
the syntax and semantics of probabilistic programs, the process
of bounding probabilities is explained in Section 4, Section 5 dis-
cusses our implementation and some experimental results on an in-
teresting set of benchmarks. Related work is discussed in Section 6.
We conclude by discussing future directions. Supplementary mate-
rials, including our prototype implementation and the benchmarks
used in this paper are available on-line from our project page 3.

3. Probabilistic Programs

We now consider imperative programs with constructs that can
generate random values according to a fixed set of distributions.
We then describe queries over probabilistic programs that seek
(conditional) probabilities of assertions.

Fig. 3 presents the key parts of the syntax for a probabilis-
tic programming language for specifying programs. Let X =
{x1, . . . , xk} be a set of program variables partitioned into subsets
Q and I of real and integer typed variables, respectively. The lan-
guage consists of assignments, conditional statements and loops.
The expressions in the language are restricted in two ways: (1) The
language is strongly typed: integer values cannot be converted to

3 Cf. http://systems.cs.colorado.edu/research/
cyberphysical/probabilistic-program-analysis/

program → declarations init {initSpec∗}stmt∗queries
stmt → assign | condStmt | while

initSpec → intVariable := intConst | realVariable := realConst
| intVariable ∼ intRandom
| realVariable ∼ realRandom

assign → intAssign | realAssign
condStmt → if boolExpr stmt+ else stmt+

while → while boolExpr stmt+

intAssign → intVariable := intExpr
realAssign → realVariable := realExpr

intExpr → intConst | intExpr ± intExpr
| intConst * intExpr | intRandom

realExpr → realConst | realExpr ± realExpr
| realConst * realExpr | realRandom

intRandom → uniformInt (intConst, intConst)
| Bernoulli (intConst, realConst)
| · · ·

realRandom → uniformReal (realConst, realConst)
| Gaussian (realConst, realConst)
| · · ·

boolExpr → boolExpr ∧ boolExpr
| intExpr relop intExpr | realExpr relop realExpr
| true | false

relop → < | > | ≥ | ≤ | =

intVariable → I
realVariable → Q

queries → estimateProbability boolExpr(given boolExpr)?

Figure 3. Partial syntax specification for imperative language for
modeling programs.

reals, or vice-versa. (2) The expressions involving integer and real
variables are affine.

Inbuilt Random Value Generators: The programs in our lan-
guage can call a set of inbuilt random number generators to produce
values according to known distributions, as summarized in Table 2.

Some distributions can be automatically implemented based
on other available ones. For instance, a coin flip with success
probability p ∈ [0, 1] can be simulated by a uniform random
variable r ∼ uniformReal(0, 1) and the conditional statement
involving the condition r ≤ p.

Initializer: The program has an initialization section that is
assumed to initialize every variable xi ∈ X . The initialization for
a variable xi can assign it to a concrete value ci, or to a randomly
distributed value by calling an in-built random number generator.

Queries: Queries in our language involve probabilities of Boolean
expressions over program variables, possibly conditioned on other
Boolean expressions. Table 1 summarizes the intended meaning of
each of the two types of queries. For simplicity of presentation,
we restrict queries to conjunctions of linear inequalities. However,
queries involving disjunctions ϕ1∨ϕ2 can be expressed by using a
special indicator variable x, which can be set to 1 iff either disjunct
is true. The transformed query evaluates the probability of x = 1.

3.1 Semantics of Probabilistic Programs

The operational semantics of the execution of assignments, if-then-
else, and while statements are quite standard. We focus on defining
the semantics of the initialization, the random number generators,
and the queries.

Let P be a probabilistic program written using the syntax in
Fig. 3. We associate a set of control locations, Loc = {ℓ0, . . . , ℓk},

http://systems.cs.colorado.edu/research/cyberphysical/probabilistic-program-analysis/
http://systems.cs.colorado.edu/research/cyberphysical/probabilistic-program-analysis/

Query Remark
estimateProbability(ϕ) The execution terminates AND variables at exit satisfy ϕ.
estimateProbability(ϕ given ψ) The execution terminates AND variables satisfy ϕ under the condition that they satisfy ψ.

Table 1. Queries on the final state of the program and their informal meaning.

Name Support Density Function

uniformReal(a,b) [a, b] ⊆ R
1

b−a
1[a,b], a < b.

uniformInt(a,b) [a, b] ⊆ Z

{

1
b−a

1[a,b] b > a

1 a = b
.

Binomial(n,p) [0, n] ⊆ Z
(

n
x

)

px(1− p)n−x ,
n ≥ 1, p ∈ [0, 1].

Gaussian(m,s) R
1√
2πs

e−
1
2

(x−m)
s

2

, s > 0

Table 2. Specification of the inbuilt random value generators. Note
that the function 1X(x) is the indicator function for the set X .

such that each statement in P is associated with a unique control
location. The set of labels define a control flow graph with nodes
corresponding to statement labels and edges corresponding to con-
ditional tests and assignments between program variables. Let ℓ0
be the location after the initializer and ℓF be the end of the pro-
gram, where queries may be posed. A state of the program is a
tuple 〈ℓj , ~xj〉 given by its current control location ℓj ∈ Loc and

valuations to the program variables ~xj ∈ R
|Q| × Z

|I|.
The initializer assigns each variable to a fixed constant value or

a random value sampled according to a known probability distribu-
tion. All random variables are assumed to be mutually independent.

Since our main goal is to define and evaluate queries, we define
the semantics operationally. Let Π = {π1, . . . , πN , . . .} be a set
of syntactic program paths that start from location ℓ0 and lead to
the final location ℓF . Each path πj is a finite sequence πj : ℓ0 →
ℓ1 → · · · → ℓl → ℓF , where each (ℓi, ℓi+1) is an edge in the
program’s CFG. Note that locations may repeat in πj .

Symbolic Execution: First, we define symbolic execution of paths
in the presence of random variables.

Definition 3.1 (Symbolic State). The symbolic state of a program
P is a tuple s : 〈ℓ, R, ψ, T 〉 wherein

1. ℓ denotes the current location.

2. R = {r1, . . . , rk} represents a set of random variables. This
includes random variables for the initial condition, and the
RHS of assignments involving calls to the random value gen-
erators (RVG). Fresh variables will be added to the set R, as
RVGs are encountered along a path.

3. ψ is an assertion involving the variables in R representing the
path condition. The syntax of the program ensures that ψ does
not involve any program variables and is a conjunction of linear
inequalities over R.

4. T is an affine transformation that maps each program variable
xi ∈ X to an affine expression involving variables in R.

Initial Symbolic State: The initial symbolic state s0 is given by
〈ℓ0, R0, true, T0〉 wherein R0 is an initial set of random variables
corresponding to each initialization of a program variable xj by a
call to an inbuilt random value generator. The transformation T0

associates each program variable xj with a constant c or a random
variable rj ∈ R depending on how xj is initialized.

Symbolic Step: We may now define the single-step execution of
the program along a path π : ℓ0 ℓF by means of symbolic states

1 state x: real;
2 state c: int;
3 init { x := uniformReal(-1,3);
4 c := 0; }
5 −− ℓ0: while (x <= 4) {
6 −− ℓ1: x := x + uniformReal(-1,3);
7 c := c + uniformInt(0,2);
8 }
9 −− ℓF : estimateProbability(c <= 4);

Figure 4. A simple probabilistic program with a probability esti-
mation query. We consider the assignments to variables x,c as a
simultaneous assignment.

s0 → s1 . . . → sF . To do so, we specify the update of a symbolic
state across an edge (ℓ,m) in the control-flow graph.

First, we handle any calls to random value generators on the
edge (ℓ,m). Each such call results in the addition of a fresh random
variable to the set R with appropriate type, set of support, and
probability density function. Table 2 lists the formal specification
of the random variable generated by various inbuilt random value
generators. Next, depending on the type of the edge being traversed,
we define the subsequent symbolic state:

1. The edge is labeled by a condition γ[X,R], wherein calls to
random value generators have been substituted by fresh random
variables introduced in R. In this case, we update the path
condition ψ to ψ′ : ψ ∧ γ[x1 7→ T (x1), . . . , xn 7→ T (xn)],
wherein each occurrence of the program variable xi in γ is
substituted by T (xi).

2. The edge is labeled by an assignment xi := e[X,R] involving
variables xj ∈ X and calls to random value generators replaced
by fresh random variables. In this case, we update the transfor-
mation T to yield a new transformation T ′ defined as

T
′(xj) =

{
T (xj) xj 6= xi
e[x1 7→ T (x1), . . . , xn 7→ T (xn)] otherwise

As a result, we have defined the transformation of the symbolic
state s : (ℓ, R, ψ, T) to a new state s′ : (m,R′, ψ′, T ′) involving
the addition of fresh random variables, updates to the path condi-
tion ψ or the transformation T .

Example 3.1. Fig. 4 shows a simple program P that updates a real
variable x and an integer c. Each step updates the value of x and
c by drawing a uniform random variable of appropriate type from
fixed ranges. Consider the path that iterates through the while loop
twice: π : ℓ0 → ℓ1 → ℓ0 → ℓ1 → ℓ0 → ℓF . The initial state
s0 : 〈ℓ0, R0, ψ0, T0〉 is given by

R0 : {r1 : uniformReal[−1, 3]}, ψ0 : true, T0 : (x 7→ r1, c 7→ 0)

We may verify that the state at the end of the path is given by
〈
ℓF ,

{
r1, r2, r3,
z1, z2

}
,

r1 ≤ 4 ∧ r1 + r2 ≤ 4
∧ r1 + r2 + r3 > 4

,

(
x : r1 + r2 + r3,
c : z1 + z2

)〉

The real-valued variables r1, r2, r3 are distributed as uniformReal(−1, 3),
while z1, z2 are distributed as uniformInt(0, 2).

Let π : ℓ0 ℓF be a finite path from initial to exit node and
s(π) : 〈ℓF , Rπ, ψπ, Tπ〉 be the final symbolic state obtained by
propagating the initial symbolic state s0 along the edges in π. A
program path π is feasible iff the path condition ψπ is satisfiable.

Lemma 3.1. For any feasible state s : (ℓ, R, ψ, T) encountered
during symbolic execution, the following properties hold:

1. ψ is a linear arithmetic assertion that can be decomposed into
ψ : ψQ ∧ ψI where ψQ involves real-valued random variables
from R while ψI involves integer-valued random variables.

2. T (xj) is an affine expression for each xj involving integer
random variables/constants if xj is integer typed and involving
real-valued random variables/constants if xj is real typed.

3.2 Semantics of Queries

We may use the notion of a symbolic state propagated across
program paths to define the semantics of queries. We first start with
unconditional queries that estimate the probability of an assertion
ϕ[X] over the program variables. We then extend our definition to
define the semantics of conditional probability queries.

To answer the queries, we start with the set of all feasible
program paths Π = {πj : ℓ0 ℓF | πj is feasible}, where |Π|
may be finite or countably infinite.

Probability of an Assertion: Consider a query that seeks the
probability of an assertion ϕ over the program variables. We denote
the outcome of the query as P(ϕ).

P(ϕ) =
∑

πj∈Π

Pπj (ϕ) ,

wherein Pπj (ϕ) denotes the probability of the event that the exe-
cution proceeds along the path πj , reaching the location ℓF and ϕ
is true in the resulting state at location ℓF .

We now formally define Pπj (ϕ) for πj ∈ Π. First, let sj :
〈ℓF , Rj , ψj , Tj〉 denote the symbolic state obtained by executing
along the path πj . The transformation Tj maps the program vari-
ables at ℓF to affine expressions over Rj , the random variables en-
countered along πj . Let ϕ′ : ϕ[X 7→ Tj(X)] denote the transfor-
mation of the program variables in ϕ using Tj .

We partitionRj into integer valued variables Zj and real valued
variables Qj . Next, we split ψj into an integer part ψI

j conjoined

with a real part ψ
Q
j . Similarly, we split the condition ϕ′ into ϕI and

ϕQ. The value Pπj (ϕ) can be defined in two parts:

1. For the real part, we define the integral over the sets of support
for the variables in Qj = {y1, . . . , yk}

pr :

∫

Q
1(ψQ

j ∧ ϕ
Q) p1(y1)p2(y2) · · · pk(yk)dy1 · · · dyk ,

wherein each yj has a density function pi(yi) and Q is the
joint region of support for the variables y1, . . . , yk taken as
the Cartesian product of their individual intervals of support.
The notation 1(ϕ) for an assertion ϕ stands for the indicator
function that maps to 1 wherever ϕ is satisfied and 0 elsewhere.

2. For the integer part, we define a summation over the sets of
support for variables in Zj = {z1, . . . , zl}

pz :
∑

z1∈I1

· · ·
∑

zl∈Il

1(ψI
j ∧ ϕI)i1(z1)i2(z2) · · · il(zl) ,

wherein Ij is the set of support for zj and ij(zj) is the mass
function for the distribution defining zj .

The overall value Pπj (ϕ) is the product pr × pz . Note that
the restrictions to the structure of the conditional statements and
queries guarantee that ψj and ϕ′ are defined by conjunctions of

linear inequalities. Therefore, the sets defined by them are a union
of polyhedra over the reals and Z-polyhedra over the integers. They
are measurable under the Lebesgue and discrete measures, so that
integrals and summations over them are well defined.

Example 3.2. Consider again the symbolic execution from Ex. 3.1.
The set of random variables is RF : {r1, r2, r3, z1, z2} with
the real-valued variables r1, r2, r3 which are all of the type
uniformReal(−1, 3). The integer variables z1, z2 are of the type
uniformInt(0, 2). We wish to find the probability Pπ(c ≤ 4) cor-
responding to the query estimateProbability(c ≤ 4). First, we
transform c ≤ 4 according to the transformation c 7→ z1 + z2 to
obtain z1 + z2 ≤ 4.

The overall probability reduces to finding the probability that
the following assertion holds

ψQ : r1 + r2 ≤ 4 ∧ r1 + r2 + r3 > 4 ∧ ϕI : z1 + z2 ≤ 4

given the distributions of r1, r2, r3, z1, z2. The constraint r1 ≤ 4 is
seen to be redundant given r1 ∈ [−1, 3] and therefore is dropped.

We split the computation into an integral over the real part
∫

[−1,3]3
1(r1 + r2 ≤ 4 ∧ r1 + r2 + r3 > 4)

(
1

4

)3

dr1dr2dr3 .

and an integer part
∑2

z1=0

∑2
z2=0 1(z1 + z2 ≤ 4)

(
1
3

)2
.

The second half of this paper describes how to restrict the
probability computation to a suitably chosen finite set of paths,
while bounding the influence of the unexplored paths and for each
path, place tight bounds on the summation and the integral above.
We also use Monte-Carlo simulations to estimate the actual values
to some degree of confidence.

Conditional Assertions: We now consider queries of the form
estimateProbability(ϕ1 given ϕ2) that seeks to estimate the prob-
ability of assertion ϕ1 under the condition that the state at the exit
satisfies ϕ2. However, unlike the previous case, it is possible that
the conditional probability may be ill defined. This is especially
the case when no execution reaches the end of the program or all
executions reaching the exit do not satisfy ϕ2.

It is well-known that

P(ϕ1|ϕ2) = P(ϕ1∧ϕ2)
Pϕ2

=
∑

π∈Π Pπ(ϕ1∧ϕ2)∑
π∈Π Pπ(ϕ2)

.

As a result, we can use the definitions established for computing the
probabilities of assertions unconditionally, and derive conditional
probabilities. In general, however, it is incorrect to split the condi-
tional probabilities as a whole as a summation of the conditional
probabilities measured along paths.

4. Computing Probabilities

In this section, we present techniques to estimate the probabilities
of assertions by sampling program paths. The probability of the
assertion (overall probability) is simply the summation of the prob-
abilities computed over individual paths. We consider three types
of estimation: (a) computing guaranteed lower and upper bounds
on the individual path probabilities and the overall probability of
the assertion and (b) approximation (Monte-Carlo simulation) of
path probabilities.

The overall path probability estimation proceeds in two steps:
(a) choose a finite set of paths in the program using a heuristic
strategy, so that with high confidence, the sum of the path proba-
bilities of the chosen paths exceeds a coverage bound c; and (b)
for each path chosen, estimate probability efficiently from the path
condition. Finally, we show how both parts can be tied together to
yield guaranteed whole program bounds and approximations.

Let us fix a program P and let ϕ be an assertion whose prob-
ability we wish to estimate. We assume a path coverage target

Data: Program P , assertion ϕ and coverage c ∈ (0, 1).
Result: Probability estimate p̂ and bounds [p, p].

/* 1. Heuristically elect a set of paths. */

C := PathSelect(P, c) ;

q := 0 ; /* lower bound on path probability */

(p, p) := (0, 0) ; /* path + assertion bounds */

p̂ := 0 ; /* Monte-Carlo Estimate */

/* 2. Iterate through paths in C */

for (π ∈ C) do

/* 2.1 Compute path condition and transformation
*/

(R,ψ, T) := SymbolicExecute(P, π);
/* 2.2 Transform condition ϕ */

ϕ′ := ϕ[X 7→ T (X)];

/* 2.3 Lower bound on path probability */

q := q +PolyhedronLowerBound(R,ψ) ;

/* 2.4 Bounds on path and assertion probability
*/

p := p+PolyhedronLowerBound(R,ψ ∧ ϕ′) ;

p := p+PolyhedronUpperBound(R,ψ ∧ ϕ′) ;

/* 2.5 Monte-Carlo estimation */

p̂ := p̂+MonteCarloSample(R,ψ ∧ ϕ′) ;

end

/* 3. Adjust upper bound estimate to account for

uncovered paths. */

p := p+ (1− q) ;

Algorithm 1: Algorithm for estimating the probability of an
assertion.

0 < c < 1 wherein c is assumed to be very close to 1 (say
c = 0.99). Let Π denote the set of all terminating, feasible pro-
gram paths that lead from the initial location ℓ0 to the final location
ℓF . Algorithm 1 shows the overall algorithm for providing bounds
and estimates of probabilities for an assertion. The idea is to com-
pute a finite set of paths C according to the coverage criterion and
compute the probabilities for the assertion ϕ to hold at the end of
each path. Next, an actual lower bound on the total probability of
all paths in C is also estimated and used to yield an upper bound
on the overall assertion probability.

4.1 Heuristic Path Selection Strategy

The first step is to select finitely many feasible, terminating pro-
gram paths C = {π1, . . . , πk}. The path probability of a path πj

is defined as Pπj (true). This denotes the probability that a ran-
domly chosen initial condition results in taking the path πj in the
first place. We write P(πj) to denote the path probability.

A subsetC ⊆ Π satisfies a coverage goal c iff
∑

π∈C P(π) ≥ c.
Satisfying any given coverage goal c is not guaranteed since it

is not known a priori if a finite subset C satisfies the coverage goal.
For instance, the program may fail to terminate with probability
pnon-terminating ≥ 1− c. However, most programs of interest do

terminate almost surely with probability 1.

Lemma 4.1. Let P be an almost surely terminating program. For
any coverage goal c ∈ (0, 1), there is a finite set of paths C such
that

∑
π∈C P(π) ≥ c.

Therefore, assuming that we are able to find enough paths C
whose cumulative path probability is known to be at least c, we may
proceed to estimate the probability of ϕ along paths π ∈ C. We
use the notation PC(ϕ) to denote the sum of path probabilities for
ϕ along all paths belonging to the set C: PC(ϕ) =

∑
π∈C Pπ(ϕ).

Theorem 4.1. For any assertion ϕ and set of paths C that satisfy
the coverage criterion c, PC(ϕ) ≤ P(ϕ) ≤ PC(ϕ) + (1− c).

Data: Program P , assertion ϕ, run length K > 0.
Result: Set of paths C such that a run of K continuously drawn

program paths belong to C .
count := 0 ;

C = { } ;

while count < K do

π := simulatePath(P) ;

if π 6∈ C then

count := 0 ;

C := C ∪ {π};

else

count := count+ 1 ;

end

end

Algorithm 2: Algorithm for collecting a set of paths C through
random simulation until a run ofK > 0 continuous paths already
belonging to C is obtained.

Proof. Since we have C ⊆ Π, the lower bound is immediate. For
the upper bound, we note that

P(ϕ) =
∑

π∈Π Pπ(ϕ) =
∑

π∈C Pπ(ϕ) +
∑

π 6∈C Pπ(ϕ)
≤

∑
π∈C Pπ(ϕ) +

∑
π 6∈C Pπ(true)

≤
∑

π∈C Pπ(ϕ) + (1− c)

Our approach uses a statistical approach based on simulation to
select an initial setC of paths such that the sum of path probabilities
of individual paths in C exceeds the coverage bound c with high
confidence. Our overall strategy proceeds in two steps:

1. Fix integer parameter K > 0. The criterion for choosing K is
described below.

2. The simple procedure shown in Algorithm 2 repeatedly runs the
program and records the syntactic path taken by each run. If the
current path was previously unseen, then it is added to the setC.
If K consecutive paths belong to C, the algorithm terminates.

The strategy outlined above obtains a set of program paths C
that is likely, but not guaranteed to satisfy the coverage criterion c
desired by the user. As such, this strategy is unsuitable for static
analysis. We employ it simply as a convenient heuristic to choose
an initial set of paths. Our algorithm then proceeds to use proba-
bility bounding to find guaranteed bounds on the actual coverage.
These bounds are then used to actually estimate coverage.

Selecting the Run Length: We now outline our heuristic strategy
for selecting a suitable run length K. Suppose C be a current set of
paths that is claimed to satisfy a coverage bound c. We wish to test
this claim quickly. This can be viewed as a statistical hypothesis
testing problem of choosing between two hypotheses:

H0 : P(C) ≥ c vs. H1 : P(C) < c .

In statistical testing terms, H0 is called the null hypothesis and
H1, the alternative. Our goal is to witness K > 0 successive
samples that belong to C, where K is set sufficiently large to
convince us of H0 as opposed to H1. This can be attempted using
the sequential probability ratio test (with a slight modification of
H0 and H1 to introduce an indifference region, see Younes and
Simmons [37] and references therein), or using a Bayesian factor
test following Jeffreys (see Jha et al. [17], and references therein).
Either approach gives rise to a formula that fixesK as a function of
c. For illustration, Jeffreys test with uniform prior yields a simple
formula

K ≥

⌈
− logB

log c

⌉
.

The factor B in the numerator is called the Bayes factor and can
be set to 100 to yield a answer with high confidence. For instance,
setting c = 0.95, we require K ≥ 90 to satisfy the Bayes factor
test at a confidence level given by B = 100.

However, this does not imply that we can be absolutely certain
(rather than just highly confident!) that the set of paths satisfy the
coverage guarantee. Therefore, we derive guaranteed lower bounds
on the coverage of the set of paths C collected. This lower bound
forms the basis of our bound estimations.

In our approach, the purpose of hypothesis testing is two-fold:
(a) It guarantees that all chosen paths in the set C are feasible.
As a result, our approach does not waste time exploring infeasible
paths. (b) Sampling the program guarantees that paths with high
probability are explored first before lower probability (tail) paths.
This can potentially result in fewer paths explored by our analysis.

Path Slicing: The use of dynamic path slicing techniques can
further enhance the efficiency of the procedure in Algorithm 2. The
paths in the set C are sliced with respect to the variables involved
in the query assertion ϕ being evaluated. The use of path slicing
ensures that fewer path fragments in C are generated and each path
fragment yields a simpler system of constraints over a smaller set
of random variables. Our approach uses the path slicing approach
originally proposed by Jhala et al. for predicate abstraction [18].

4.2 Computing Path Probabilities

We now describe techniques for computing the probability of an
assertion ϕ at the exit of a given path π. As described previously,
we perform a symbolic execution along π to obtain a symbolic
state at the and of the program 〈ℓF , R, ψ, T 〉. We then consider
the assertion ψ∧ϕ[X 7→ T (X)], involving random variables inR.

As a result, the computation of path probabilities reduces to
the problem of estimating the probability that a sample point from
R drawn according to the distribution of the individual variables
also satisfies ϕ. We present algorithms for (a) computing lower and
upper bounds; and (b) estimating the probability.

First, we observe that given the structure of the program, the
path condition is a conjunction of linear inequalities and is there-
fore a convex polyhedron over R. How do we then compute the
probability of drawing a sample point inside a given polyhedron?
First, we note that computing the exact probability is closely related
to the problem of computing the volume of a n-dimensional convex
polyhedron. This is known to be ♯P -hard and therefore computa-
tionally hard to solve precisely once the number of dimensions is
large [2]. We proceed by using bounding boxes that bounds the re-
gion of interest from inside as well as outside.

Let R = Q ∪ Z, where Q = {r1, . . . , rk} are the real-valued
random variables and Z = {z1, . . . , zl} are the integer valued

random variables. Let ψ : ψQ ∧ ψZ be a conjunction of linear
inequalities wherein ψQ involves the real-valued variables and ψZ

involves the integer valued variables. Each random variable rj (or
zk) is distributed according to a known probability distribution
function pj(rj) (or pk(zk)) over some set of support.

Our goal is to compute the probability that a randomly drawn
sample r̂ : (r̂1, . . . , r̂k, ẑ1, . . . , ẑl) satisfies the assertion ψ. We
split this problem into two parts one for the integer part and one for
the real part.

Random Variable Primitives: We ignore the details of the dis-
tributions, assuming instead that some primitive functions can be
computed: (a) given a range [a, b], we can compute its probability

Pri([a, b]) =
∫ b

a
pi(ri)dri; and (b) we can obtain samples r̂i,j for

j = 1, . . . , N that are distributed according to pi. The same as-
sumptions are held for the integer-valued random variables as well.
Table 3 summarizes the primitives.

sample () generate a (pseudo) random sample
standard Monte-Carlo methods [34].

probability (a,b) estimate probability mass of interval [a, b]
using cumulative distribution function (CDF).

Table 3. Primitives needed for each distribution type to support
probability and expectation estimation.

Input: Polyhedron ϕ[r1, . . . , rn], each ri ∼ Di.
Output: Interval bounds [p, p] and stratified MC sample

estimate p̂
queue := {ϕ} ;

(p, p, p̂) := (0, 0, 0);

while |queue| > 0 do
ξ := deque(queue) ;

if stopping criterion then
H := boxOverApproximation(ξ);
B := boxUnderApproximation(ξ);(
p
p

)
:=

(
p+ boxProbability(H)
p+ boxProbability(B)

)
;

p̂ := p̂+ p ∗ stratifiedSample(ξ,H);
else

(d, l) = selectDimension(R) ;

/* Perform Branch and Bound */

(ξ1, ξ2) := (ξ ∧ rd ≥ l), (ξ ∧ rd < l);
queue := enqueue(queue, {ξ1, ξ2}) ;

end

end

Algorithm 3: Basic algorithm to compute bounds on the proba-
bility of a polyhedron represented by a linear assertion ϕ.

Computing Probability of Hypercubes: A hypercube over Rk

can be written as the Cartesian product of intervals:

H : [a1, b1]× [a2, b2]× · · · × [ak, bk] .

To compute the probability of H, we use the available primitives di-
rectly. PQ(H) = Pr1([a1, b1])Pr2([a2, b2]) · · ·Prk ([ak, bk]). The
same calculation holds over the integers as well with minor mod-
ifications to ensure that aj , bj values are rounded to the nearest
integer above/below, respectively. For a disjoint union of N ≥ 0
hypercubes, we have PQ(H1 ⊎ · · · ⊎ HN) =

∑N

k=1 PQ(Hk).

4.3 Computing Bounds on Polyhedral Probabilities

We now address the issue of computing bounds on the probabil-
ity of a given polyhedral set specified by assertion ϕ over a set of
real-valued variables Q = {r1, . . . , rk} (or integer valued vari-
ables Z = {z1, . . . , zk}), where each ri is drawn from a known
distribution.

The basis of our approach is to over approximate JϕK by a union

of hypercubes H1 ∪ H2 ∪ · · · ∪ Hp and under approximate by a
union H1 ∪ · · · ∪Hs. The number of hypercubes p, s can be varied
to control the quality of the approximation. The overall idea is to
bound the probability of ϕ by computing the probability of the over
approximation and the under approximation.

Lemma 4.2. Let H ⊆ JϕK ⊆ H . It follows that PQ(H) ≤
PQ(ϕ) ≤ PQ(H).

We now consider how to obtain over approximations and under
approximations of polyhedral sets.

Figure 5. A worst-case scenario for over- and under approxima-
tion by a single hypercube (left) and a less pessimistic over- and
under approximation using many hypercubes.

Figure 6. Underapproximation by interior ray shooting.

Over approximation: Linear programming (LP) solvers can be
used to directly over approximate a given polyhedron by a single
hypercube. To obtain upper (lower) bounds for rj we solve the
LP: max(min) rj s.t. ϕ. The resulting hypercube given by the
product of intervals obtained for each rj over approximates the
region defined by ϕ. However, the hypercube may be a gross over
approximation of the original set, yielding quite pessimistic upper
bounds. Fig. 5 shows a polyhedron whose over approximation
by a single hypercube is quite pessimistic. However, if multiple
hypercubes were used, then the accuracy improves. As explained in
Algorithm 3, this is achieved by repeated splitting along a chosen
dimension and finding bounding boxes using LP solvers.

Under approximation: The goal is to find an under approxima-
tion of a polyhedron ϕ by a hypercube. As depicted in Fig. 5, there
is no best under approximation for a given polyhedron. This is un-
like the case for an over approximation, where LP solvers can yield
a single best bounding box.

Our approach is to find a sample point r̂ in the interior of the
polyhedron, treating it as a hypercube of volume zero where the
upper and lower bounds along each dimension are specified by
[r̂j , r̂j]. Next, we use a simple “ray-shooting” approach (Cf. Fig. 6)
to expand the current box along each dimension while satisfying the
constraints. This is carried out by iterating over the dimensions in
a fixed order. Upon termination, this process is guaranteed to yield
an under approximation. The size of the hypercube depends on the
sample point chosen. In practice, we choose multiple sample points
and choose the hypercube with the largest probability mass.

Z-polyhedra: As such, the approach presented so far extends
to Z-polyhedra with minor modifications. One modification is to
ensure that the bounds of each interval are rounded up/down to
account for the integer variables. Additionally, the use of an ILP
solver to derive the over approximation can yield tighter bounds.
On the other hand, since ILP is a harder problem than LP, using
LP solvers to over approximate the polyhedron yields safe upper
bounds. The computation of an inner approximation can also be
performed using ray shooting.

Monte-Carlo Estimation We have discussed techniques for
bounding the probability using boxes. We can extend this to find
unbiased estimators of the probability by sampling. This is per-
formed by drawing numerous samples ŝ1, . . . , ŝN according to the
underlying distributions for each variable in R for a large number
N and count the number Nϕ that satisfies ϕ. We simply compute

the ratio p̂ =
Nϕ

N
.

In some cases, it may take a prohibitively large number N of
samples to approximate p̂ to some given confidence. To circumvent

ID #var Description
EGFR-EPI 11 log egfr calc. using the ckd-epi formula.
ARTRIAL 15 Framingham artrial fibrillation risk calculation.

CORONARY 16 Framingham coronary risk calculation.

INVPEND 7+ Inverted pendulum controller with noise.
PACK 10+ Packing objects with varying weights.
VOL 8+ Filling a tank with fluid at uncertain rates.

ALIGN-1,2 6+ Pointing to a target with error feedback.
CART 7+ Steering a cart against disturbances.

Table 4. Benchmarks used in our evaluation with descriptions.
The benchmarks are available on-line at our project page, or upon
request. #var: number of input variables to the program. + indicates
random value generation inside loops.

this, it is possible to fold the computation of p̂ with the branch-and-
bound decomposition in Algorithm 3. Here, we over approximate
the polyhedron ϕ as the union of K disjoint hypercubes JϕK ⊆
H1 ⊎ · · · ⊎ HK . Next, we draw Nj samples from inside each Hj

and estimate the number of samples Nϕ,j inside Hj that satisfy ϕ.
This yields an estimate p̂j for Hj . The overall probability is given

by p̂ =
∑K

j=1 p̂jP(Hj). Note that P(Hj) is computed exactly and
efficiently. This scheme integrates the ideas of stratified sampling
and importance sampling, both of which are well-known variance
reduction techniques for Monte-Carlo sampling [34].

5. Implementation and Experiments

We now describe the implementation and evaluation of the ideas
presented thus far.

Implementation: Our prototype implementation accepts pro-
grams whose syntax is along the lines of Figure 3 in Section 3.
Our front-end simulates the program and collects the unique paths
observed until no new paths are seen for K consecutive iterations
(Algorithm 2). The value of K was chosen for c = 0.95 us-
ing a Bayes factor test with B = 100. This yields K = 90 for
achieving a coverage of at least 0.95 with a 99% confidence (un-
der a uniform prior). Symbolic execution is performed along the
collected paths, yielding the path conditions and transforming the
probabilistic queries into assertions involving the random variables
produced along the path. Finally, we implement the technique for
bounds estimation described in Algorithms 1 and 3. Rather than
use an expensive linear programming instance at each step of our
branch and bound algorithm, we use a cheaper interval constraint
propagation (ICP) to find bounding boxes efficiently [15]. Other
optimizations used in our implementation include the use of on-
the-fly Cartesian product decomposition of polyhedra and repeated
simplification with redundancy elimination.

Benchmark Programs: We evaluate our program over a set
of benchmarks described in Table 4. A detailed description of
the benchmarks used along with our latest implementation are
available on-line from our project page 4.

The first class of benchmarks consists of medical decision mak-
ing formulae including the eGFR calculation described in Section 2
(EGFR-EPI). We also include a common heart risk calculator and a
hypertension risk calculator that uses the results of the Framingham
heart study (ARTRIAL, CORONARY) 5. The results of this calcula-
tion are often taken into account if a patient is a candidate for drugs
such as Statins to prevent long term heart attack risk.

4 Cf. http://systems.cs.colorado.edu/research/
cyberphysical/probabilistic-program-analysis/
5 Cf. http://www.framinghamheartstudy.org/

http://systems.cs.colorado.edu/research/cyberphysical/probabilistic-program-analysis/
http://systems.cs.colorado.edu/research/cyberphysical/probabilistic-program-analysis/
http://www.framinghamheartstudy.org/

ID Ns Nu Ts, Tvc pmc [lb, ub]
EGFR EPI 563 45 0.1, 1.1 0.97803 [0.97803,0.97803]
ARTIRAL 19547 2520 15.6, 1095 0.94094 [0.82809,1.0]
CORONARY 7181 1239 3.9, 998.5 0.91992 [0.87239,1.0]
INVPEND 90 1 18.5, 0.1 1 [1,1]
PACK 8043 1010 4.6, 24.1 0.95052 [0.95051,0.95052]
ALIGN-1 4464 529 3.9, 25.7 0.90834 [0.90769,0.90846]
ALIGN-2 17892 1606 8.9 , 75.1 0.93110 [0.9304,0.9384]
VOL 121 9 3.6 , 1766 0.835 [0,1]

CART 5799 774 4.2 , 1612 0.94898 [0.0176,1]

Table 5. Experimental evaluation of initial adequate path explo-
ration strategy. Our coverage goal was c = 0.95 at a 95% confi-
dence level. Ns, Nu: number of simulated paths and unique paths,
respectively, Ts: simulation time in seconds, Tvc: total volume
computation time (branch-and-bound depth is set to 15), pmc:
monte-carlo probability estimate, [lb, ub]: coverage bounds.

The second class of benchmarks consist of programs that carry
out control tasks over physical artifacts. This includes models of
linear feedback control systems with noise such as the inverted
pendulum controller (INVPEND), a model of a robot that packs
objects of uncertain weights in a carton with the goal that the
overall weight of carton has to be within some tolerance (PACK),
a model of an actuator that fills a tank with fluid where the rate at
which the fluid flows can vary with the goal that the fluid waste has
to be minimized (VOL) and models of a manipulator that attempts
to point a laser at a desired stationary target, wherein alignments
can fail due to actuator uncertainties. Each failed attempt results in
a feedback that reveals the amount and direction of error that can be
used to design the displacement for the next attempt. We propose
two versions that differ in terms of the error distributions and the
feedback correction mechanisms (ALIGN-1, ALIGN-2).

Experimental Evaluation: Table 5 shows the performance of the
path selection and coverage estimation strategies. We note that for
most of our benchmarks, the selection of adequate paths required
less than 104 simulations and resulted in a smaller set of unique
paths that are potentially adequate. The time for symbolic execution
is a small fraction of the total time taken (Ts). The probability
bounds computation (Tvc) time dominates the overall analysis time.

The probability bounds computation performs well on many of
the examples, solving large problems with as many as 50 integer
and real variables. In many cases, the probability bounds obtained
are quite tight, indicating that the volume computation converged to
fairly precise bounds rapidly. There are two notable exceptions that
include the VOL and CART examples. The path conditions in these
examples produce highly skewed polyhedra that are the worst-cases
for a branch and bound approach. As a result, the bounds produced
are quite pessimistic. We are investigating the use of zonotope and
ellipsoidal based approximations that can handle such instances
effectively. Next, we observe that while 0.95 is the target coverage,
the coverage goal is not confirmed by the probability bounds in two
instances (ALIGN-1,2). However, the actual reported coverages in
these examples are fairly close to the target. Note that a failure
to achieve coverage goal is not a failure of the technique. Our
ability to deduce rigorous bounds on the path probability helps
ensure that the overall result can be made sound regardless of what
coverage we aim for. Furthermore, we may remedy the situation by
iteratively searching for more paths until the goals are satisfied.

Table 6 shows the results on many probabilistic queries over
the benchmarks. Once again, we report on the time taken for the
volume computation and the bounds on the queries. We note that
whenever path coverage returns a tight bound on the path proba-
bilities, the estimation of assertion probabilities also yields similar
tight bounds. The bounds provide non-trivial information about the

Query Tvc pmc [lb, ub]
ARTRIAL (2520 paths, c ≥ 0.82809)
score >= 10 252 0.13455 [0.12379,0.31685]
err >= 5 48 0.0003637 [0.000257,0.17754]
err <= 5 1076 0.94057 [0.82783,1]
CORONARY (1239 paths, c ≥ 0.87239)
err >= 5.0 22 0.000154 [0,0.12778]
err >= 7.0 17 0 [0,0.12778]
err >= 10.0 17 0 [0,0.12778]
err <= −5.0 16 0.0001 [0,0.12778]
err <= −7.0 17 0 [0,0.12778]
err <= −10.0 17 0 [0,0.12778]
ALIGN-1 (529 paths, c ≥ .90834)
attempts >= 10 17.0 0.00726 [.00722,0.09889]
attempts >= 6 24.7 0.11796 [0.11773,0.20997]
attempts >= 2 25.6 0.630489 [0.62991,0.72234]
err >= 12 11.1 0.001580 [0.001570,.093245]
err <= −12 10.5 0.001841 [0.001834,0.0935130]
err >= 5 21.7 0.084092 [0.084035,.175794]
err <= −5 21.8 0.084455 [0.084396,.176163]
PACK (1010 paths, c ≥ 0.95051)
count ≥ 5 24.3 0.95051 [0.95051 , 1.0]
count ≥ 6 24.3 0.40364 [0.40364 , 0.45312]
count ≥ 7 22.7 0.14192 [0.14192 , 0.19140]
count ≥ 10 21.0 0.000467 [0.000467 , 0.04995]
totalWeight ≥ 6 43.7 0.27269 [0.25223 , 0.3420]
totalWeight ≥ 5 34.9 0.67754 [0.61734 , 0.78481]
totalWeight ≥ 4 24.0 0.95051 [0.95051 , 1.0]
INVPEND (1 path, c = 1)
pAng <= 1 4.1 0.05138 [0,0.13653]
pAng >= −1 0.1 1 [1,1]
pAng <= 0.1 0.1 0 [0,0]
pAng >= −0.1 0.1 1 [1,1]

Table 6. Query processing results on the benchmark examples.
Table 5 explains the abbreviations used. Bounds in the table include
the over-estimation from uncovered paths inferred from the lower
bound on c reported in Table 5.

behavior of these programs and are quite hard to estimate by hand
even if the programs in question are small.

6. Discussion and Related Work

Reasoning about infinite-state probabilistic programs is considered
to be a hard problem. The execution of small and seemingly simple
programs that use standard uniform random number generators can
yield complex probability distributions over the program variables.
Arithmetic operations often give rise to highly correlated program
variables whose joint distributions cannot be factored as a product
of marginals. Conditional branches and loops can lead to discon-
tinuous distributions that cannot be described by simple probability
density functions, in general.

Therefore, analysis algorithms for probabilistic programs must
provide solutions to three basic questions: (a) Representing the pos-
sible intermediate distributions of variables, (b) Propagating the
chosen representation according to the program semantics, and (c)
Reasoning about the probabilities of assertions using the given in-
termediate distribution representation. Any viable solution for infi-
nite state probabilistic programs must restrict the set of programs
analyzed through some syntactic or semantic criteria, or deal with
information loss due to the abstraction of intermediate probability
distributions. We now compare our work against other approaches
for probabilistic program analysis using these criteria.

Probabilistic Abstract Interpretation Monniaux’s work con-
structs probabilistic analyses by annotating abstract domains such
as intervals, octagons and polyhedra with upper bounds on the

probability measure associated with the abstract objects [28]. How-
ever, the abstraction used by Monniaux associates a measure bound
for the entire object, without tracking how the overall measure is
distributed amongst the individual states present in the concretiza-
tion. This restriction makes the resulting analysis quite conserva-
tive. The bounds associated with abstract objects become coarser
during the course of analysis due to repeated meet and join oper-
ations. The domain of Mardziel et al [25] addresses this limitation
for the case of integer-valued program variables. Their approach
tracks upper and lower bounds for the object as a whole, as well
as bounds on the measure associated with each lattice point. This
allows the measure associated with an abstract object to be updated
due to meet, join and projection operations.

Our “domain” can be seen as a disjunction of symbolic states
(see Def. 3.1), and furthermore our analysis does not require meet
or join operations over distributions. Similarly, no upfront explicit
probabilistic bounds are attached to symbolic states during our
analysis, unlike the work of Monniaux or Mardziel et al [25, 28].
On the other hand, the probabilistic bounds on symbolic states are
computed “after the fact” (using probability bounds computation)
when the entire path has been analyzed. The sources of loss in
our approach include the probability bounds computation and the
unexplored program paths.

The approaches mentioned thus far, including ours, do not han-
dle non-linear operations. Furthermore, the high complexity of do-
main operations on convex polyhedra and approximate volume
bound computations can limit the size of programs that can be an-
alyzed. The work of Bouissou et al tackles these problems through
the domain of probabilistic affine forms [3] by combining tech-
niques from the AI community such as p-Boxes and Dempster-
Shafer structures [9, 35] with affine forms [7]. Their approach rep-
resents variables as affine expressions involving two types of ran-
dom variables (noise symbols): noise symbols that are correlated
with the other symbols in an arbitrary, unspecified manner, and
independent noise symbols. The concept of arbitrarily correlated
noise symbols is a key contribution that supports transfer functions
for nonlinear operations. However, at the time of writing, Bouissou
et al do not provide meet, join and widening operations. Therefore,
their technique is currently restricted to straight line probabilistic
programs without conditional tests. Our approach uses symbolic
states (see Def. 3.1) that are a special case of “constrained” proba-
bilistic affine forms with linear inequality constraints over the ran-
dom variables. However, our approach does not currently handle
random variables with arbitrary, unspecified correlations. Extend-
ing our approach to treat correlated noise symbols will form an
important part of our future work in this space.

Whereas the techniques described so far perform a forward
propagation of the distribution information, it is possible to use
backward abstract interpretation starting from an assertion whose
probability is to be established, and exploring its preconditions
backwards along the program paths. McIver and Morgan proposed
a backward abstract interpretation for probabilistic programs with
discrete Bernoulli random variables and demonic non-determinism.
Their approach uses “expectations” that are real-valued functions
of the program state [26] rather than assertions over the program
variable. Expectations can be seen as abstractions of distributions.
A notable aspect of their work lies in the use of quantitative loop in-
variants that are invariant expectations of loops in the program. The
automatic inference of such invariants was addressed by the recent
work of Katoen et al [20]. It is notable that very few approaches, in-
cluding ours, have sought to provide a complete treatment of loops.
It is common to assume that the loops terminate in all cases after
a fixed number of iterations. The combination of quantitative loop
invariants and the idea of using pre-/post-condition annotations are

notable in the work of McIver and Morgan (ibid). A combined ap-
proach will form an interesting topic for future work.

DiPierro et al proposed an entirely different approach to proba-
bilistic abstract interpretation that views concrete and abstract do-
mains as Hilbert spaces, with the abstraction operator as a non-
invertible linear operator [32]. Rather than defining the inverse in
terms of a set of concrete states, as is traditionally done in ab-
stract interpretation, the authors propose to use a Moore-Penrose
pseudo-inverse, which corresponds to a least squares approxima-
tion in finite dimensional vector spaces. This approach exposes an
interesting alternative to the traditional abstract interpretation ap-
proach to program analysis. However, a key problem lies in relating
the results of the analysis proposed by DiPierro et al that provide a
“close approximation” to the probability of a query assertion with
the “classical” approach that provides a guaranteed interval bound
enclosing the actual probability, such as the approach presented in
this paper.

The recent work of Cousot and Monerau provides a general
framework that encompasses a variety of probabilistic abstract in-
terpretation schemes [6]. Various techniques mentioned thus far,
including ours, can be seen as instances of this general frame-
work [3, 6, 25, 28].

The program analysis techniques mentioned thus far focus on
providing bounds on the probabilities of assertions for the program
as a whole. In many cases, the same questions may be asked of a
single path or a finite set of paths in the program. Recently, Gelden-
huys et al proposed the integration of symbolic execution with ex-
act model counting techniques to estimate the probabilities of vi-
olating assertions along individual paths of the program [13]. The
tool LattE was used to count lattice points, and thus estimate poly-
hedral volumes for the constraints obtained along each path [8].
Like Geldenhuys et al, the approach here also performs a sym-
bolic execution along a chosen set of program. However, our work
goes further to infer whole program bounds. Our work computes
probability bounds using a branch-and-bound technique, whereas
Geldenhuys et al use the solver LattE off the shelf for computing
precise probabilities. Finally, the approach of Geldenhuys et al is
restricted to discrete, uniform random variables that take on a finite
set of values.

An extension by Filieri et al., that is contemporaneous to our
work, performs probabilistic symbolic execution with a user-
specified cutoff on the path length [11]. Their approach uses the
concept of “confidence” to estimate the probability of the paths
that are cutoff prematurely. This is remarkably similar to the con-
cept “coverage bounds” used in our work. On one hand, the work
of Filieri et al. goes beyond ours to consider the effect of non-
deterministic schedulers on multi-threaded programs. On the other,
their work continues to use LattE as a lattice counting tool to es-
timate probabilities. Therefore, it is restricted to uniform distribu-
tions or discretized distributions over finite data domains. Integrat-
ing the contributions of Filieri et al. with our volume bounding
approach can help us move towards a technique that can support
integers along with reals and a wide variety of distributions without
requiring discretization.

Visser et al presented a set of optimizations that can be used
to reduce and simplify the constraints occurring in a program in a
canonical form, so that the answer from one volume computation
can be cached and reused [36]. Currently, we observe that differ-
ent program paths explored in our framework necessarily yield dif-
ferent constraints. However, the idea of caching and reusing can
be useful for intermediate polyhedra that are obtained during the
branch and bound volume computation process. We plan to explore
this idea as part of our future work.

A large volume of work has focused purely on verifying prop-
erties of finite state discrete and continuous time Markov chains

and Markov decision processes [23]. The tool PRISM integrates
many of these techniques, and has been used successfully in many
scientific and engineering applications as showcased on-line [24].
A key aspect of PRISM is the integration of symbolic techniques
for representing discrete distributions over a large but finite set of
states using extensions to decision diagrams called MTBDDs [25].
Recently, infinite state systems such as probabilistic timed and hy-
brid automata have been considered (Cf. [16, 22], for instance) in
the context of the model-checking approach embodied by PRISM.
However, these extensions remain inside the decidable sub-classes.
Our approach, on the other hand, considers Turing complete, infi-
nite state programs, incorporating a rich set of probability distribu-
tions. Therefore, we do not compute probabilities precisely, settling
for intervals that can be useful in many cases. Whereas work on
PRISM uses a very rich temporal specification language, our work
is currently restricted to (conditional) probabilities of assertions.

Sources of Probabilistic Programs: Probabilistic programs arise
in many forms of computation involving erroneous or noisy inputs.
These include risk analysis, medical decision making, data anal-
ysis [1], randomized algorithms [30], differential privacy mecha-
nisms [10], simulations of fundamental physical processes (Monte-
Carlo simulations) [12]. Certain loop optimizations such as loop
perforation depend on the use of randomization to trade off perfor-
mance against the precision of the computed results [27]. Program
smoothing is an approach to program synthesis proposed by Chaud-
huri et al [4]. It creates a probabilistic program that is a “smoothed
version” of the original program obtained by adding noise to the
inputs of the program.

Many programming language formalisms have been considered
for expressing probabilistic programs including IBAL, a declara-
tive language for specifying probabilistic models [31] probabilistic
scheme [33] and Church, an extension of probabilistic scheme [14].
These languages support a variety of functions such as simula-
tions, computing expectations, parameter estimations and comput-
ing marginal distributions based on Monte-Carlo simulations.

Probabilistic Program Semantics: The semantics of imperative
probabilistic programs was first studied in detail by Kozen. [21].
Significantly, Kozen provides two types of semantics that are math-
ematically equivalent but represent different views of the proba-
bilistic program. The first semantics is operational, wherein the
program’s execution is seen as essentially deterministic but gov-
erned by a countable set of random numbers generated up front.
The second semantics considered by Kozen uses measure theoretic
concepts to describe the program as a transformer of probability
measure starting from the initial measure which is transformed by
the execution of the program. This semantics has been the basis for
further work, notably by Monniaux [29] and recently by Cousot and
Monerau [6] on defining the semantics of programs that combine
probabilistic and non-deterministic behaviors. Our work here uses
a simple operational definition for the meaning of probabilistic pro-
grams. As a result, we lose the generality that can be achieved by
a fundamental measure theoretic treatment espoused by the sepa-
rate works of Kozen, Monniaux and Cousot. On the other hand, the
simplicity of our semantics ensures that we can make inferences
on individual program paths and combine them to reason about the
program as a whole. Doing so also avoids a loss in precision for
many of our benchmarks.

Abstract Monte-Carlo The abstract Monte-Carlo (AMC) ap-
proach of Monniaux reasons about programs that combine prob-
abilistic and non-deterministic choices [28]. Therein, calls to ran-
dom variables are dealt with using numerical sampling while the
non-deterministic choices are explored using abstract interpreta-
tion. The AMC approach cannot, in general, be used to guarantee
rigorous bounds on path probabilities, unlike our approach which

can derive such bounds. However, our approach does not incorpo-
rate non-determinism.

Statistical Model Checking Statistical Model Checking (SMC)
is yet another recent approach to verify probabilistic properties of
systems with high confidence by using techniques from the field of
statistical hypothesis testing [5, 37]. Using finitely many samples
from the program, their approach can provide high confidence
answers to questions about the probabilities of assertions. Whereas
the SMC approach seeks to estimate whether a given lower or upper
bound holds on the actual probability with high confidence, we
attempt to estimate guaranteed bounds.

Volume Computation Our technique integrates the path con-
straints with the problem of finding the probability of satisfaction
of constraints. This is known to be a ♯P -complete problem and
hence computationally hard (almost as hard as PSPACE-complete
problems) [2]. The tool LattE Machiato integrates many state of the
art techniques for counting lattice points in integer polyhedra and
volume computation for convex polyhedra over the reals [8]. As
mentioned earlier, the probabilistic symbolic execution approach
of Geldenhuys et al [13] and the probabilistic abstract interpreta-
tion proposed by Mardziel et al [25] use the tool LattE to count
the number of lattice points exactly. While LattE computes exact
counts/volumes, our approach focuses on finding interval bounds
for the probabilities. We observed two limitations of LattE that
make it less ideal for probabilistic program analysis tasks: (a) the
existing implementation does not handle non-uniform distributions
(over the reals or integers), and (b) exact volume determination for
real polyhedra is quite expensive, and often runs out of time/mem-
ory on the constraints that are obtained from our benchmarks. We
attempted to complete at least one of the benchmark examples in
our approach using LattE, but were unsuccessful due to timeouts
or more often out-of-memory errors. Our approach, which focuses
on finding interval bounds rather than exact computation, can han-
dle programs over reals as well as integers, and a wide variety of
distributions in addition to the uniform distribution.

7. Conclusion and Future Work

We have developed an analysis framework for probabilistic pro-
grams based on considering finitely many paths and estimating the
probability of the remainder. Our initial experimental results are
promising. However, we have also identified some challenges for
motivating further work. Our future work will focus on more effi-
cient polyhedral probability estimators using ellipsoidal and zono-
tope approximations, and the problem of synthesizing sketches,
complementing recent approaches to this problem [4].

Acknowledgments

We thank Prof. Michael Hicks and the anonymous reviewers for
their detailed comments. Sankaranarayanan and Chakarov ac-
knowledge support from the US National Science Foundation
(NSF) under award numbers CNS-0953941, CNS-1016994 and
CPS-1035845. All opinions expressed are those of the authors and
not necessarily of the NSF.

References

[1] C. C. Aggarwal and P. S. Yu. A survey of uncertain data algorithms and
applications. IEEE Transactions on Knowledge and Data Engineering

(TKDE), 21(5), May 2009.

[2] S. Arora and B. Barak. Computational Complexity: A Modern Ap-

proach. Cambridge University Press, 2009.

[3] O. Bouissou, E. Goubault, J. Goubault-Larrecq, and S. Putot. A
generalization of p-boxes to affine arithmetic. Computing, 2012.

[4] S. Chaudhuri and A. Solar-Lezama. Smoothing a program soundly
and robustly. In CAV, volume 6806 of LNCS, pages 277–292. Springer,
2011.

[5] E. Clarke, A. Donze, and A. Legay. Statistical model checking of
analog mixed-signal circuits with an application to a third order δ −
σ modulator. In Hardware and Software: Verification and Testing,
volume 5394/2009 of LNCS, pages 149–163, 2009.

[6] P. Cousot and M. Monerau. Probabilistic abstract interpretation. In
ESOP, volume 7211 of LNCS, pages 169–193. Springer, 2012.

[7] L. H. de Figueiredo and J. Stolfi. Self-validated numerical methods
and applications. In Brazilian Mathematics Colloquium monograph.
IMPA, Rio de Janeiro, Brazil, 1997. Cf. http://www.ic.unicamp.
br/~stolfi/EXPORT/papers/by-tag/fig-sto-97-iaaa.ps.
gz.

[8] J. De Loera, B. Dutra, M. Koeppe, S. Moreinis, G. Pinto, and J. Wu.
Software for Exact Integration of Polynomials over Polyhedra. ArXiv

e-prints, July 2011.

[9] A. Dempster. A generalization of bayesian inference. Journal of the

Royal Statistical Society, 30:205–247, 1968.

[10] C. Dwork. Differential privacy: A survey of results. In TAMC, volume
4978 of LNCS, pages 1–19. Springer, 2008.

[11] A. Filieri, C. S. Păsăreanu, and W. Visser. Reliability analysis in
symbolic pathfinder. In Intl. Conference on Software Engg. (ICSE),
2013. (To Appear, May 2013).

[12] D. Frenkel and B. Smit. Understanding Molecular Simulation: From

Algorithms to Applications. Academic Press, 2002.

[13] J. Geldenhuys, M. B. Dwyer, and W. Visser. Probabilistic symbolic
execution. In ISSTA, pages 166–176. ACM, 2012.

[14] N. D. Goodman, V. K. Mansinghka, D. M. Roy, K. Bonawitz, and J. B.
Tenenbaum. Church: a language for generative models. In Uncertainty

in Artificial Intelligence, pages 220–229, 2008.

[15] L. Granvilliers and F. Benhamou. Algorithm 852: Realpaver: an
interval solver using constraint satisfaction techniques. ACM Trans.

On Mathematical Software, 32(1):138–156, 2006.

[16] H. Hermanns, B. Wachter, and L. Zhang. Probabilistic CEGAR. In
CAV, volume 5123 of LNCS, pages 162–175. Springer, 2008.

[17] S. K. Jha, E. M. Clarke, C. J. Langmead, A. Legay, A. Platzer, and
P. Zuliani. A bayesian approach to model checking biological systems.
In CMSB, volume 5688 of Lecture Notes in Computer Science, pages
218–234. Springer, 2009.

[18] R. Jhala and R. Majumdar. Path slicing. In PLDI ’05, pages 38–47.
ACM, 2005.

[19] C. Jones, G. McQuillan, and et al. Serum creatinine levels in the US
population: Third national health and nutrition examination survey.
Am. J. Kidney Disease, 32(6):992–999, 1998.

[20] J.-P. Katoen, A. McIver, L. Meinicke, and C. Morgan. Linear-invariant
generation for probabilistic programs. In Static Analysis Symposium

(SAS), volume 6337 of LNCS, page 390406. Springer, 2010.

[21] D. Kozen. Semantics of probabilistic programs. J. Computer and

System Sciences, 22:328–350, 1981.

[22] M. Kwiatkowska, G. Norman, and D. Parker. A framework for verifi-
cation of software with time and probabilities. In FORMATS, volume
6246 of LNCS, pages 25–45. Springer, 2010.

[23] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification
of probabilistic real-time systems. In CAV, volume 6806 of LNCS,
pages 585–591. Springer, 2011.

[24] Kwiatkowska et al. The PRISM model checker. http://www.
prismmodelchecker.org.

[25] P. Mardziel, S. Magill, M. Hicks, and M. Srivatsa. Dynamic enforce-
ment of knowledge-based security policies. In Computer Security

Foundations Symposium (CSF), pages 114–128, JUN 2011.

[26] A. McIver and C. Morgan. Abstraction, Refinement and Proof for

Probabilistic Systems. Monographs in Computer Science. Springer,
2004.

[27] S. Misailovic, D. M. Roy, and M. C. Rinard. Probabilistically accurate
program transformations. In Static Analysis Symposium, volume 6887
of LNCS, pages 316–333. Springer, 2011.

[28] D. Monniaux. An abstract monte-carlo method for the analysis of
probabilistic programs. In POPL, pages 93–101. ACM, 2001.

[29] D. Monniaux. Abstract interpretation of programs as markov decision
processes. Sci. Comput. Program., 58(1-2):179–205, 2005.

[30] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge
University Press, 1995.

[31] A. Pfeffer. IBAL: a probabilistic rational programming language. In
In Proc. 17th IJCAI, pages 733–740. Morgan Kaufmann Publishers,
2001.

[32] A. D. Pierro, C. Hankin, and H. Wiklicky. Probabilistic λ-calculus
and quantitative program analysis. J. Logic and Computation, 15(2):
159–179, 2005.

[33] A. Radul. Report on the probabilistic language scheme. In DLS, pages
2–10. ACM, 2007.

[34] R. Y. Rubinstein and D. P. Kroese. Simulation and the Monte Carlo

Method. Wiley Series in Probability and Mathematical Statistics,
2008.

[35] G. Shafer. A Mathematical Theory of Evidence. Princeton University
Press, 1976.

[36] W. Visser, J. Geldenhuys, and M. B. Dwyer. Green: reducing, reusing
and recycling constraints in program analysis. In SIGSOFT FSE,
page 58. ACM, 2012.

[37] H. L. S. Younes and R. G. Simmons. Statistical probabilitistic model
checking with a focus on time-bounded properties. Information &

Computation, 204(9):1368–1409, 2006.

http://www.ic.unicamp.br/~stolfi/EXPORT/papers/by-tag/fig-sto-97-iaaa.ps.gz
http://www.ic.unicamp.br/~stolfi/EXPORT/papers/by-tag/fig-sto-97-iaaa.ps.gz
http://www.ic.unicamp.br/~stolfi/EXPORT/papers/by-tag/fig-sto-97-iaaa.ps.gz
http://www.prismmodelchecker.org
http://www.prismmodelchecker.org

	Introduction
	Approach At A Glance
	Probabilistic Programs
	Semantics of Probabilistic Programs
	Semantics of Queries

	Computing Probabilities
	Heuristic Path Selection Strategy
	Computing Path Probabilities
	Computing Bounds on Polyhedral Probabilities

	Implementation and Experiments
	Discussion and Related Work
	Conclusion and Future Work

