
Petri Net Analysis using Invariant Generation

Sriram Sankaranarayanan, Henny Sipma and Zohar Manna ?

Computer Science Department
Stanford University

Stanford, USA
{srirams,sipma,manna}@cs.stanford.edu

Abstract. Petri nets have been widely used to model and analyze con-
current systems. Their wide-spread use in this domain is, on one hand,
facilitated by their simplicity and expressiveness. On the other hand,
the analysis of Petri nets for questions like reachability, boundedness
and deadlock freedom can be surprisingly hard. In this paper, we model
Petri nets as transition systems. We exploit the special structure in these
transition systems to provide an exact and closed-form characterization
of all its inductive linear invariants. We then exploit this characterization
to provide an invariant generation technique that we demonstrate to be
efficient and powerful in practice. We compare our work with those in
the literature and discuss extensions.

1 Introduction

Petri nets provide a concise and expressive representation to model the behavior
of concurrent systems [Pet83,Mur89]. They have been widely used to model a
variety of systems including communication protocols and flexible manufacturing
systems. Due to their expressiveness, the analysis of Petri nets is hard. Because
of this many restricted classes of Petri nets have evolved to make analysis such
as reachability and checking for deadlock feasible for practical systems.

In this paper, we analyze the reachable markings of general Petri nets using
invariants. An invariant is an assertion that is true in all reachable states of a
program. Invariants have been well studied for the analysis of many types of pro-
grams [CH78,HP95]. Traditionally, invariants have been generated using abstract
interpretation [CC77]. This technique generates invariants iteratively, starting
from an initial estimate, and improving the estimate at each stage iteratively
until no more improvements can be made. The convergence of the algorithm is
not guaranteed, and often termination is imposed by a guessing operation called
widening [CH78,HP95,BJT99]. However, widening introduces inaccuracies in the
process, often resulting in invariants that are too weak to be useful. Some tools
like HyTech forgo widening in favor of stronger invariants [HH95].

? This research was supported in part by NSF grants CCR-01-21403, CCR-02-20134
and CCR-02-09237, by ARO grant DAAD19-01-1-0723, by ARPA/AF contracts
F33615-00-C-1693 and F33615-99-C-3014, and by NAVY/ONR contract N00014-
03-1-0939.

In [CSS03] we introduced a new method for invariant generation that uses a
direct method to compute linear invariants. The conditions for being an invari-
ant are encoded as a set of inequalities. The solution of this set of inequalities
then provides a generator for the coefficients of a family of invariants. For the
general case of transition systems, the set of inequalities is nonlinear (quadratic)
and hence computing the solution is, with current constraint-solving tools, im-
practical for all but the smallest systems. In this paper we specialize this method
for Petri nets and show that by exploiting the structure of transitions in gen-
eral Petri nets, the same set of conditions can be encoded in systems of linear
inequalities, thus making this technique applicable to much larger systems.

Our method of invariant generation is sound and complete for inductive lin-
ear inequalities. It marks an advance over earlier methods that use state equa-
tions [STC98]. Even though the state equations are useful in deducing different
structural properties of the Petri net, their use in the analysis of Petri nets is
made difficult partly because Petri nets are inherently non-deterministic and
many analyses using these equations do not handle the transition guards (which
are inequalities) exactly. In this paper, we use the theory of invariants of pro-
grams which were originally developed to prove partial and total correctness of
imperative programs to Petri nets in order to generate invariant assertions that
hold at all the reachable states of the net.

The rest of the paper is organized as follows: Section 2 defines transition
systems and Petri nets. In Section 3 we describe our technique for invariant
generation and in Section 4 we show how this technique can be specialized to
the case of Petri nets. Section 5 demonstrates the technique on a moderately sized
manufacturing system example reported in the literature. Section 6 discusses a
scheme to strengthen the invariants and Section 7 concludes the paper with some
observations regarding extensibility of our results.

2 Preliminaries

We first define transition systems and Petri nets, and then show that Petri nets
can be modeled as transition systems.

2.1 Transition Systems

Definition 1 (Transition Systems). [MP95] A Transition System Ψ : 〈V, T , Θ〉
has the following components:

– V : a set of state variables. In the rest of the paper we assume V = {x1, . . . , xn}
unless otherwise stated. A state s is an interpretation of V .

– T a set of transitions; each transition τ ∈ T is defined by a transition
relation ρτ (V, V ′), a first-order formula in which the unprimed variables refer
to the values in the current state and the primed variables refer to the values
in the next state;

– Θ: an assertion over V that represents the initial condition. The assertion
Θ is assumed to be satisfiable.

Definition 2 (Run). A sequence of states s0, s1, . . . is a run of a transition
system Ψ : 〈V, T , Θ〉 if (1) the initial state satisfies the initial condition, that
is, s0 |= Θ, and (2) for each pair of consecutive states si, si+1 there exists a
transition τ ∈ T that leads from si to si+1, that is, (si, si+1) |= ρτ

2.2 Linear Transition Systems

A linear inequality is a constraint a1x1 + . . .+ anxn + b ≤ 0 where a1, . . . , an, b,
are real-valued coefficients and x1, . . . , xn, are real-valued variables. A linear as-
sertion is a conjunction of linear inequalities. Given an assertion ψ, the assertion
ψ′ is obtained by replacing all the variables with their primed counterparts.

A linear transition system is a transition system in which all variables in V
are real-valued and all transition relations and the initial condition are linear
assertions.

For a transition τ in a linear transition system the transition relation ρτ can
be written as

a11x1 + · · · + a1nxn + a′11x
′
1 + · · · + a′1nx

′
n + b1 ≤ 0

...
...

...
...

am1x1 + · · · + amnxn + a′m1x
′
1 + · · · + a′mnx

′
n + bm ≤ 0

2.3 Petri Nets

Definition 3 (Petri nets and Markings). [Pet83] A Petri net structure is a
tuple 〈P, T, I, O〉, where P denotes a set of places, T denotes a set of transitions,
I : T 7→ P∞ is a multi-set of input places for each transition and O : T 7→ P∞

represents the multi-set of output places for each transition. A marking µ is an
assignment of a non-negative number of marks to each place in the Petri net
structure. A Petri net consists of a Petri net structure and an initial marking
µ0.

Informally, a Petri net starts from its initial marking and changes state by
firing transitions. A transition τ can fire whenever each input place p has a
given minimum number of tokens. The effect of firing a transition is to remove
the tokens from the input places and add them to the output places.

Definition 4 (Run). Let np(I(t)) denote the multiplicity of p in the set of
input places for transition t, and similar for the output places. A sequence of
markings, γ0, γ1, . . . is a run of a Petri net if (1) the first marking is equal to the
initial marking, that is, γ0 = µ0, and (2) for each pair of consecutive markings,
γi, γi+1, there exists a transition t ∈ T such that t is enabled, that is for each
place p ∈ P , γi(p) ≥ np(I(t)), and the transition leads to γi+1, that is, for each
place p ∈ P γi+1(p) = (γi(p)− np(I(t))) + np(O(t))

Definition 5 (Petri nets as Transition Systems). Given a Petri net P :
〈P, T, I, O, µ0〉, the transition system Ψ : 〈V, T , Θ〉 is called the associated tran-
sition system of P if

– for each p ∈ P there exists a variable xp in V ;
– for each t ∈ T there exists a transition τ ∈ T with transition relation

∧

p∈P

xp ≥ np(I(t)) ∧ x′p = (xp − np(I(t))) + np(O(t))

– Θ =
∧

p∈P (xp = µ0(p)). The initial marking may be parametric, that is, a
place or a set of places is initialized to contain an unknown number of tokens,
taken as a parameter. For each parameter v we introduce a new variable xv

and add the conjunct x′v = xv to the transition relation of each transition.

An assignment of integer values to x corresponds naturally to a marking and
vice-versa. Therefore we can refer to the reachable markings of a transition sys-
tem without any ambiguity. Thus, the conversion preserves reachable markings.

Theorem 1 (Safety of Conversion). Let Ψ be the associated transition sys-
tem of Petri Net P. Then a marking µ is reachable in P iff the corresponding
variable assignment is reachable in Ψ .

With each transition t of a Petri net P , we associate a guard vector gτ =
〈g1, . . . , gn〉, and an update vector uτ = 〈u1, . . . , un〉, where gi = ni(I(t)) is the
minimum number of tokens required to be present in place i for the transition
to fire, and ui = ni(O(t)) − ni(I(t)) is the change in the number of tokens in
place i when the transition fires.

From definition 5 it is easy to see that the corresponding transition in the
associated transition system can be written in terms of gτ and uτ as follows:

− x1 + g1 ≤ 0
− x2 + g2 ≤ 0

. . .
...

...
− xn + gn ≤ 0

− x1 + x′1 − u1 = 0
− x2 + x′2 − u2 = 0

. . .
. . .

...
...

− xn + xn − un = 0

Example 1. Figure 1 shows a Petri net with three places p1, p2, p3 and two tran-
sitions t1, t2. The input function is shown by arrows from places to transitions,
where the label in the arrow indicates the multiplicity of the input place for that
transition, with a default value of 1. For example I(t1) = {p1 : 1, p2 : 2, p3 : 2}.
Similarly, the output function is shown as arrows from the transitions to the
places. The initial marking (not shown in the figure) has one token in p1 and
two tokens in p2, p3.

The associated transition system of this Petri net is as follows:

p1

p2 p3

t1 t21

2

2

3
2

2

1

Fig. 1. Example Petri net with three locations and two transitions

V = {x1, x2, x3}
T = {τ1, τ2}

Θ ≡ (x1 = 1 ∧ x2 = 2 ∧ x3 = 2)

ρτ1
≡

x1 ≥ 1
x2 ≥ 2
x3 ≥ 2
x′1 − x1 = −1
x′2 − x2 = 1
x′3 − x3 = −2

ρτ2
≡

x1 ≥ 0
x2 ≥ 2
x3 ≥ 2
x′1 − x1 = 1
x′2 − x2 = −2
x′3 − x3 = −2

The u and g vectors for the two transitions are:

gτ1
: 〈1, 2, 2〉 uτ1

: 〈−1, 1,−2〉

gτ2
: 〈0, 2, 2〉 uτ2

: 〈1,−2,−2〉

2.4 Linear Constraints

As mentioned earlier, a linear assertion is a conjunction of constraints of the
form a1x1 + . . . + anxn + b ≤ 0. A linear inequality is said to be homogeneous
if b = 0 or inhomogeneous otherwise. Geometrically the set of points in R

n

satisfying a homogeneous assertion is a polyhedral cone. Inhomogeneous con-
straints correspond to polyhedra. Any polyhedron can be represented in terms
of its constraints or in terms of its generators (vertices, lines and rays). The
generators of a polyhedron (polyhedral cone) can be viewed as the set of basic
solutions to the constraints that define the polyhedron (cone). Every other solu-
tion to the constraints lies in the convex-hull (conic-hull) formed by these basic
solutions. For linear constraints operations like satisfiability, projection, inter-
section, convex union and computing generators can be carried out efficiently in
theory and practice. The details are available in any textbook or survey on this
topic [Sch86,BW01].

3 Invariant Generation

We will give a brief description of our method for invariant generation. A more
detailed presentation of our invariant generation technique may be found in our
earlier work [CSS03].

Definition 6 (Invariant). Given a transition system Ψ , an assertion φ is ‘ an
invariant for Ψ if it holds at each reachable state of Ψ .

Definition 7 (Inductive). An assertion φ is inductive for a transition system
Ψ : 〈V, T , Θ〉 iff (1. Initiation) φ holds initially, that is, Θ |= φ, and (2. Con-
secution) if φ holds prior to a transition being taken then it holds in any state
obtained after the transition is taken, that is, for all τ ∈ T , φ ∧ ρτ |= φ′.

It is easy to show that any inductive assertion is also an invariant assertion.

Traditional methods for invariant generation compute a super-set of the set
of reachable states by some form of symbolic forward propagation with widening
until a fixed point is reached. Our method, on the other hand, computes invari-
ants directly by encoding the two conditions for inductiveness, Initiation and
Consecution, as a set of constraints on the coefficients of the target invariant.
Any solution of this set of constraints corresponds to an inductive invariant.

The technique is based on Farkas’ Lemma [Sch86], which provides a sound
and complete method for reasoning with systems of linear inequalities.

Theorem 2 (Farkas’ Lemma). Consider the following system of linear in-
equalities over real-valued variables x1, . . . , xn,

S :

a11x1 + · · · + a1nxn + b1 ≤ 0
...

...
...

am1x1 + · · · + amnxn + bm ≤ 0

When S is satisfiable, it entails a given linear inequality

ψ : c1x1 + · · ·+ cnxn + d ≤ 0

if and only if there exist non-negative real numbers λ0, λ1, . . . , λm, such that

c1 =

m∑

i=1

λiai1, . . . , cn =

m∑

i=1

λiain, d = (

m∑

i=1

λibi)− λ0

Furthermore, S is unsatisfiable if and only if the inequality 1 ≤ 0 can be derived
as shown above.

In the rest of this paper we will represent applications of this lemma using
the following tabular notation:

λ0 −1 ≤ 0
λ1 a11x1 + · · · + a1nxn + b1 ≤ 0

S...
...

...
...

λm am1x1 + · · · + amnxn + bm ≤ 0
c1x1 + · · · + cnxn + d ≤ 0← ψ

1 ≤ 0← false

The antecedents are placed above the line and the consequences below. For each
column, the sum of the column entries above the line, with the appropriate
multipliers, must be equal to the entry below the line. If a row corresponds to
an inequality, the corresponding multiplier is required to be non-negative. This
requirement is dropped for rows corresponding to equalities.

Farkas’ Lemma can be used to generate inductive assertions for transition
systems. The key idea is to consider the co-efficients c1, . . . , cn, d of a target
invariant

ϕ : c1x1 + · · ·+ cnxn + d ≤ 0

as unknowns 1, and obtain constraints corresponding to initiation and consecu-
tion, using Farkas’ Lemma.

Initiation: The constraint for initiation Θ |= ϕ is:

λ0 − 1 ≤ 0
λ1 a11x1 + · · · + a1nxn + b1 ≤ 0

Θ...

...
...

...
λm am1x1 + · · · + amnxn + bm ≤ 0

c1x1 + · · · + cnxn + d ≤ 0← ϕ

where λ0, . . . , λm ≥ 0. Note that we omitted the 1 ≤ 0 case, because the initial
conditionΘ is assumed to be satisfiable. The set of solutions for ci (expressed as a
set of constraints on ci) are obtained by eliminating the (existentially quantified)
multipliers λ0, . . . , λm.

Example 2. Consider again the transition system in Example 1. The initiation
constraint for Θ : (x1 = 1 ∧ x2 = 2 ∧ x3 = 2) is represented by the following
table:

λ0 − 1 ≤ 0
λ1 x1 − 1 = 0
λ2 x2 − 2 = 0
λ3 x3 − 2 = 0

c1x1 + c2x2 + c3x3 + d ≤ 0

yielding the following constraints on the coefficients c1, c2, c3, and d:

c1 = λ1, c2 = λ2, c3 = λ3, λ0 ≥ 0
−λ0 − λ1 − 2λ2 − 2λ3 = d

1 Henceforth, as a convention, a, b with subscripts denote known real coefficients and
c, d with subscripts denote unknown real coefficients

On elimination of λ, we get ψΘ : c1 + 2c2 + 2c3 + d ≤ 0.

Consecution For each transition τ , the consecution condition, ϕ ∧ ρτ |= ϕ′, is
encoded as follows:

µ c1x1 + · · · + cnxn + d ≤ 0 ← ϕ
λ0 − 1 ≤ 0
λ1 a11x1 + · · · + a1nxn + a′11x

′
1 + · · · + a′1nx

′
n + b1 ≤ 0

ρπ...

...
...

...
...

...
λm am1x1 + · · · + amnxn + a′m1x

′
1 + · · · + a′mnx

′
n + bm ≤ 0

c1x
′
1 + · · · + cnx

′
n + d ≤ 0,← ϕ′

1 ≤ 0 ← disabled

where µ, λ0, . . . , λm ≥ 0. In this case we must include the row 1 ≤ 0 to account for
transitions that are never enabled, that is, transitions for which the conjunction
of the invariant and the transition relation is unsatisfiable.

The set of solutions for ci (expressed as a set of constraints on ci) are obtained
by eliminating the (existentially quantified) multipliers λ0, . . . , λm, µ.

Theorem 3. The invariant generation technique is sound and complete for in-
ductive linear inequalities.

Proof: This follows directly from Farkas’ Lemma and our constraint generation
technique.

The constraints for Consecution (the enabled case) are nonlinear (quadratic
to be precise), because the multiplier µ is multiplied with the, unknown, coeffi-
cients ci. As was noted in our earlier work [CSS03], this limits the practicality
of our method, because of the limitations of nonlinear constraint solving tools.
In the rest of the paper we show that for general Petri nets these nonlinear
constraints can be avoided by exploiting the structure of the transitions in the
associated transition system, thereby making this method practical for this class
of systems.

4 Analysis of Petri Nets

We now specialize the method presented in the previous section to transition
systems that are derived from Petri nets as described in Section 2. Since the
constraints derived from the initial condition and the disabled case of consecution
are always linear, our primary focus here is on the enabled case of consecution.

4.1 Deriving Constraints

Using the transition representation from Section 2, the constraints for the con-
secution condition can be written as

µ c1x1 + c2x2 + . . . + cnxn + d ≤ 0

λ0 − 1 ≤ 0

λg,1 − x1 + g1 ≤ 0
λg,2 − x2 + g2 ≤ 0

· · ·
. . .

...
λg,n − xn + gn ≤ 0

λu,1 − x1 + x′1 − u1 = 0
λu,2 − x2 + x′2 − u2 = 0

· · ·
. . .

. . .
...

λu,n − xn + x′n − un = 0

c1x
′
1 + c2x

′
2 + . . . + cnx

′
n + d ≤ 0

Recall that for each column the sum of the column entries above the line,
with the appropriate multiplier, must be equal to the entry below the line. Thus
we have

λu,1 = c1, λu,2 = c2, . . . , λun
= cn

that is,

λu = c

Furthermore

µc1 − λg,1 − λu,1 = 0, . . . , µcn − λg,n − λg,n = 0

or

µc− λg − λu = 0

which, with λu = c gives

(µ− 1)c = λg

and finally, for the constant column,

µd− λ0 + λg,1g1 + . . . λg,ngn − λu,1u1 − . . .− λu,nun = d

which can be rewritten as

(µ− 1)d+ gtλg − utλu = λ0

Thus the coefficients c of inequalities that satisfy the enabled case of the
consecution condition are characterized by

∃µ ≥ 0 ∃λ0 ≥ 0 ∃λg ≥ 0 ∃λu

λu = c

∧
(µ− 1)c = λg

∧
(µ− 1)d+ gtλg − utλu = λ0

Elimination of λ0, λg, and λu results in

∃µ ≥ 0

(µ− 1)c ≥ 0
∧

(µ− 1)(d+ gtc)− utc ≥ 0

To eliminate µ we consider four cases separately: µ = 1, 0 < µ < 1, µ = 0,
and µ > 1. Before we do so, we first introduce an auxiliary lemma that allows
simplification of the latter two cases.

Lemma 1 (Auxiliary). For α, x, y ∈ R:

∃α > 0 (αx + y ≥ 0) ≡ (x > 0 ∨ y > 0 ∨ (x = 0 ∧ y = 0))

Proof. (⇒) Assume (αx + y ≥ 0) holds for some α > 0. Then it cannot be the
case that both x and y are strictly negative. Hence either x > 0 or y > 0 or both
are zero.
(⇐) Assume (x > 0 ∨ y > 0 ∨ (x = 0 ∧ y = 0)). If x > 0 then choose
α > |y/x|. Alternatively, if y > 0 and x < 0, choose α < |y/x|. Both cases result
in (αx + y) ≥ 0. The remaining cases, that is y > 0, x = 0, and y = 0, x = 0 are
obvious.

Case µ = 1: For µ = 1 the constraints simplify to

utc ≤ 0

Case µ > 1: For µ > 1, taking α = µ− 1, the constraints can be rewritten as

∃α > 0

αc ≥ 0
∧

α(d+ gtc)− utc ≥ 0

Applying lemma 1 this simplifies to the disjunction

c ≥ 0 ∧

d+ gtc > 0
∨

utc < 0
∨

d+ gtc = 0 ∧ utc = 0

The second and third disjunct are subsumed by the condition utc ≤ 0 from
the first case, leaving only

c ≥ 0 ∧ d+ gtc > 0

Case µ = 0: For µ = 0 the constraints simplify to

c ≤ 0 ∧ d+ gtc + utc ≤ 0

Case 0 < µ < 1: For 0 < µ < 1 the constraints can be rewritten as

c ≤ 0 ∧ −(d+ gtc)−
1

1− µ
utc ≥ 0

or, taking α = µ
1−µ

,

c ≤ 0 ∧ −(d+ gtc + utc)− αutc ≥ 0

Applying Lemma 1 results in

c ≤ 0 ∧

d+ gtc + utc < 0
∨

utc < 0
∨

d+ gtc + utc = 0 ∧ utc = 0

Since the first and third disjunct are subsumed by the case µ = 0 and the
second disjunct is subsumed by the case µ = 1, this case does not add any
new constraints.

Thus, for the overall constraints for consecution of a transition τ we only
need to consider the cases µ = 0, µ = 1, and µ > 1 yielding the constraint

ψτ : (utc ≤ 0)
︸ ︷︷ ︸

∨

ψdec

(c ≥ 0 ∧ d+ gtc > 0)
︸ ︷︷ ︸

∨

ψdis

(c ≤ 0 ∧ (gt + ut)c + d ≤ 0)
︸ ︷︷ ︸

ψloc

Each of the disjuncts represents a specific relationship between the transition
and the invariant as described below.

4.2 Interpretation of the Constraints

Recall that the target invariant is xtc + d ≤ 0 and that Consecution requires
that the invariant be preserved by all transitions τ ∈ T , that is,

xtc + d ≤ 0 ∧ ρτ → x′tc + d ≤ 0

with
ρτ : x ≥ g ∧ x′ = x + u

The disjunct ψdec states that the effect of the update by the transition on
the invariant is to decrease the value of the invariant:

x′tc = (xt + ut)c = xtc + utc

Clearly, if the invariant holds before the transition is taken, that is xtc+ d ≤ 0,
then, with utc ≤ 0, also x′tc + d ≤ 0, and hence the invariant is preserved.

The disjunct ψdis states that the transition is always disabled. To see this,
consider an arbitrary state x such that x satisfies the invariant, that is

xtc + d ≤ 0

such that c, d satisfy ψdis. For a transition to be enabled at x we need x ≥ g,
or equivalently, x = g + m, for some m ≥ 0. But

(g + m)tc + d ≤ 0

and, with m ≥ 0 and c ≥ 0, we have mtc ≥ 0, and hence,

gtc + d ≤ 0

contradicting the condition ψdis : c ≥ 0 ∧ gtc + d > 0. Hence any invariant
satisfying ψdis states that the transition is disabled.

Finally, the disjunct ψloc states that the transition establishes the invariant by
itself, independent of its originating state. Invariants established by transitions
directly are also called local invariants. Again consider an arbitrary state x.
Again the transition is enabled on x if x = g + m for some m ≥ 0, and in that
case for the next state the following holds:

x′ = g + m + u

It follows that

ctx′ + d = ct(g + m + u) + d = ct(g + u) + ctm + d

Since c, d satisfy ψloc, we have c ≤ 0 and ct(g + u) + d ≤ 0. Since, m ≥ 0, we
have ctm ≤ 0. Applying this, we obtain

ctx′ + d = ct(g + u) + ctm + d ≤ ct(g + u) + d ≤ 0

establishing that the invariant is preserved.
It is interesting to note that if the transition is not decreasing with respect

to the invariant, that is ψdec does not hold, then we have either c ≥ 0 and
the transition is disabled or c ≤ 0 and the transition establishes the invariant
itself. Figures 2 and 3 provide an intuitive explanation for this seemingly strong
constraint on c. For each transition, the guard assertion is of the form x ≥ g,
where each entry in g is non-negative. Thus the guard is a rectangular set of
points in the positive orthant. Whenever the transition is taken from a marking
represented by x, the change in the marking is always the same, given by u.
We claim that any invariant increasing with respect to some transition cannot
intersect the guard region of the transition. Assume that such an intersection
occurs at point p then ctp + d = 0 holds, and upon taking the transition
ct(p + u) + d > 0 holds, thus violating consecution (see Figure 3). Hence, any
such invariant must either exclude the transition guard region, thus disabling
the transition or contain the transition guard.

�

Guard Region

(g1, g2)

u

Invariant Region

Fig. 2. The disabled case for consecution requires that the guard be excluded.

Example 3. The consecution constraint for transition τ1 of the running example
is ψτ1

= ψ1
dec ∨ ψ

1
dis ∨ ψ

1
loc with

ψ1
dec : −c1 + c2 − 2c3 ≤ 0

ψ1
dis : c ≥ 0 ∧

[
d+ c1 + 2c2 + 2c3 > 0

]

ψ1
loc : c ≤ 0 ∧

[
d+ 3c2 ≤ 0

]

4.3 Generating Invariants

Given a Petri net as a transition system and a target invariant ctx + d ≤ 0 the
constraints on c, d are the conjunction of the constraints generated by initiation
and those generated for consecution for each transition, that is

ψ : ψΘ ∧
∧

τ∈T

ψτ

The following theorem establishes soundness:

Theorem 4 (Soundness). Let ψ be the conjunction of the constraints corre-
sponding to the initiation and consecution requirements. For any solution 〈c, d〉 =
〈a, b〉 to ψ, we have that atx + b ≤ 0 is an inductive invariant.

Proof. This follows directly from the soundness of Farkas’ Lemma for the initi-
ation case and the derivation of each of the consecution constraints.

Theorem 5 (Completeness). Let ψ be the conjunction of the constraints for
initiation and consecution requirements. If atx+b ≤ 0 is an inductive invariant
then 〈c, d〉 = 〈a, b〉 is a solution to ψ.

Proof. This follows from the case analysis for the consecution constraints ob-
tained from Farkas’ Lemma.

�

Guard Region

(g1, g2)
u

Region I1

Region I2

Fig. 3. Inductive invariant ctx+d ≤ 0 cannot intersect the guard. I1 is a valid invariant
but I2 is not.

Thus to generate the invariants we compute the conjunction ψΘ∧
∧

τ∈T
(ψτ)

and put the expression in disjunctive normal form (dnf). Note that the disabled
case is ignored since it can be shown equivalent to ψdis. Each clause in the dnf

formula obtained is a conjunction of assertions involving the coefficients c. This
is geometrically a polyhedron. We compute the generators for each clause and
recast these as invariants. In particular, the ray a1c1 + . . .+ ancn + bd is recast
as the invariant a1x1 + . . . + anxn + b ≤ 0 and the line a1c1 + . . . + ancn + bd
corresponds to a1x1 + . . . + anxn + b = 0. Vertices are handled similarly to
rays. The final invariant is a conjunction of all the invariants obtained from the
generators of all the clauses in the dnf formula.

The bottle-neck has been observed to be the computation of the dnf formula.
Since each ψτ is a disjunction of the constraints corresponding to the three cases,
we can compute the dnf form by observing that if ψdis for a transition τ1 and
ψloc for a transition τ2 are present simultaneously in a clause, we immediately
have c = 0 which corresponds to the invariant 1 ≥ 0, called the trivial invariant.
Therefore, we avoid taking conjunctions simultaneously involving terms from
ψdis and ψloc. This is not surprising since we argued that for the disabled case
a potential invariant must exclude the guard and for the local case the guard
had to be contained. Thus requiring both to hold simultaneously even though
for different transitions results in the trivial invariant. This observation saves an
exponential factor in practice.

Another issue involved in the computation of the dnf result is the traversal.
The traversal may be breadth-first, wherein all the clauses are simultaneously
computed. Or else, we may compute each clause, one at a time, choosing one
disjunctive term from each ψτ . While the former is time efficient, it has been
observed to increase the size of the result to an extent where its handling be-
comes costly. The latter is space efficient while being costly in terms of time.

We advocate the breadth-first traversal for small systems and the depth-first
traversal for larger systems.

The time complexity of the analysis is exponential in the number of transi-
tions. However, the method seems to scale to medium sized programs in practice.
The space complexity is polynomial in the size of the Petri net.

Example 4. Continuing with the running example, the initiation constraints are
given by

ψΘ ≡ (d+ c1 + 2c2 + 2c3 ≤ 0)

For transition τ1 the constraint ψτ1
is given by

ψ1
dec : −c1 + c2 − 2c3 ≤ 0 ∨

ψ1
dis : c ≥ 0 ∧

[
d+ c1 + 2c2 + 2c3 > 0

]
∨

ψ1
loc : c ≤ 0 ∧

[
d+ 3c2 ≤ 0

]

For transition τ2 the constraint ψτ2
is given by

ψ2
dec : c1 − 2c2 − 2c3 ≤ 0 ∨

ψ2
dis : c ≥ 0 ∧

[
d+ 2c2 + 2c3 > 0

]
∨

ψ2
loc : c ≤ 0 ∧

[
d+ c1 ≤ 0

]

The conjunction ψΘ ∧ ψτ1
∧ ψτ2

when set in dnf form yields the following
non-trivial clauses:

−c1 + c2 − 2c3 ≤ 0 ∧
c1 − 2c2 − 2c3 ≤ 0 ∧
d+ c1 + 2c2 + 2c3 ≤ 0

 ∨

c1, c2, c3 ≤ 0 ∧
−c1 + c2 − 2c3 ≤ 0 ∧
d+ c1 ≤ 0 ∧
d+ c1 + 2c2 + 2c3 ≤ 0

∨

c1, c2, c3 ≤ 0 ∧
d+ 3c2 ≤ 0 ∧
c1 − 2c2 − 2c3 ≤ 0 ∧
d+ c1 + 2c2 + 2c3 ≤ 0

The first clause yields the following generators and the corresponding invari-
ants:

line 〈6, 4,−1,−12〉 → 6x1 + 4x2 − x3 − 12 = 0
ray 〈0,−1, 1, 0〉 → −x2 + x3 ≤ 0
ray 〈−2, 0, 1, 0〉 → −2x1 + x3 ≤ 0

Similarly the remaining clauses can be handled and the invariants obtained are

6x1 − x3 + 4x2 − 12 = 0
3x1 + 2x2 − 6 ≥ 0
2x1 + x2 − 4 ≤ 0
x1 + x2 − 3 ≤ 0

This is a triangle with vertices 〈2, 0, 0〉 , 〈1, 2, 2〉 , 〈0, 3, 0〉, which are the three
reachable states of the system.

x1 x2 x3

x5

x4

x6

x7

x8

x9

x11

x14

x10

x15

x12

x13

x17

x18

x16

x19

x20

x21

x22

x23

x24

x25

Fig. 4. Example Petri net for a manufacturing system

5 Application

We demonstrate the power of our approach by applying it to a manufacturing
system first presented in [ZDD92] and later analyzed in [CX97,FO97,BF99]. The
Petri net, shown in Figure 4, models an automated manufacturing system with
four machines, M1 - M4 whose availability is modeled by x5, x6, x17, and x18,
respectively, two robots, R1 and R2, whose availability is modeled by x12 and
x13, and two buffers, modeled by x10 and x15. Raw material is introduced in
place x1, whose initial marking is parametric, indicating that it may initially
contain any positive number of tokens. The raw material passes through two
assembly lines, where it is processed by the machines and transported by the
robots, and ends up in the delivery area, modeled by x25. The initial marking of
the system is

x1 = p
x2 = x4 = x7 = x12 = x13 = x16 = x19 = x24 = 1
x10 = x15 = 3

and all other places contain zero tokens.

Using a prototype implementation based on the Polyhedral Library POLKA [HP95]
invariants were generated for this system, where we only considered the disjuncts
φdec and φloc and disregarded φdis to limit the number of invariants generated.
This resulted in around 1900 invariants, all but 20 of which were of the form

xi1 + xi2 + · · ·+ xik
≥ 1

which correspond to initially marked traps [STC98]. The remaining invariants
included the following structural invariants

ψ1 : x2 + x3 = 1
ψ2 : x4 + x5 = 1
ψ3 : x6 + x7 = 1
ψ4 : x8 + x12 + x20 = 1
ψ5 : x9 + x13 + x21 + x23 + x24 = 1
ψ6 : x10 + x11 = 3
ψ7 : x14 + x15 = 3
ψ8 : x16 + x17 = 1
ψ9 : x18 + x19 = 1
ψ10 : x22 + x23 + x24 + x25 ≤ 1

and the invariants
χ1 : x1 ≤ p
χ2 : x1 ≥ p− 12

which together provide a better insight in the structure of the system. For exam-
ple, from ψ4 and ψ5 it can be seen that the responsibilities of the two robots R1

(x12) and R2 (x13) are not symmetric. While R1 is used to transport material
from M1 to M3 and from M3 to the packaging area, robot R2 has, in addition
to the corresponding tasks on the other assembly line, also the responsibility to
deliver the combined product from the two assembly lines to the output area
(x25). From the invariants it can also be inferred that the system is bounded.
The invariant generation took around 4 minutes.

The invariants generated were also used to prove deadlock freedom for this
system for 1 ≤ p ≤ 8 by proving that the conjunction of the invariants implies
the disjunction of enabling conditions of all transitions, thus ensuring that for
every reachable state at least one transition is enabled. For p = 9 we were able to
isolate four possible deadlock states. Note however, that the presence of deadlock
cannot be verified directly over abstractions in general.

Deadlock freedom had been proven before. In [ZDD92] the developers of this
manufacturing system show that the system is live for 2 ≤ p ≤ 4. In [CX97]
it is shown that the system is deadlock free for 1 ≤ p ≤ 8 using a mixed
integer programming approach; it is also shown that the system is not dead-
lock free for p > 8 by exhibiting a transition sequence that leads to dead-
lock. In [BF99] a transformational approach is used to compute the invariants
through hytech [HH95]. The analysis is done by an exact reach set computation
using Presburger Arithmetic in a previous work by Fribourg and Olsen [FO97].
This analysis reported a running time of nearly 2 hours whereas, in [BF99] the
running time is improved to under 2 minutes.

6 Strengthening Scheme

Having computed the invariants at a previous stage, we wish to use them as
strengthening assertions to obtain new and potentially stronger invariants. Note

that our approach is complete only for linear inequalities that are inductive
invariants by themselves. This, however, does not preclude the existence of linear
invariants that need other previously established invariants as strengthening
assertions. For a general presentation of strengthening assertions, we refer the
reader to a a standard text on the topic [MP95].

Consider the case when certain transitions are shown to be disabled by the
generated invariants. In such a case, removing these transitions, and recomputing
the invariants will necessarily yield stronger (if not strictly stronger) invariants.
This is because the invariants formed by the constraints from the disabled case,
were shown to preclude those formed by the constraints from the local case.
The removal of disabled transitions may be argued to be a rudimentary form
of strengthening. In its general form, strengthening the invariants generated
requires using the previously computed invariants as additional guard assertions
to each transition.

Example 5. We augment the running example 1 with a new transition τ3 with
transition relation

ρτ3
: x1 ≥ 3 ∧ x′1 = x1 + 3 ∧ x′2 = x2 + 2 ∧ x′3 = x3 + 3 .

It can be seen by generating the reachability tree that τ3 is never taken. The
invariants generated on the first run are

2x1 + x2 ≤ 4, x1 + x2 ≤ 3, x3 ≥ 0, 6x1 + 4x2 − x3 ≥ 12

which are strictly weaker than the invariants generated before for the same sys-
tem without τ3. For example, the conjunction of these invariants admits the
(unreachable) state 〈1, 2, 0〉 which the previous invariants did not include. How-
ever these invariants naturally imply that x1 ≤ 2, which allows us to remove the
disabled transition, giving us back the original invariants from example 4.

There are two approaches to the problem of strengthening invariants. The
first approach uses the three cases and their interpretations in terms of Petri net
behavior using the machinery already in place. The second restates the prob-
lem by diluting the strong assumptions placed on the structure of the transfer
matrices and recomputing the closed form solution. Unfortunately, we have not
found a convenient closed form solution for the latter approach, and hence we
resort to the former approach.

Assume that ϕ0 is a previously computed set of inductive assertions that are
added to the guard of a Petri net transition τ . Furthermore, we assume that
transitions whose guards have been shown to be disabled with respect to ϕ0 are
removed from the transition system. A re-interpretation of the three cases for
consecution, taking the assertion ϕ0 into account, leads to

– For the decreasing case, the change in the value of the expression c1x1 +
· · ·+ cnxn + d remains the same, regardless of the strengthening. Thus, the
final constraint for this case remains

ψdec : ctu ≤ 0

– For the disabled case we encode the incompatibility of the guard and the
invariant using Farkas’ lemma,

(ϕ0 ∧ x ≥ g ∧ c1x1 + · · ·+ cnxn + d ≤ 0) |= (1 ≤ 0)

– For the local case we use again Farkas’ Lemma, now to encode that the
transition guard must imply that the value of the invariant expression after
the transition being taken must be negative. This yields,

ϕ0 ∧ (x ≥ g) |= (c1x1 + · · ·+ cnxn + ctg + d ≤ 0)

All three cases result in linear constraints in c, λ. After eliminating the
multipliers, the resulting constraints are linear in the coefficients c. Note that if
ϕ0 is the trivial invariant true, the constraints obtained are the same as those
derived in the previous sections. Although we do not have a proof of completeness
of these constraints, we conjecture that completeness can be shown by direct
reasoning on the structure of Petri net transitions.

7 Conclusion

We have presented a general invariant generation technique for Petri nets using
Farkas’ Lemma to generate invariants on the unknown coefficients of an invari-
ant to guarantee initiation and consecution conditions. Note that we have not
restricted the formation of Petri nets with parametric initial markings and those
with inhibitor arcs. Inhibitor arcs can also be incorporated into the framework
of the transition system by adding a constraint xp = 0 to a transition inhib-
ited by place p. The invariant generation technique can handle these arcs with
a few changes. The closed-form solution of these constraints was derived for the
special case of Petri nets leading to an efficient invariant generation for general
Petri nets that compares favourably with more exact and expensive techniques
over the application examples presented. It is computationally inexpensive when
compared to the other general analysis techniques.

The main drawbacks of the technique stem from the relative weakness of the
invariant domain, which can lead to inexact results. However, we can use the
geometric intuition behind the invariants to generate strengthenings that can
alleviate this problem to some extent. It is as yet unclear if the technique can
be extended to other types of Petri nets like colored and timed Petri nets. The
technique as such does not exploit restricted classes of Petri nets that have been
analyzed rigorously by the Petri net community [STC98,Mur89]. We believe that
the analysis of general Petri nets and nets with inhibitors can be made much
more tractable by combining many of these time-saving observations along with
the use of more efficient linear constraint solving techniques.

References

[BF99] B. Bérard and L. Fribourg. Reachability analysis of (timed) petri nets using
real arithmetic. In Proc. Intl. Conf. Concurrency Theory (CONCUR’99),
volume 1664 of LNCS, 1999.

[BJT99] Frederic Besson, Thomas Jensen, and Jean-Pierre Talpin. Polyhedral analysis
of synchronous languages. In Static Analysis Symposium, SAS’99, Lecture
Notes in Computer Science 1694, pages 51–69, 1999.

[BW01] A. Bockmayr and V. Weispfenning. Solving numerical constraints. In
A. Robinson and A. Voronkov, editors, Handbook of Automated Reasoning,
volume I, chapter 12, pages 751–842. Elsevier Science, 2001.

[CC77] Patrick Cousot and Rhadia Cousot. Abstract Interpretation: A unified lattice
model for static analysis of programs by construction or approximation of
fixpoints. In ACM Principles of Programming Languages, pages 238–252,
1977.

[CH78] Patrick Cousot and Nicholas Halbwachs. Automatic discovery of linear re-
straints among the variables of a program. In ACM Principles of Programming
Languages, pages 84–97, January 1978.

[CSS03] Michael Colón, Sriram Sankaranarayanan, and Henny Sipma. Linear invariant
generation using non-linear constraint solving. In Computer Aided Verification
(CAV), Lecture Notes in Computer Science 2725, pages 420–432, 2003.

[CX97] Feng Chu and Xiao-Lan Xie. Deadlock analysis of petri nets using siphons and
mathematical programming. IEEE Transactions on Robotics and Automation,
13(6):793–804, December 1997.

[FO97] Laurent Fribourg and Hans Olsén. Proving safety properties of infinite state
systems by compilation into presburger arithmetic. In Proceedings of CON-
CUR’97, LNCS, volume 1243, pages 213–227, Germany, Berlin, 1997.

[HH95] Thomas A. Henzinger and Pei-Hsin Ho. HyTech: The Cornell hybrid tech-
nology tool. In Hybrid Systems II, volume 999 of LNCS, pages 265–293, 1995.

[HP95] Nicholas Halbwachs and Yann-Erick Proy. POLyhedra desK cAlculator
(POLKA). VERIMAG, Montbonnot, France, September 1995.

[MP95] Zohar Manna and Amir Pnueli. Temporal Verification of Reactive Systems:
Safety. Springer-Verlag, New York, 1995.

[Mur89] Tadao Murata. Petri nets: Properties, analysis and applications. Proceedings
of the IEEE, 77(4):541–580, April 1989.

[Pet83] James Peterson. Petri Net Theory and the Modelling of Systems. Prentice
Hall, 1983.

[Sch86] Alexander Schrijver. Theory of Linear and Integer Programming. Wiley, 1986.
[STC98] Manuel Silva, Enrique Teruel, and Jos Manuel Colom. Linear algebraic and

linear programming techniques for the analysis of place/transition net sys-
tems. Lectures on Petri Nets I: Basic Models, LNCS, 1491:309–373, 1998.

[ZDD92] MengChu Zhou, Frank DiCesare, and Alan A. Desrochers. A hybrid method-
ology for synthesis of petri net models for manufacturing systems. IEEE
Transactions on Robotics and Automation, 8(3):350–361, June 1992.

