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Abstract: We investigate linear programming relaxations to synthesize Lyapunov functions that es-
tablish the stability of a given system over a bounded region. In particular, we attempt to discover
functions that are more readily useful inside symbolic verification tools for proving the correctness of
control systems. Our approach searches for a Lyapunov function, given a parametric form with unknown
coefficients, by constructing a system of linear inequality constraints over the unknown parameters. We
examine two complementary ideas for the linear programming relaxation, including interval evaluation
of the polynomial form and “Handelman representations” for positive polynomials over polyhedral sets.
Our approach is implemented as part of a branch-and-relax scheme for discovering Lyapunov functions.
We evaluate our approach using a prototype implementation, comparing it with techniques based
on Sum-of-Squares (SOS) programming. A comparison with SOSTOOLS is carried out over a set of
benchmarks gathered from the related work. The evaluation suggests that our approach using Simplex is
generally fast, and discovers Lyapunov functions that are simpler and easy to check. They are suitable
for use inside symbolic formal verification tools for reasoning about continuous systems.
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1. INTRODUCTION

In this paper, we examine linear programming relaxations for
discovering Lyapunov functions for polynomial systems to
prove asymptotic stability over a given region U . The search
for Lyapunov functions typically involves the use of a tem-
plate form V (x, c) over the state variables x and parameters
c. The Lyapunov conditions are encoded as constraints on
the unknown parameters c, and solved to obtain Lyapunov
functions. Essential primitives include (a) deciding whether a
given polynomial p(x) is positive (semi-) definite over U and
(b) deriving constraints on the parameters c that ensure that
V (x, c) is non-negative over U . In general, there are many ap-
proaches to check and encode polynomial positivity. These in-
clude exact approaches based on quantifier elimination over the
reals (Collins [1975], Collins and Hong [1991], Dolzmann and
Sturm [1997], Tarski [1951]), Sum-Of-Squares programming
(Shor [1987] and Parrilo [2000]) and linear programming re-
laxations using interval evaluation (Ratschan and She [2010]),
and the Handelman representations (Handelman [1988]), con-
sidered here.

The Sum-Of-Squares (SOS) programming approach allows us
to decide if a polynomial is positive (semi-) definite by express-
ing it as a sum of squares of polynomials. This is achieved
by formulating and solving a semi-definite program (SDP).
The approach extends naturally to parameterized polynomial
forms, and can be used to carry out Lyapunov function syn-
thesis (Papachristodoulou and Prajna [2002], Tibken [2000],
Topcu et al. [2007]). The implementation of these ideas in
SOSTOOLS (Prajna et al. [2004]) has spurred further progress
in this direction. However, SOS programming primarily relies

on numerical interior-point SDP solvers that use floating point
arithmetic (Boyd and Vandenberghe [2004]). As a result, a Lya-
punov function discovered by the approach may often be invalid
due to numerical errors. Further heuristics are often needed to
post-process the results to ensure their validity. Thus, in the
context of finding proofs of stability that are useful for formal
verification, techniques based on SOS can be problematic.

Our approach uses a linear programming relaxation of the
problem that can be solved exactly using algorithms such as
Simplex (Chvátal [1983]). The relaxation uses combination of
interval evaluation of polynomials, and so-called Handelman
representations to ensure the non-negativity of a polynomial
form over a region. Interval arithmetic techniques (Moore et al.
[2009]) evaluate polynomials over intervals to provide guaran-
teed bounds on their range. Ratschan & She (Ratschan and She
[2010]) use interval arithmetic to achieve a Linear Program-
ming formulation of the conditions for a Lyapunov-like func-
tion that establishes asymptotic convergence to a set of states.
However, the interval evaluation used is quite conservative, and
often fails to derive Lyapunov functions. This is remedied by
applying interval evaluation approaches in a branch-and-relax
scheme that repeatedly subdivides the state-space. In this paper,
we consider Handelman representations to complement interval
evaluation. Our approach draws inspiration from a well known
(but not quite well used) idea (Datta [2002], Parrilo and Sturm-
fels [2001]) originating from a result by (Handelman [1988])
that characterizes positive polynomials over compact polyhe-
dra. We compare the power of interval evaluation and Handel-
man representations, providing evidence that both approaches
have complementary strengths. Their combination can produce



a linear programming relaxation that is more suitable for Lya-
punov function synthesis.

We have implemented our approach using a OCaml-based
front-end to compute constraints and a linear programming
solver GLPK to find solutions. We compare our approach with
a Lyapunov function search implemented inside the SOSTOOLS
package (Prajna et al. [2004]). On a suite of benchmarks drawn
from the related work, we find that our approach is fast, and
can discover Lyapunov proofs that are reliable: they can be
formally verified inside theorem provers, and in turn used to
prove various correctness properties of control systems.

2. PRELIMINARIES

We recall some basic notions including Lyapunov functions,
positive (semi-) definite polynomials and techniques to search
for positive definite polynomials under some constraints on
their coefficients.

A function f : Rn → R is positive semi-definite over a domain
U ⊆ Rn iff (∀ x ∈ U) f(x) ≥ 0. Furthermore, a positive
semi-definite function f is positive definite iff f(x) > 0 for all
x ∈ U \ {0}, and f(0) = 0.

2.1 Lyapunov Functions

Throughout this paper, we study continuous dynamical systems
S over a state-space X ⊆ Rn specified by coupled time
invariant Ordinary Differential Equations (ODEs):

dx

dt
= f(x), x ∈ X .

We assume that f is Lipschitz continuous over x. An equilib-
rium of the system x∗ ∈ X satisfies f(x∗) = 0.

A system is Lyapunov stable over an open region U around
the equilibrium x∗, if for every neighbourhood N ⊆ U of
x∗ there is a neighbourhood M ⊂ N such that (∀ x(0) ∈
M) (∀ t ≥ 0) x(t) ∈ N . A system is asymptotically stable if it
is Lyapunov stable and all trajectories starting from U approach
x∗ as t → ∞. Lyapunov functions are useful in proving that a
system is stable in a region around the equilibrium. Without loss
of generality, we assume that x∗ = 0. The definitions below are
based on the terminology used by (Meiss [2007]).
Definition 2.1. A continuous and differentiable function V (x)
is a weak Lyapunov function over a region U ⊆ X iff the
following conditions hold:

(1) V (x) is positive definite over U , i.e, V (x) > 0 for all
x ∈ U \ {0} and V (0) = 0.

(2) dV
dt = (∇V · f) ≤ 0 for all x ∈ U .

Additionally, V is a strong Lyapunov function if
(
−dVdt

)
is

positive definite.

Weak Lyapunov functions are used to prove that a system is
Lyapunov stable in a region U whereas a strong Lyapunov
function proves asymptotic stability. The approaches presented
in this paper can be used to search for weak as well as strong
Lyapunov functions.

2.2 Searching for Lyapunov Functions

Stability is an important property of control systems. Tech-
niques for discovering Lyapunov functions to certify the sta-

bility of a closed loop control system model are quite useful in
control systems design.

One commonly used class of techniques assumes a template
form of the function V (x, c) where c = (c1, . . . , ck) is a set of
unknown parameters. Our goal is to search for values of ci ∈ R
that yield a Lyapunov function Vc(x) upon substitution.

Let U ⊆ X be a region of interest over which a Lyapunov func-
tion is sought to prove that all trajectories starting from U are
stable around the origin. We assume that U is bounded and the
origin belongs to the interior of U . To find a Lyapunov function,
we encode the conditions in Def. 2.1 to yield constraints over
the unknown parameters c. Solving these constraints yields us
values of c that can be used to formulate a suitable Lyapunov
function. However, if no value of c can be found, we conclude
either (a) there exists x0 ∈ U such that the trajectory with
x(0) = x0 is unstable, or (b) the template form and techniques
used to formulate the constraints are inadequate.

At the heart of Lyapunov function synthesis, we face the chal-
lenge of establishing that a given function V (x) is positive
(negative) definite over U . In turn, we extend this to templates
V (x, c), wherein we wish to characterize a set C for the un-
known parameters c, so Vc(x) is positive definite over U for all
c ∈ C. Thus, the process of searching for Lyapunov functions
of a given form devolves into the problem of finding a system
of constraints for the set C.

We assume that the form V (x, c) is a polynomial over x whose
coefficients are polynomials over c. We define the set C as
follows:

C = {c | V (x, c) is positive definite for x ∈ U} . (1)

The overall procedure for synthesizing Lyapunov functions
proceeds as follows:

(1) Fix a template form V (x, c) with parameters c.
(2) Compute constraints ψ[c] that characterize the set C in

Equation (1).
(3) Consider the template form V ′(x, c) = ∇xV · f(x). We

compute constraints ψ′[c] that characterizes the set C ′
such that V ′(x, c) is negative (semi-) definite.

(4) Compute a value c ∈ C∩C ′ by solving the constraints ψ∧
ψ′. The resulting function Vc(x) is a Lyapunov function.

The problem of deciding whether a given polynomial V (x) is
positive definite is NP-hard. The problem is even harder for
encoding constraints to characterize the sets C,C ′. A precise
solution requires quantifier elimination over reals ( Collins
[1975], Tarski [1951]). To wit, we eliminate the universal
quantifiers from the formula: (∀ x ∈ U) V (x, c) using tools
such as QEPCAD ( Collins and Hong [1991]) and REDLOG
( Dolzmann and Sturm [1997]). This process is exact, but
intractable for all but the smallest of systems and low degree
polynomials for V . Furthermore, the resulting constraints ψ ∧
ψ′ that characterize C ∩ C ′ are semi-algebraic. Finding a
solution c for ψ ∧ ψ′ is therefore a hard problem.

Therefore, we seek stricter versions of positive semi-definiteness
that yield a more tractable system of constraints. We now ex-
amine three such approaches, starting from the SOS decompo-
sition, which is considered to be the most promising approach.



2.3 Sum-of-Squares (SOS) Programming

SOS decomposition shows that a given polynomial V (x) is
positive semi-definite by expressing it as the sum of squares:
V (x) = V0(x)2 + V1(x)2 + · · · + Vk(x)2 for polynomials
V0, V1, . . . , Vk. Likewise, given a form V (x, c), we find
constraints over c that enable such an SOS decomposition. In
order to find a SOS representation of a polynomial, a semi-
definite programming (SDP) relaxation was first proposed by
(Shor [1987]) and further developed by (Parillo [2003]). For a
given form V (x, c), we derive a SDP over c whose solutions
are guaranteed to yield SOS decomposition. In turn, efficient
SDP solvers based on interior point methods can be used to
carry out the search for a feasible solution. The SOSTOOLS
package in Matlab(tm) provides one such implementation (Pra-
jna et al. [2004]). The use of SOS to perform stability anal-
ysis for polynomial ODEs was explored by ( Parrilo [2000]),
( Tibken [2000]), (Papachristodoulou and Prajna [2002]), and
more recently using simulations ( Topcu et al. [2007]).

It is well known that not every positive (semi-) definite poly-
nomial can be expressed through a SOS decomposition. Never-
theless, the SOS decomposition is quite powerful in practice. In
many systems, it is quite natural to find SOS proofs of stability.
However, the SOS approach relies on numerical interior point
solvers to find a feasible point. From the point of view of a
guaranteed method, such an approach can be problematic. We
illustrate this using a simple example.
Example 2.1. Consider the ODE shown in
( Papachristodoulou and Prajna [2002]) ):
dx1
dt

= −x21 − 4x32 − 6x3x4
dx2
dt

= −x1 − x2 + x35
dx3
dt

= x1x4 − x3 + x4x6
dx4
dt

= x1x3 + x3x6 − x34
dx5
dt

= −2x32 − x5 + x6
dx6
dt

= −3x3x4 − x35 − x6
Using the findlyap function that is available as part of
SOSTOOLS ( Prajna et al. [2004]), we obtain a large polynomial
partially shown below:
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On the other hand, the Lyapunov function x21 + 2x42 + 3x23 +
3x24 + x45 + 2x26 found by the linear programming approach in
this paper is quite easy to verify. It is possible to use SOSTOOLS
to discover such functions, following some heuristics proposed
by ( Papachristodoulou and Prajna [2002]). However, in the
general case, the problem of generating reliable Lyapunov can-
didates is of great interest to applications in formally verifying
properties of control systems.

A partial solution consists of using a rational vector recovery
procedure that searches for a nearby rational solution so that
the conditions for Lyapunov functions are satisfied precisely.
This is aided by the fact that SOS programming approach
provides a positive definite polynomial as well as a numerical
decomposition as a sum of squares ( Harrison [2007], Platzer
et al. [2009]). The difficulty of such an approach to Lyapunov
function synthesis is two-fold. First of all, the search has to
maintain the positive definiteness of V (x) and the negative

definiteness of its derivative V ′(x), simultaneously. This is
further complicated when a positivstellensatz proof involving
many SOS polynomial multipliers is used to find a function
over a bounded region of the space. Secondly, the number of
floating point coefficients can often be too large to permit an
efficient search, as witnessed in Example 2.1.

Yet another approach involves using interval arithmetic tech-
niques to bound the solution of SDPs and provide guaranteed
certificates of optimality and infeasibility (Härter et al. [2012]).
However, to our knowledge, the VSDP approach remains to be
integrated and evaluated inside a SOS programming solver.

2.4 Interval Methods

On the other end of the spectrum, interval arithmetic tech-
niques remain a simple approach to proving positive (semi-)
definiteness over an interval domain U . Let U = [`1, u1] ×
[`2, u2] × · · · × [`n, un] be the product of intervals wherein
−∞ < `i < ui < ∞ for each i ∈ [1, n]. We evaluate
the function V (x) over the interval U using standard interval
arithmetic approaches ( Moore et al. [2009]). If the lower bound
of V over the interval U is positive (non-negative), we conclude
that V must be positive (semi-) definite over U . Interval meth-
ods can be extended to unbounded domains, as well. Finally,
approaches such as Bernstein polynomial expansions provide
interesting ways of finding bounds for polynomials inside an
interval (see Stahl [1995] for a survey of these methods).

However, interval methods have severe limitations due to the
problem of lost dependencies between the various terms in
V (x). To illustrate this, consider x ∈ [−1, 1]. We wish to prove
that x2−2x+1 ≥ 0. Interval evaluation of the LHS polynomial
yields the conservative bound [−1, 4] for x2 − 2x+ 1 that fails
to prove the required assertion.

Formally, the interval evaluation approach for encoding the
positivity of the polynomial form V (x, c) =

∑
cαx

α over
the interval I involves the following steps:

(1) Let M = {xα1 , . . . ,xαk} be the monomials in V .
(2) For each monomial in xα ∈ M , we compute lower and

upper bounds `α and uα, respectively over the interval I .
We obtain polynomials fα : xα − `α and gα : uα − xα
from these bounds.

(3) To ensure non-negativity of V over I , we write V (x, c) =∑
α λαfα +

∑
α γαgα for unknown non-negative multi-

pliers λα, γα ≥ 0. Equating the coefficients of various
monomials on both sides, we obtain a system of linear
inequality constraints ψ[c,λ].

(4) A series of calls to a linear programming solver with a
suitable objective function can systematically discover if
a non-trivial solution c 6= 0 to ψ exists. The polynomial
V is obtained by substituting the value of c.

However, since interval evaluation is often conservative, it is
frequently applied with a branch-and-bound approach that re-
peatedly subdivides the domain of interest and evaluates the
function on each subdomain. Techniques such as interval con-
straint propagation allow us to subdivide efficiently without
necessarily examining a large number of subdivisions (see Ben-
hamou and Granvilliers [2006] for a survey). Finally, tools
such as iSAT implement interval constraint propagation tech-
niques to solve non linear constraints over intervals ( Fränzle
et al. [2007]). The work of (Ratschan and She [2010]) uses
these ideas to find Lyapunov functions for polynomial systems.



Their approach derives linear programs to encode the positive
definiteness of V and the negative definiteness of V ′. The
conservative nature of interval evaluation loses dependencies
between the various monomials in V (x, c), requiring an ex-
pensive branch-and-relax procedure.

2.5 Linear Combination of Basis Polynomials

Consider polynomials p1, . . . , pk over x ∈ Rn. We wish to
encode the entailment

(p1(x) ≥ 0 ∧ · · · ∧ pk(x) ≥ 0) |= p(x) ≥ 0 .

A linear programming relaxation using the “S-procedure”
(or the Lagrangian relaxation) simply checks if multipliers
λ1, . . . , λk ≥ 0 can be found so that p =

∑k
j=1 λjpj . Com-

paring both sides term by term yields a linear programming
relaxation. Such a relaxation is complete (or lossless) for few
special cases: (a) the polynomials pj and p are affine (Farkas
Lemma), or (b) k ≤ 1 and p1, p are positive definite quadratic
forms.

In this paper, we wish to encode the non-negativity of the
polynomial form V (c,x) over an interval x ∈ I . The interval
itself can be represented through constraints

∧n
j=1(x − `j ≥

0) ∧ (uj − x ≥ 0) wherein `j , uj are the upper and lower
bounds respectively for xj . However, it is easy to see that
unless V (c,x) is affine in x, using the S-procedure directly
is bound to fail. Therefore, we construct a basis set B(I) of
polynomials that are known to be positive (or non-negative)
over I . Constructing the basis set can be performed in many
ways. Interval evaluation approach of Ratschan and She (ibid.)
can be viewed as an application of S-Procedure by constructing
the basis set by (a) selecting the set of all monomials of the form
xα with |α|1 ≤ d, (b) evaluating bounds [`α, uα] on each such
monomial in the set, and (c) using the polynomials xα−`α and
uα − xα.

In this work, we consider other ways in which the S-Procedure
can be applied to construct a set of basis polynomials.

3. HANDELMAN REPRESENTATIONS

Handelman representations arise from a theorem by Handel-
man (Datta [2002], Handelman [1988], Parrilo and Sturmfels
[2001]) that characterizes positive polynomials over convex
polyhedra. In this paper, we use these representations to encode
polynomial non-negativity over intervals by means of a linear
program (LP). Let K be a polyhedron defined as a conjunction
of linear inequality constraints K :

∧m
j=1 fj : (ajx− bj) ≥ 0

and p be a polynomial over x. We observe that if p can be
written as a positive linear combination of products of the
constraints defining K, i.e, p =

∑N
i=1 λif

ni,1

1 f
ni,2

2 · · · fni,m
m ,

then it is non-negative over K. Handelman’s result shows that
the converse is also true for strictly positive polynomials:
Theorem 3.1. (Handelman). If p is strictly positive over K and
K is compact, then p can be written as a positive linear
combination of the inequalities defining K:

p =

n∑
k=1

λkΠm
j=1f

nk,j

j for λk > 0 and nk,j ∈ N .

Handelman representations directly yield an LP relaxation for
checking if a polynomial p is positive semi-definite over a

polyhedron K defined by inequalities
∧m
j=1 fj ≥ 0, where fj

is an affine expression ajx+ bj .

(1) Fix a degree limit D > 0.
(2) Generate all possible products of degree upto D of the

form pα : fα1
1 · · · fαm

m where αi ∈ N and
∑m
j=1 αj ≤ D.

(3) Compute an LP relaxation ψ using the basis set B =
{pα | |α|1 ≤ D}.

If the LP ψ is infeasible then we may (a) subdivide K into
polyhedra K1, . . . ,Kp such that K =

⋃p
j=1Kj , and prove

that p is non-negative over each of the subdivisions; and/or (b)
increase the degree bound D for the representations.

Handelman representations allow us to encode the positive
semi-definiteness of a template form V (x, c) as a linear pro-
gram that involves c and a set of multiplier variables λ. We
solve this LP and simply ignore the values of λ.

3.1 Comparison with Intervals

We now compare the Handelman representation with the inter-
val evaluation approach. A simple comparison reveals that both
approaches have drawbacks that can be addressed, in part, by a
combined joint approach.
Claim 1. There exists an interval I and polynomials f1, f2 that
are non-negative over I such that f1’s non-negativity can be
proved using a Handelman representation but not by an interval
evaluation. Likewise, f2’s non-negativity can be proved using
interval evaluation but not through a Handelman representation.

Consider the interval x ∈ [−1, 1]. The polynomial f1 : x2 −
3x + 2 is positive semi-definite. However, interval evaluation
cannot show this since the computed bound f1 ∈ [−1, 6] is
too conservative. On the other hand, we obtain a Handelman
representation f1 = (1− x)2 + (1− x).

On the flip side, interval evaluation can prove that f2 : x2

is non-negative over [−1, 1]. However, f2 does not have a
Handelman representation over [−1, 1]. If such a representation
were to exist, then

f2 =
∑

λj(1− x)mj (x+ 1)mj for λj > 0 .

At x = 0, we have f2(0) = 0 but the RHS remains positive.
Therefore, no Handelman representation exists. On the other
hand, Theorem 3.1 assures us that x2 + ε must have a Handel-
man representation for arbitrarily small ε > 0. The table below
shows the smallest ε for which a Handelman representation can
be found for x2 + ε as a function of the degree bound D.

D 2 3 4 5 6 7

ε 1
1

3

1

3

1

5

1

5

1
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It follows from Theorem 3.1 that as D → ∞, we have ε → 0.
However, ε > 0 for all D.

The example suggests that the two approaches can complement
each other. Let V (x, c) be a given polynomial form whose
positivity is to be encoded over a given interval I : [`1, u1] ×
· · · [`n, un]. Let D be a given degree limit.

(1) We build a basis setB = Bintvl∪Bhandel of polynomials.
(2) The setBintvl consists of all monomial bounds of the form

xα− `α and uα−xα for each monomial xα in V and its
interval bounds [`α, uα].



(3) The set Bhandel consists of all power products Πf
αj

j ,
where fj denotes the expressions xj − `j and uj − xj
derived from the interval I

(4) We encode the equality V =
∑
q∈B λqq for non-negative

multipliers λq . Equating the coefficients yields a system
of linear inequalities ψ[c,λ].

3.2 Lyapunov Function Synthesis

Given an ODE dx
dt = f(x) with equilibrium x∗ = 0, we

wish to find a Lyapunov function V (x) over a given interval
I containing 0. This proves that the interval I is a subset of the
region of attraction of I .

Our approach chooses a polynomial template V (x, c) for the
target Lyapunov function and computes its derivative V ′(x, c).
We encode the positive definiteness of V and the negative semi-
definiteness of V ′ using the LP relaxation procedure described
above. This yields constraints ψ involving c and unknowns λ.
If a solution c 6= 0 is obtained, we can construct a Lyapunov
function. Our approach for encoding positive definiteness uses
a trick proposed by ( Papachristodoulou and Prajna [2002]),
wherein we write V = U + xtΛx for a positive semi-definite
function U and a suitable positive diagonal matrix Λ.

Often, if the interval I is large, then the degree D required
for finding a suitable Lyapunov function may be large. In this
situation, we simply divide I into finitely many sub-intervals
I1, . . . , IN . We perform the encoding for each sub-interval
and conjoin the resulting constraints to yield a single linear
program. We then search for a non-zero feasible solution to this
LP by setting the objective functions suitably.

4. IMPLEMENTATION AND EVALUATION

In this section, we describe our prototype implementation and
evaluate it using various examples drawn from the literature on
synthesizing Lyapunov functions.

Implementation: Our implementation uses a front-end that
reads in a description of a polynomial ODE, an interval con-
taining the equilibrium, the maximum degree of the Lyapunov
template and a bound on the number of subdivisions along each
dimension. It then constructs a generic polynomial template of
the given degree V (x, c). The positive definiteness of V and
negative (semi-) definiteness of V ′ are encoded using Han-
delman representation combined with interval evaluation, with
a specified degree limit D. Finally, the linear inequality con-
straints involving c and a set of multiplier variablesλ are output
to a constraint file that is then processed by the floating point
LP solver GLPK running the Simplex algorithm. The front end
itself uses exact rational arithmetic implemented in the package
GMP. Our implementation can be configured to use any LP
solver, preferably one that can provide exact answers. However,
in our experience, the exact arithmetic implementation of the
polynomial manipulation in the front end is more crucial to the
overall reliability of the procedure. The benchmarks we have
attempted for this paper yield Lyapunov functions that are quite
easy to verify.

We now evaluate our approach over a suite of examples taken
from the related work on Lyapunov function synthesis. For each
of the examples below, our approach chooses a degree d for
the polynomial V (x, c), a degree D for the desired Handelman
representation and a bound b on the number of subdivisions

Table 1. Performance of our implementation on the
examples presented in this paper. Each benchmark
is indexed by its example number, d: degree bound
for Lyapunov, D: degree bound for Handelman
rep., b: # of subdivisions along each dimension,
|c|: # of template parameters, |λ|: Number of mul-
tiplier variables, # Cons: number of constraints and
Time (seconds). All experiments were run on a
Macbook air laptop running MAC OSX mountain

lion with 8GB RAM.

Ex. d D b |c| |λ| # Cons Time
4.1 2 0 1 28 5 15 < 0.1
4.2 4 0 1 59 14 42 < 0.1
4.3 2 5 2 1664 5 224 0.4
4.4 4 0 1 268 69 223 0.9
4.5 3 0 1 60 19 44 0.8
4.6 3 2 1 780 209 583 39
2.1 4 0 1 14 57 37 < 0.1

along each dimension. Appropriate values of d,D and b are
discovered by trial and error starting from initial guesses for
d that are given by the degree of the dynamics. The guess is
increased subsequently. The values of D and b are initialized
to 1 and increased until our approach discovers a Lyapunov
function. A more rigorous heuristic for exploring the space of
parameters that control our approach remains to be explored
as part of our future work. Table 1 presents the details on
the degree bounds, size of the LP and running time for each
benchmark instance. We note that all but two instances were
entirely solved using interval evaluation and without requiring
branch-and-relax or Handelman representations. However, in
two of the instances considered, interval evaluation by itself
could not find a Lyapunov function. The use of Handelman
representation enabled us to find Lyapunov functions. Running
times were under a second for all but one example.
Example 4.1. Consider the planar system dx

dt = −x3 +

y, dy
dt = −x − y. We wish to prove stability over the interval

[−100, 100] × [−100, 100]. Starting from a generic template
of degree 2 involving x, y, our approach finds the Lyapunov
function x2 + y2. It is easy to check that this function actually
proves global asymptotic stability.

SOSTOOLS using the findlyap function yields the function
1.2118x2 + 1.6099× 10−5xy+ 1.212y2. As such, this is not a
Lyapunov function. Even if the xy term is discarded, the slight
discrepancy between the coefficients of x2 and y2 terms causes
the derivative −2.4236x4− 0.00040002xy− 2.424y2 to fail to
be negative semi-definite. The time taken by SOS was roughly
0.4 seconds.
Example 4.2. Consider the system dx

dt = −x3−y2, dydt = xy−
y3. Our approach finds the degree 4 Lyapunov function x4 +
2x2y2 + y4 over the region [−100, 100] × [−100, 100]. This
function turns out to be a global Lyapunov function. In contrast,
SOSTOOLS yields the function

0.62788x
4
+ 3.3661 × 10

−8
x
3
y + 0.052373x

3
+ 0.65378x

2
y
2
+

1.4856 × 10
−8

x
2
y + 1.1368x

2
+ 2.596 × 10

−8
xy

3 − 0.18536xy
2

−3.1327 × 10
−12

xy + 0.60694y
4
+ 4.5162 × 10

−7
y
3
+ 1.1368y

2
.

Once again, SOS required 0.4 seconds to compute this result.

Example 4.3. Consider the ODE dx
dt = −x − 1.5x2y3, dy

dt =

−y3 + 0.5x2y2. Our approach derives the function 0.2x2 + y2

to prove asymptotic stability over the interval [−1, 1]× [−1, 1].

SOSTOOLS produces the function 2.4229x2+4.4868y2 over the
same interval with a running time of 8.8 seconds.



Example 4.4. Consider the system
dx1
dt

= −x1 + x32 − 3x3x4
dx2
dt

= −x1 − x32
dx3
dt

= x1x4 − x3
dx4
dt

= x1x3 − x34

Our approach yields the Lyapunov function 2x21 + x42 + 6x23 +
6x24 over the region [−1, 1]4. However, the function suffices to
demonstrate global asymptotic stability, as well.
Example 4.5. Consider the uncertain linear system

dx1
dt

= x2 and
dx2
dt

= −(2 + µ)x1 − x2 .

Our approach finds a Lyapunov function (2 + µ)x21 + x22 when
run over the range x1, x2 ∈ [−2, 2]2 and µ ∈ [−1.99, 5] by
splitting µ into two subranges: µ ∈ [−1.99, 0] and µ ∈ [0, 5].
Example 4.6. Consider the uncertain system
dx

dt
= −(1 +µ1)x+ (4 +µ2)y and

dy

dt
= −(1 +µ3)x−µ4y

3 ,

with constant uncertain parameters µ1, µ2, µ3, µ4 ∈ [0, 100]4.
Our approach discovers the Lyapunov function (1 + µ3)x2 +
(4 + µ2)y2 for (x, y) ∈ [−2, 2]2. Using the synthesized Lya-
punov function, we conclude global asymptotic stability for
µ1 > −1, µ2 > −4, µ3 > −1, µ4 > 0. Our implementation
can be sped up considerably by treating µ1, . . . , µ4 as parame-
ters rather than as state variables with derivatives set to 0.

5. CONCLUSION

To conclude, we have examined linear programming relax-
ations for encoding polynomial positivity. Our approach com-
bines interval evaluation with Handelman representations. We
note that for many instances, our approach is successful in
discovering Lyapunov functions with rational coefficients that
are easily verified. Future work will focus entirely on improving
the interval evaluation technique by using ideas from Bernstein
polynomials. The use of Taylor model arithmetic to handle
non polynomial dynamics is another important area of future
investigations.
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