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Abstract—The predictive monitoring problem asks whether
a deployed system is likely to fail over the next T seconds
under some environmental conditions. This problem is of the
utmost importance in cyber-physical systems and has inspired
real-time architectures capable of adapting to such failures upon
forewarning. In this paper, we present a linear model-predictive
scheme for the real-time monitoring of linear systems governed
by time-triggered controllers and time-varying disturbances. The
scheme uses a combination of offline (advance) and online
computations to decide if a given plant model has entered a state
from which no matter what control is applied, the disturbance has
a strategy to drive the system to an unsafe region. Our approach
is independent of the control strategy used: this allows us to
deal with plants that are controlled using model-predictive con-
trol techniques or even opaque machine-learning based control
algorithms that are hard to reason with using existing reachable
set estimation algorithms. Our online computation reuses the
symbolic reachable sets computed offline. The real-time monitor
instantiates the reachable set with a concrete state estimate, and
repeatedly performs emptiness checks with respect to a safety
property. We classify the various alarms raised by our approach
in terms of what they imply about the system as a whole. We
implement our real-time monitoring approach over numerous
linear system benchmarks and show that the computation can
be performed rapidly in practice. Furthermore, we also examine
the alarms reported by our approach and show how some of the
alarms can be used to improve the controller.

I. INTRODUCTION

In this paper, we examine the problem of predicting future
failures of safety properties within a given time horizon in
real-time. The problem of predicting the possibility of a future
failure within a time horizon [0, T ] is one of the most important
problems for Cyber-Physical System (CPS) verification. Doing
so in real-time requires us to provide accurate and fast pre-
dictions, ideally in time t� T . The problem setup considers
a deployed system from which we receive periodic estimates
of the plant state x(kδ) and control input u(kδ), for time step
δ > 0 and k ∈ N. We will assume that the control inputs
are kept constant between two sampling time periods. The
disturbances belong to the set D and control inputs to the set
U . Furthermore, we would like the system executions to belong
to some safe set S . Thus, the paper considers the following
real-time monitoring question:

Starting from the current state x(0), is there a (piece-
wise constant) control input signal u(t) belonging to U
that can ensure x(t) ∈ S for t ∈ [0, T ], regardless of the
disturbances?

If the check fails, we deduce that there are disturbance
inputs that can cause the system to be unsafe within the next
T seconds. To perform this check, we propose a monitoring
algorithm which keeps a “watch list” of reachable set esti-
mates, wherein the ith element of the list overapproximates
the possible reachable states for iδ time ahead into the future,
given the information available at current time. At each
time step, the monitor checks the safety condition for each
reachable set estimate in the list. Upon encountering a new
system state, the monitor updates the watch list by removing
the head of the list (which corresponds to the current time),
and adding a new estimate at the tail (the new end point for our
time horizon). In this paper, the reachable state estimates are
precomputed offline as reachable state relation and concretized
in real-time using the most recent state estimate.

A reachable set estimate is represented by a linear expres-
sion over the variables that denote the control inputs in the
future steps, along with a zonotope [34] which accounts for
all the possible disturbances. When the monitor progresses by
one time step, some of the variables in this expression will be
replaced by the new state value and the newly applied control
input. Checking for violations involves finding control inputs
such that the reachable states are always safe no matter what
disturbances from the zonotope are used.

Essentially, the quantifier alternation between the control
and disturbance provides a game theoretic interpretation of the
monitor, by viewing the maintenance of the safety property as
a game between the control and the disturbance, wherein the
control is oblivious of the disturbance, but the disturbance can
react to the control in an adversarial fashion. In effect, our
approach asks if the given prediction is a winning state for
the control player.

In this paper, we show that assuming that the initial states
and control inputs belong to intervals (or boxes), the set of
reachable states also form a zonotope. Furthermore, we resolve
the quantifier alternation between the control and disturbance
inputs by using a Minkowski difference between the safe set S
and the disturbance zonotope. We show that this difference is
efficiently computable, whenever S belongs to a commonly
used type of specification such as a box, halfspace or a
strip. The real-time computation reduces to concretizing the
symbolic reachable state estimation at each step, updating the
disturbance contributions and verifying the nonemptiness of
intersections between a zonotope and the updated safe set.
This can be solved using a Linear Programming (LP) solver
for the general case. However, when the safety set is given as



a halfspace or strip, another efficient method using elementary
matrix operations can also be used.

The problem of online monitoring has received increasing
attention due to Simplex architectures that are based on real-
time computation of a safety envelope that triggers the switch
from a high-performance (possibly unsafe) controller to a
lower performance (guaranteed safe) controller [32].

We now differentiate our approach from those previously
used to solve the real-time safety monitoring problem. The
original approach proposed by Seto et al. considers a linear
system ẋ = Ax + Bu without disturbances, but with satura-
tion [31], [30]. The approach uses linear matrix inequalities
(LMIs) to compute a safe feedback law K and an associated
region of attraction in the form of an ellipsoid E [9]. As long
as the state of the system lies (well) within this ellipsoid, the
complex controller is used. However, if the system dynamics
are about to exit this set, the safety controller is triggered.
This approach is improved considerably by using set-based
reachability analysis computations that estimate the set of
all reachable states in real-time, assuming that the system
behaves as a linear hybrid system [6], [7], [23]. The real-time
reachability computation problem was explored by Chen et al.
for nonlinear systems using a decomposition approach [13]. A
real-time reachable set estimate is used to check if the complex
controller allowed to execute for the next time step would
reach a state that can still allow the system to be recovered
by the safe controller, if necessary.

This paper considers a different monitoring problem that
is complementary to the previously mentioned ideas. We
observe that the increasing use of model-predictive controllers
(MPC) and real-time planning in the loop makes offline or
online reachability computations involving these controllers
quite hard. Thus, rather than reason about the full closed loop
involving the plant and a complex controller, we reason just
about the plant and the current state x(t) reached at some
time t. Our reasoning incorporates the disturbance model and
looks ahead over a small time horizon to check if some control
strategy is available to keep the system safe, no matter what
the disturbance does. Note that the control inputs are oblivious
to the disturbance since disturbances are rarely measurable in
a direct manner. Rather the control is assumed to be based
on a measured/estimated state of the system x(t). The main
advantages of our approach include:

1) It reasons about time-varying disturbance inputs over
disturbance ranges.

2) It incorporates actuation limits.
3) Our approach can be used to implement a control scheme

that can potentially transition the system into the provably
safe operating range of a safe controller.

However, a drawback is that we reason about whether there
exists some control input that can maintain the safety property
rather than whether the specific control law in use can keep
the system safe. This can be addressed by “abstracting” the
controller’s behaviors to yield constraints over the set of
control strategies considered by our approach.
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Fig. 1. Overall monitoring framework.

Our approach is closely related to robust model-predictive
control techniques that consider disturbances to calculate con-
trol inputs to minimize a cost function over a time horizon [8].
A key difference lies in the cost function used. At current time
t, we focus simply on the feasibility question of whether a
control strategy remains available to the system in order to
maintain a safety property at time t + T . In particular, we
do not consider a cost function explicitly. The difference in
formulation also explains why our approach is a monitoring
rather than a MPC approach. Often, controllers are designed
for numerous competing objectives that include performance
as well as safety. The focus of our monitoring task is however
just on a given safety property.

II. PROBLEM STATEMENT AND APPROACH

In this section, we present an overview of the problem setup
and the approach at a high level. Figure 1 shows the overall
monitoring framework.
Plant and Control Setup. The system is made up of a plant
and a controller that are assumed to be subject to disturbance
d(t). The output y(t) of the plant is processed using a state
estimation technique to yield an accurate state estimate x(t)
with known error bounds [−ε,+ε]. The control inputs are
assumed to be within known actuation limits inside the interval
U . Furthermore, we assume that the system operates with a
time period δ > 0, so that for t ∈ [(i−1)δ, iδ) wherein i ≥ 1,
the control u(t) is kept constant. However, the disturbance
d(t) is unknown and time-varying, but remains within some
set d(t) ∈ D. We also assume that D is an interval (or a box).
Monitoring Setup. Let S be a safety property that we are
interested in checking over the time horizon [(i−1)δ, (i−1+
N)δ], wherein the current time is t = (i− 1)δ and N ≥ 1 is
an integer lookahead value specified by the user. We assume
that S can be provided as a box, a halfspace or a strip which
will be defined in the next section. Other specifications such as
ellipsoids can be handled by simple extensions of our approach
but are not considered here.

Definition II.1 (Controllable State). A state x(t0) is said
to be controllable with respect to the property S and step
number N if and only if there exists a control input sequence
c1c2 · · · cN ∈ UN such that for all disturbances d(t) ∈ D
over t ∈ [t0, t0 + Nδ], the reachable state x(t0 + Nδ)
satisfies the safety property. Failing this, we say a state is
uncontrollable.



The monitoring problem asks whether a given state is
controllable. The rest of the paper is organized as follows. The
notations and basic definitions used in the paper are described
in Section III. The real-time monitoring framework along with
the algorithms will be presented in Section IV. Section V
provides numerous tests to evaluate the performance of our
approach.

III. PRELIMINARIES

We denote R the set of real numbers. Given a set of
ordered variables x1, . . . , xn, we collectively denote them by
x. Similarly, for a (column) vector x, we use xi to denote
its ith component. The transpose of x is written as xT . We
always use ẋ to denote the time derivative dx/dt of x.

We assume that the arithmetic operations such as addition,
subtraction, multiplication and division of floating point num-
bers have O(1) complexity. Furthermore, standard algorithms
are used for matrix computation. The complexity of computing
A + B for A,B ∈ Rm×n is O(mn), and the complexity
of computing AB for A ∈ Rm×n, B ∈ Rn×k is O(mnk).
Although the preliminaries and our methods are presented with
real-valued matrices, represented as floating point numbers, the
result of the paper continues to hold over interval matrices as
well.

A. Linear systems

A linear system with n state variables x, m control inputs
u and k disturbances d can be defined by a linear ODE of the
form

ẋ = Ax +Bu + Cd

such that A ∈ Rn×n, B ∈ Rn×m and C ∈ Rn×k.
Given an initial state x(0) = x0, the reachable state at a

time t > 0 can be computed by the solution of the ODE:

x(t) = eAtx0 +

∫ t

0

eA(t−s)Bu(s)ds+

∫ t

0

eA(t−s)Cd(s)ds

if the control inputs as well as the disturbances are given
explicitly.

We use R(x0, t,u,d) to denote the reachable state from
x0 at the time t with respect to the control inputs u and
disturbances d. Moreover, we also collectively denote the
reachable set {R(x0, t,u,d) |x ∈ X0,u ∈ U ,d ∈ D} by
R(X0, t,U ,D).

B. Reachable set computation

We review the method to compute reachable sets for linear
systems using geometric representations. The disturbances d
are assumed to be uncertain, time-varying, and belonging to a
compact (closed and bounded) set D, while the control inputs
u are assumed to be piecewise constant (PWC) and belong to
a compact set U . Hence, given an initial set X0 ⊆ Rn, and
PWC control inputs over time intervals of size δ > 0,

u(t) = ci when t ∈ [(i− 1)δ, iδ] for i = 1, 2, · · · , N ,

the reachable set R(X0, Nδ,U ,D) can be computed using on
the following formula

eANδX0 ⊕
∫ δ

0

eA(Nδ−s)Bds {c1} ⊕ · · ·

⊕
∫ Nδ

(N−1)δ
eA(Nδ−s)Bds {cN} ⊕

∫ δ

0

eA(Nδ−s)CDds⊕ · · ·

⊕
∫ Nδ

(N−1)δ
eA(Nδ−s)CDds

wherein ⊕ is the Minkowski sum operator which is defined
by X ⊕ Y = {x+ y |x ∈ X, y ∈ Y }.

If we denote Φ = eAδ , Ψ =
∫ δ
0
eA(δ−s)Bds and SD =∫ δ

0
eA(δ−s)CDds, the above formula can be rewritten as

ΦNX0 ⊕
N−1⊕
i=0

(ΦiΨ{cN−i})⊕
N−1⊕
i=0

(ΦiSD) (1)

since for all 1 ≤ i ≤ N , we have that∫ iδ

(i−1)δ
eA(Nδ−s)Bds = e(N−i)Aδ

∫ δ

0

eA(δ−s)Bds, and∫ iδ

(i−1)δ
eA(Nδ−s)CDds = e(N−i)Aδ

∫ δ

0

eA(δ−s)CDds

When the initial set or the PWC control inputs are not
explicitly given, we are still able to compute the reachable
set symbolically based on (1) by representing X0 or ci as
variables. In the paper, we also call it a symbolic reachable
set.

Example III.1. We consider a simple linear system defined
by ẋ = −x+ u+ d such that d = 0. If the control input u is
PWC with the step size 0.02, then the symbolic reachable set
at t = 0.2 can be computed as

x(0.2) = e−0.2x0 +

9∑
i=0

(e−0.02i(1− e−0.02)u9−i)

wherein x0 is the variable standing for the initial state, and
u1, . . . , u10 are the variables standing for the control inputs
in the 10 time steps respectively.

C. Geometric representations

The techniques presented in this paper rely on geometric
objects such as convex polyhedra and zonotopes. We provide
a brief introduction to these objects and their manipulations.
Polyhedron. A halfspace S in the n-dimensional Euclidean
space Rn is defined by the set satisfying a linear inequality
aTx ≤ b, i.e., S = {x ∈ Rn |aTx ≤ b}. A polyhedron is
defined by an intersection of finitely many halfspaces, in other
words, it is the set that satisfying all inequalities defining those
halfspaces. For example, the polyhedron in Figure 2 can be
defined by the intersection of the halfspaces S1 = {(x, y)T ∈
R2 |x + y ≤ 1}, S2 = {(x, y)T ∈ R2 | − x ≤ 0} and S2 =
{(x, y)T ∈ R2 | − y ≤ 0}. Notice that a polyhedron is not
necessarily bounded.
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Fig. 3. Example of a zonotope

Box. A (closed) box can be simply defined by specifying the
range in each dimension. It can be unbounded. For example,
{(x, y)T |x ≥ 6, y ≤ 8} defines a 2-dimensional box whose
range in the x-dimension is bounded below by 6 while the
range in the y-dimension is bounded up by 8. A unit box is a
box whose range in each dimension is defined by [−1, 1].

In the rest of the paper, we assume that the control input set
U as well as the disturbance set D are both bounded boxes.
Zonotope. Zonotopes are a subclass of symmetric bounded
polyhedra [34]. Generally, a zonotope can be viewed as the
image of a unit box under an affine mapping. Here, we follow
the generator-based definition used by Girard [18].

Definition III.1. An n-dimensional zonotope Z is defined by

Z =

{
x ∈ Rn

∣∣∣∣∣x = c +

p∑
i=1

λigi, λi ∈ [−1, 1]

}
such that c ∈ Rn is the center, and g1, . . . ,gp ∈ Rn are the
generators. We denote Z as (c, 〈g1, . . . ,gp〉).

Intuitively, a zonotope Z = (c, 〈g1, . . . ,gp〉) is the
Minkowski sum of c and the line segments defined by the
generators, that is, the line segment defined by gi is {x ∈
Rn |x = λigi, λi ∈ [−1, 1]}.

Figure 3 shows an example. The center of the zonotope is
the origin (0, 0)T , and the generators are (1, 0)T , (0, 1)T and
(0.5, 0.5)T . So, the range of the zonotope can viewed as the
result from consecutively bloating the set from the center in
both of the positive and negative directions of a generator.
Notice that a bounded box is a special zonotope.

Zonotopes are closed under linear transformations and
Minkowski sums. Algorithms for the image of a zonotope
under linear transformations and Minkowski sums are simple
and quite efficient on the generator-based representations.

Given a zonotope Z = (c, 〈g1, . . . ,gp〉) and a linear map
defined by x′ := Mx for a matrix M , the image is also a
zonotope which is defined by

MZ = (Mc, 〈Mg1, . . . ,Mgp〉) .

Given two zonotopes Z1 = (c1, 〈g1, . . . ,gp〉) and Z2 =
(c2, 〈h1, . . . ,hq〉). The Minkowski sum is the zonotope de-
fined by the sum of the centers and the union of the generators:

Z1 ⊕ Z2 = (c1 + c2, 〈g1, . . . ,gp,h1, . . . ,hq〉) .

The computation of the linear transformation defined by a
matrix M ∈ Rn′×n on an n-dimensional zonotope with p

TABLE I
COMPUTATIONAL COMPLEXITY FOR COMPUTING THE TERMS IN R̂N .

Term O(n) O(n2) O(n2m) O(n3)
Φi 0 0 0 N − 1

ΦiΨ 0 0 N − 1 0⊕N−1
i=0 (ΦiBD) N − 1 (N − 1)(n+ 1) 0 0

generators requires p + 1 matrix multiplications of the type
M1M2 such that M1 ∈ Rn′×n and M2 ∈ Rn×1. If we
consider the computational complexity of the arithmetic on
reals (represented by floating point numbers in the paper)
as O(1), the cost of linear transformation on a zonotope is
O((p+ 1)n′n). For computing the Minkowski sum of two n-
dimensional zonotopes with p and q generators respectively,
it only requires to compute the summation of the center and
concatenate the generator lists. Hence, the computation needs
one addition of two n × 1 matrices, and then the complexity
is O(n).

Now we turn to the method for reachable set computation
using zonotopes proposed by Girard et al. [18], [20]. The dis-
turbance term

⊕N−1
i=0 (ΦiSD) in (1) can be overapproximated

by a zonotope
⊕N−1

i=0 (ΦiBD) such that BD is a box enclosure
of the one-step disturbance SD =

∫ δ
0
eA(δ−s)CDds. It can

be evaluated by the zonotope method in [18] or the interval
arithmetic [26].

Then the reachable set (1) be overapproximated by

RN = ΦNX0 ⊕
N−1⊕
i=0

(ΦiΨ{cN−i})⊕
N−1⊕
i=0

(ΦiBD) . (2)

Again, if we want to keep the above set symbolically, the sets
X0, {c1}, . . . , {cN} can be represented by the variables x0,
u1, . . . ,uN respectively.

We investigate the complexity of computing RN . Given that
Φ, Ψ and BD are computed in advance with a complexity
CAdv. We may first compute Φi for 1 ≤ i ≤ N and keep the
results in a hash table. That requires N − 1 multiplications
of two n × n matrices. Then we compute ΦiΨ for 1 ≤ i ≤
N −1 and it requires N −1 matrix multiplications of the type
M1M2 such that M1 ∈ Rn×n and M2 ∈ Rn×m if there are m
control inputs. Finally we compute the disturbance zonotope⊕N−1

i=0 (ΦiBD) via N iterations, the ith of which requires to
compute a linear transformation defined by Φi−1 on an n-
dimensional zonotope BD with n generators. The result of all
iterations will be added up by computing Minkowski sum for
N − 1 times.

Again, if the complexity of real arithmetic is considered
as O(1), a summary of the computational complexity of RN
is given in Table I. The columns denote the complexities of
those matrix operations. Therefore, the overall complexity is
O(Nn3 +Nn2m+ CAdv).

D. Intersections of geometric representations

As we mentioned that we need to check the emptiness
of a box/zonotope intersection. Although computing such an
intersection has already been recognized as a hard task [22],



[21], [19], [2], the emptiness checking can usually be done
efficiently. We may use the following methods for the different
intersection types.
Zonotope/zonotope intersection. Given two zonotopes Z1 =
(c1, 〈g1, . . . ,gp〉) and Z2 = (c2, 〈h1, . . . ,hq〉), the intersec-
tion Z1 ∩ Z2 is nonempty if and only if the following linear
program has a solution.

Find λ1, . . . , λp, η1, . . . , ηq ∈ [−1, 1] s.t.

z1 = c1 +

p∑
i=1

λigi, z2 = c2 +

q∑
i=1

ηihi, and z1 = z2 .

Zonotope/polyhedron intersection. Given a zonotope Z
= (c, 〈g1, . . . ,gp〉) and a polyhedron P = {x ∈
Rn |

∧q
i=1(aTi x ≤ bi)}. The intersection Z ∩ P is nonempty

if and only if the following linear program has a solution.

Find λ1, . . . , λp ∈ [−1, 1] s.t.

z = c +

p∑
i=1

λigi, and
q∧
i=1

(aTi z ≤ bi) .

Zonotope/strip intersection. The emptiness checking of both
of the above intersections requires to solve linear programs,
however, when the other set is defined by a strip which is
the intersection of two homogeneous halfspaces, i.e., of the
form {x ∈ Rn | bl ≤ aTx ≤ bu}, we may only need to
evaluate the range of the transformed zonotope aTZ, the range
has no intersection with [bl, bu] if and only if the zonotope
has no intersection with the strip. We assume that Z =
(c, 〈g1, . . . ,gp〉), then the lower and upper bound of aTZ can
be computed as aT c−

∑p
i=1 |aTgi| and aT c +

∑p
i=1 |aTgi|

respectively. Notice that the range of a zonotope in each
dimension can be computed in a similar way.

In the next section, we present our approaches to monitoring
the traces or executions of a linear system.

IV. REAL-TIME MONITORING ON SYSTEM EXECUTIONS

The monitor keeps a list of reachable set predictions for a
time horizon consisting of N steps into the future. For each
time step, it performs the following tasks:

1) Updates all existing reachable set predictions in the list
according to the current (estimated) system state s and
control input c;

2) Removes the prediction at the head of the list (since it
corresponds to the current time), and computes a new
prediction at the next N th time step according to s, c;

3) Checks the controllability for each node in the list;
The monitor also reports an unsafe incident when an unsafe
state is found, or an alert when an uncontrollable prediction is
detected. Here, the term “real-time” means that there is always
an alert sent before an unsafe state occurs.

Therefore, the monitoring task requires to not only compute
reachable state predictions but also verify that there is at least
one control (input) sequence keeping the system safe in the
future steps. As we will later show that such a sequence can
be found by solving an ∃-∀ formula.

The existing offline reachability computation methods based
on numerical simulation [33], [5], predicate abstraction [3],
flowpipe construction [17], [11], [10], invariant computa-
tion [29], [27], SMT solving [28], [16], [24] and discrepancy
functions [14] cannot be directly applied to this task since
in these approaches, the future control inputs starting from a
given state are not represented symbolically which makes it
hard to check the controllability condition.

The reachable set prediction at the next N th step for a state
s with the first control input c is computed as the following
(overapproximate) symbolic reachable set

R = {ΦNs+ΦN−1Ψc+

N−2∑
i=0

(ΦiΨuN−i)}⊕
N−1⊕
i=0

(ΦiBD) (3)

such that u2 · · ·uN are the unknown future control inputs for
the next N steps. Suppose, at the very next step, the new
control input is c′ and the new state of the system is s′, then (3)
can be concretized to

R′ = {ΦN−1s′+ΦN−2Ψc′+

N−3∑
i=0

(ΦiΨuN−i)}⊕
N−2⊕
i=0

(ΦiBD) .

A prediction can be repeatedly concretized in the above
manner as the unknown control inputs uj and current state x
are duly replaced by known inputs cj and states s. Eventually,
we say that a prediction expires if all the unknowns in it
are entirely concretized. This happens at the end of the time
horizon of N steps.

Example IV.1. We consider the system given in Example III.1,
i.e., ẋ = −x + u + d. The control and disturbance sets are
defined by U = {u |u ∈ [0, 2]} and U = {d | d ∈ [−0.5, 0.5]}.
In order to make the explanation concise, we approximately
present the coefficients.

If we set the step size by δ = 0.02, the symbolic reachable
set for N = 3 , i.e., at the time t = 0.06, can be computed as

R = 0.9418x0 + 0.0190u1 + 0.0194u2 + 0.0198u3 + ZD

such that ZD : (0, 〈0.01, 0.0098, 0.0096〉) which is the
accumulation of the disturbances.

When the initial state is x(0) = 5 and the first control input
is u1 = 0, the prediction is concretized to be

R1 = 4.7090 + 0.0194u2 + 0.0198u3 + Z1

in the first time step, such that Z1 = ZD.
In the second time step, if the system state is x(0.02) = 4.9

and the control input is 1.5 during the step. The prediction
R1 is then concretized to be

R2 = 4.7370 + 0.0198u3 + Z2

wherein Z2 = (0, 〈0.01, 0.0098〉).
Assume that x(0.04) = 4.8 and the control input is 1 in the

third time step, the prediction is then entirely concritized to
be

R3 = 4.7248 + Z3

such that Z3 = (0, 〈0.01〉).



Now we present the detailed monitoring algorithm as fol-
lows. The monitor keeps a list LR consisting of all reachable
set predictions in the future N steps. In each time step, it does
the following work.
1. Obtain the current system state s and the control input c

which will be used in the current time step.
2. Check the safety of s. If it is unsafe, then the monitor

reports an unsafe incident.
3. Concretize the predictions in the list LR with respect to s

and c.
4. Compute a prediction at the next N th step with respect to

the state s and the first control input c, and append it into
LR.

5. Check the controllability of all predictions in LR. If there
is an uncontrollable prediction, then the monitor sends out
an alert.

6. Remove the prediction which is to be expired.
Notice that every prediction will be entirely concretized at its
N th step, so the monitor needs to keep at most N reachable
sets in the list.

Figure 4 illustrates the changes of a watch list with N = 3
predictions during the first 3 time steps. After the 3rd time
step, the list contains the predictions for all of the future N
steps.

One may point out that the first N−1 time steps are missed
by our monitoring algorithm. However, we can take them into
account by computing their predictions and put them into the
list at the very beginning. In the next section, we present our
method of verifying the controllability for a prediction.

A. Verification of controllability

A reachable set prediction R at the next N th step for a state
s is of the form

{ΦN−js′ + ΦN−j−1Ψc′ +

N−j−2∑
i=0

(ΦiΨuN−i)}︸ ︷︷ ︸
A(s′,uj+2,··· ,uN )

⊕
N−j−1⊕

i=0

(ΦiBD)︸ ︷︷ ︸
B

(4)
for some 0 ≤ j ≤ N − 1, such that the system evolves from s
to s′ in the first j time steps, and the control input in the (j+
1)st step is c′. Then, to verify the controllability of the above
prediction, we need to find a control sequence uj+2 · · ·uN ∈
UN−j−1 such that the prediction is contained in the safe set
S. To do so, we may solve the following ∃-∀ formula.

(∃uj+2, . . . ,uN ∈ U)(∀zD ∈ B)A(s′,uj+2, · · · ,uN )⊕ B ∈ S
(5)

wherein A and B are as defined in Eq. (4).
Instead of using a (nonlinear) SAT/SMT solver, we propose

an approach to check the satisfiability of a simple predicate
γ , if it is satisfiable then so is the formula (5). The method
requires to compute a Minkowski difference of the safe set S
and the term {ΦN−js′ + ΦN−j−1Ψc′} ⊕

⊕N−j−1
i=0 (ΦiBD).

The Minkowski difference of two sets X,Y is defined by
X 	 Y =

⋂
y∈Y {x − y |x ∈ X}. Intuitively, the sum of any

elements in X 	 Y and Y is always in X . If X is given by a

2δ 3δ0t =

(s0, c0)

δ

R1

(a) Time step at t = 0. The prediction R1 for t = 3δ is
computed according to the current state s0 and the control input
c0 used in the step.

2δ 3δ 4δ0t =

(s0, c0) (s1, c1)

δ

R1

R2

(b) Time step at t = δ. The prediction R1 is concretized by the
current state s1 and control input c1. A new predication R2 for
the reachable state from s1 at t = 4δ is computed and added to
the list.

2δ 3δ 4δ 5δ0t =

(s0, c0) (s1, c1) (s2, c2)

δ

R1

R2

R3

(c) Time step at t = 2δ. The predication R1, R2 are concretized by
the current state s2 and control inputs c2. A new prediction R3 for
the reachable state from s2 at t = 5δ is computed and added to the
list. R1 is to be expired.

Fig. 4. Content of the watch list in the first 3 time steps.

box and Y is a compact set then X 	 Y is also a box which
can be computed based on the following lemma.

Lemma IV.1. If X ⊆ Rn is a box and Y ⊆ Rn is a compact
set, then X 	 Y is also a box. Its lower bound in the ith
dimension can be computed as lo(X, i) − lo(Y, i), while the
upper bound can be computed as up(X, i) − up(Y, i) such
that lo(Z, i) and up(Z,i) denote the lower and upper bound
respectively for a set Z in its ith dimension.

Proof. By the definition of Minkowski difference, the set X	
Y is the intersection of the boxes {x−y |x ∈ X} for y ∈ Y ,
then it is also a box.

The lower bound of X 	 Y in the ith dimension for any
1 ≤ i ≤ n is the maximum lower bound of the ith dimension
of {x − y |x ∈ X} for all y ∈ Y , and hence it is the
value of lo(X, i) − lo(Y, i). The upper bound can be proved
analogously.

The case that X is a strip and Y is a compact set can be
handled in a similar way. Assume that X = {x ∈ Rn | bl ≤
aTx ≤ bu}, we compute the linear transformation aTY , then



the Minkowski difference is also a strip which is defined by

X 	 Y = {x ∈ Rn | bl − y` ≤ aTx ≤ bu − yu}

such that y` and yu are the lower and upper bound of aTY
respectively.

The Minkowski difference

Usafe = S 	

(
{ΦN−js′ + ΦN−j−1Ψc′} ⊕

N−j−1⊕
i=0

(ΦiBD)

)
is a safe envelope for the control inputs, since for any control
sequence uj+2 · · ·uN ∈ UN−j−1, if

∑N−j−2
i=0 (ΦiΨuN−i) ∈

Usafe, then the prediction is safe, in other words, the control
sequence makes the reachable state safe regardless of the
disturbances. To ensure the existence of such a sequence, we
may check the emptiness of the intersection

UI = Usafe ∩

{
u ∈ Rm |u =

N−j−2∑
i=0

(ΦiΨuN−i),ui ∈ U

}
.

Hence the controllability predicate is defined by γ : UI 6= ∅,
which can be checked by a LP solver or the methods intro-
duced in Section III.

For entirely concretized predictions, since there is no control
variable, we check whether the set is entirely contained in
the safe set. If so, the set is controllable, otherwise it is
uncontrollable.

Theorem IV.1. If the predicate γ is satisfiable, then the
prediction is controllable.

Proof. If UI 6= ∅, there is at least one control sequence
uj+2 · · ·uN ∈ UN−j−1 such that

∑N−j−2
i=0 (ΦiΨuN−i) ∈

Usafe. Hence, the set

{ΦN−js′+ΦN−j−1Ψc′}⊕
N−j−1⊕
i=0

(ΦiBD)⊕{
N−j−2∑
i=0

(ΦiΨuN−i)}

containing all possibly reachable state under the control se-
quence is contained in the safe set S.

Example IV.2. Assume that the safe set is defined by S =
{x ∈ R |x ∈ [4.71, 5]}. The control safe envelopes for
the 2 reachable set prediction R1, R2 which are not entirely
concretized in Example IV.1 can be computed as follows.

For R1, the range of the set 4.7090+Z1 is [4.6796, 4.7284],
and therefore

Usafe = [4.71, 5]	 [4.6796, 4.7284] = [0.0304, 0.2716] .

For R2, the range of 4.7370 + Z2 is [4.7172, 4.7568], then
the safe envelope can be computed as

Usafe = [4.71, 5]	 [4.7172, 4.7568] = [−0.0072, 0.2432] .

Computational complexity. The concretization in each time
step for a reachable set prediction only involves numerical
evaluation by real arithmetic. Since the matrices and zonotopes
in the symbolic reachable set can be computed offline in
advance, the most expensive work online is to compute the ma-
trix multiplications of the type M1M2 such that M1 ∈ Rn×n

and M2 ∈ Rn×1, and the safe envelope which requires range
evaluation for zonotopes with at most N generators. Therefore
the concretization task in a time step has a complexity at
most quadratic in both n and N . If a LP solver is used for
checking the emptiness of UI , we need to additionally take its
complexity into account. Our experiments will show that the
monitoring task in one time step can be done very efficiently.

B. Discussion on the verification results
Our monitoring algorithm produces the following verifi-

cation results in a time step based on the reachable set
predications and their control safe envelopes.
(a) Controllable - The current state is safe and the set UI is

nonempty.
(b) Alert - The current state is safe and the set UI is empty.

That is, the current state might not be controllable.
(c) Unsafe - The current state is already unsafe.

We show that our monitoring algorithm always sends out
an alert at least one time step before an unsafe incident
occurs. Since any reachable state is included by the concretized
reachable set prediction one step before, the prediction is not
entirely contained in the safe set if there is an unsafe reachable
state.

Theorem IV.2. For i ≥ 2, if the state si in the ith time step is
unsafe, then the previous prediction at the (i− 1)th step was
unsafe.

However, the converse is not necessarily true. One can
imagine a state that is unsafe at the ith step. However, the
worst case disturbance does not happen and thus, the system
may transition to a controllable state.

We extend the concept of controllability from system states
to executions. Given an execution (s1, c1), . . . , (sN , cN ) with
a step size δ > 0 such that si is the system state at the time
t = (i− 1)δ, and ci is the control input which is used in the
ith time step t ∈ [(i− 1)δ, iδ]. Then the controllability of the
execution can be defined by the following 4 cases.
(a) Controllable - The states s1, . . . , sN−1 are controllable,

and sN is safe.
(b) Alert - The state sN is safe, however at least one of

the states s1, . . . , sN−1 causes an alert. Although this is
often seen as a false alarm, we will argue are in fact
“near misses” where the disturbance inputs could have
potentially led to a safety violation.

(c) Unsafe I - The state sN is unsafe, and only sN−1 causes
an alert.

(d) Unsafe II - The state sN is unsafe, at least one previous
state other than sN−1 causes an alert.

The reason to classify Unsafe I and Unsafe II is that Unsafe
II represents an early warning for a real error. However Unsafe
I only gives the monitor one step before an unsafe incident
occurs.

Figure 5 shows some examples for the controllability of
an execution. These results may tell us whether a controller is
robust under disturbances. If not then whether there is a robust
controller with the same control input range.
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Fig. 5. Controllability of executions

We briefly discuss the feasibility of (a) finding a safe control
sequence for a controllable state, and (b) finding a PWC
disturbance sequence for an alert state.

Given a reachable set prediction R which is defined by

{ΦN−js′+ΦN−j−1Ψc′+

N−j−2∑
i=0

(ΦiΨuN−i)}⊕
N−j−1⊕
i=0

(ΦiBD)

such that 0 ≤ j ≤ N − 2. If R is controllable, then a safe
control sequence can be found by solving the following linear
program:

Find uj+2, . . . ,uN ∈ U s.t.

u =

N−j−2∑
i=0

(ΦiΨuN−i) and u ∈ Usafe .

When R causes an alert or is unsafe, we may treat∑N−j−2
i=0 (ΦiΨuN−i) as a zonotope and introduce new vari-

ables to represent disturbances. An unsafe disturbance se-
quence can be found by solving a similar linear program over
those disturbance variables.

V. EXPERIMENTS

We implemented a prototype tool in C++ based on the
library of the tool Flow* [12]. The examples in our exper-
iments are all closed-loop control systems. We add time-
varying disturbances to the feedback loop, and monitor the
system executions.

A. Benchmarks settings

All of the benchmarks are of the structure given in Figure 6.
The plant is defined by a linear system whose state variables
are x. The controller reads the output y of the system by
time steps, such that y is the image of x under a linear
transformation, i.e., y = Coutx wherein Cout is a constant
matrix, and then computes an control input u for the next
time step. The input and output of the controller might be

Plant

Controller

+

+

d1

yud2

Fig. 6. Structure of the benchmarks

influenced by some disturbances which are denoted by d1, d2
in the figure. We give an example as below.

The dynamics of an inverted pendulum can be described by
the following ODE [4],

ẋ
v̇x
θ̇
v̇θ

 =


0 1 0 0
0 −0.1818 2.6727 0
0 0 0 1
0 −0.4545 31.1818 0




x
vx
θ
vθ



+


0

1.8182
0

4.5455

u

such that x is the position of the cart, vx is the cart velocity,
θ is the angle of the pendulum and vθ is the angular velocity.
The PWC control input u can be designed as

u = x+ 1.6567vx − 18.6854θ + 3.4594vθ

to stabilize the system, i.e., make the executions of the system
converge to zero. Then, we additionally add independent
disturbances to the values of x, vx, θ, vθ and u.

Table II gives a summary of all our tests. The benchmarks
are adapted from the ones described in [25], [4], [15], [1]. For
each test, we build a simulator which generates executions of
bounded lengths. For example, if the time step is δ and we are
interested in the system behavior in the time horizon T , then
each execution consists of T/δ elements which are the system
states and control inputs at the beginning of the time steps.
For the aircraft pitch benchmarks, we use the lookahead value
N = 20, while N = 10 is used for the other benchmarks.

The tests on the same benchmark are based on slightly
different PWC controllers along with the disturbance ranges
of different sizes. The controllers are using the same strategy
but different parameters which allow them to produce inputs
in different ranges. For example, the controller of the inverted
pendulum model can be more restrictive if we enlarge the
coefficients in u, however it also enlarges the set U . It is the
reason why we use large sets for U in our monitor for more
restrictive controllers.

B. Performance evaluation

The performance of our real-time monitoring algorithm is
evaluated in the following way. For each benchmark, we define
a safe set which is a box. For each test, we perform the



TABLE II
DESCRIPTION OF THE TESTS WITH BENCHMARKS. LEGENDS: T : THE TIME

HORIZON IN INTEREST, |x|: # OF STATE VARIABLES, |u|: # OF CONTROL
INPUTS, δ: STEP SIZE FOR MONITORING AND PWC CONTROL INPUTS, U :

RANGE OF EACH CONTROL INPUT, D: RANGE OF EACH TIME-VARYING
DISTURBANCE.

No. System T |x| |u| δ U D
1 Cruise

Control 10 1 1 0.05
[-0.5,1.5] [-0.1,0.1]

2 [-0.5,1.5] [-0.5,0.5]
3 [-1.5,2.5] [-0.5,0.5]
4 Motor

Speed 10 2 1 0.05
[-1,2] [-0.2,0.2]

5 [-1,2] [-0.5,0.5]
6 [-1.5,2.5] [-0.5,0.5]
7 Inverted

Pendulumn 5 4 1 0.02
[-0.5,1.5] [-0.5,0.5]

8 [-0.5,1.5] [-1.5,1.5]
9 [-1,2] [-1.5,1.5]

10 Aircraft
Pitch 20 3 1 0.02

[-6,6] [-0.1,0.1]
11 [-6,6] [-0.2,0.2]
12 [-7,7] [-0.2,0.2]
13

Ball & Beam 5 4 1 0.02
[-35,5] [-4,4]

14 [-35,5] [-8,8]
15 [-40,10] [-8,8]
16

F16 20 4 1 0.02
[-1,1] [-0.1,0.1]

17 [-1,1] [-0.2,0.2]
18 [-2,2] [-0.2,0.2]

19

Suspension 5 5 2 0.02

[-0.8,0.8]
[-0.2,0.2] [-0.2,0.2]

20 [-0.8,0.8]
[-0.2,0.2] [-1,1]

21 [-1.3,1.3]
[-0.3,0.3] [-1,1]

TABLE III
SETTINGS FOR SYSTEM EXECUTIONS. THE VARIABLE xi DENOTES THE

iTH STATE VARIABLE.

Benchmark Initial set Safe set S
Cruise Control xi ∈ [−0.1, 0.1] x1 ∈ [−0.2, 3]
Motor Speed xi ∈ [−0.1, 0.1] x1 ∈ [−0.12, 0.12]

Inverted
Pendulumn xi ∈ [−0.05, 0.05]

x1 ∈ [−0.22, 0.12]
x3 ∈ [−0.1, 0.1]

Aircraft Pitch xi ∈ [−0.1, 0.1] x3 ∈ [−2.5, 2.5]
Ball & Beam xi ∈ [−0.01, 0.01] x1 ∈ [−0.011, 0.011]

F16 xi ∈ [−0.1, 0.1] x3 ∈ [−0.4, 0.6]
Suspension xi ∈ [−0.01, 0.01] x3 ∈ [−0.11, 0.11]

algorithm on 100 executions and count the numbers of con-
trollable, alert, unsafe I and unsafe II executions respectively
by checking all states. Table III gives the safe sets and the
initial sets based on which the executions are computed. The
experimental results are given in Table IV.

In our tests, we use the LP solver in the GNU GLPK library
to check the emptiness of the intersection UI . When the safe
set is also a strip, we also use the method of range evaluation
to check the emptiness. In Table IV, we give the best, worst
and average time costs of computing one monitoring step, that
includes computing and concretizing reachable sets for the
future N steps, and checking their controllability. We also
provide the standard deviation in each test.

From the table, we can see that even the worst time cost
of a test is much lower than the real time step size, so each
prediction is computed and verified before its expiration, in
order words, no deadline is missing.

The LP solver has a better performance than the range

evaluation method in controllability verification. The reason
could be that the latter one is implemented in a prototype tool.
To further ensure the conservativeness, that is to compute a
guaranteed overapproximation for a reachable set, we may use
interval arithmetic in the monitor.

VI. CONCLUSION

We introduced a framework to real-time monitor the execu-
tions of controlled linear systems. In fact, our method can be
extended and applied to dealing with more complex systems,
such as Linear Time-Varying (LTV) or even nonlinear systems.
The directions of our future work are given as below.
1. Since the reachable set predictions for LTV stochastic

systems can also be computed symbolically, we plan to
extend our method to verify the controllability of stochastic
executions.

2. We plan to verify the properties that can be defined by a
richer language in the real-time monitoring framework. For
example, linear temporal logic properties.

3. We expect to propose new algorithms to recover a system
to a controllable state when some possible uncontrollability
in the future is detected.
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