
Monte-Carlo Techniques for Falsification of Temporal
Properties of Non-Linear Hybrid Systems

Truong Nghiem1, Sriram Sankaranarayanan2 , Georgios Fainekos3, Franjo Ivančić4, Aarti Gupta4

and George J. Pappas1.
1. Dept. of Electrical Eng., University of Pennsylvania, Philadelphia, PA.

2. Dept. of Computer Science, University of Colorado, Boulder, CO.
3. School of Computing, Informatics, and Decision Systems Engineering, Arizona State University, Tempe, AZ.

4. NEC Laboratories America, Princeton, NJ.
{nghiem,pappas}@grasp.upenn.edu, srirams@colorado.edu, fainekos@asu.edu,

{ivancic,agupta}@nec-labs.com

ABSTRACT
We present a Monte-Carlo optimization technique for finding in-
puts to a system that falsify a given Metric Temporal Logic (MTL)
property. Our approach performs a random walk over the space of
inputs guided by a robustness metric defined by the MTL property.
Robustness can be used to guide our search for a falsifying trajec-
tory by exploring trajectories with smaller robustness values. We
show that the notion of robustness can be generalized to consider
hybrid system trajectories. The resulting testing framework can be
applied to non-linear hybrid systems with external inputs. We show
through numerous experiments on complex systems that using our
framework can help automatically falsify properties with more con-
sistency as compared to other means such as uniform sampling.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statistics—
Probabilistic algorithms (including Monte Carlo)

General Terms
Verification

Keywords
Hybrid Systems, Testing, Robustness, Metric Temporal Logic

1. INTRODUCTION
We propose a technique for finding counterexamples to Metric

Temporal Logic (MTL) properties for non-linear hybrid systems
through global minimization of a robustness metric. Global op-
timization is carried out using a Monte-Carlo technique that per-
forms a random walk over the space of inputs consisting of initial
states, controls and disturbances. The robustness metric defines the
satisfaction of an MTL property over a given trajectory as a real
number, as opposed to the Boolean 0−1 notion used in Logic. The

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HSCC’10, April 12–15, 2010, Stockholm, Sweden.
Copyright 2010 ACM 978-1-60558-955-8/10/04 ...$10.00.

sign of the metric for a given trajectory s and formula ϕ indicates
whether s satisfies ϕ (written as s |= ϕ). Furthermore, “nearby”
trajectories, defined using a metric over trajectories, whose dis-
tances from s are smaller than its robustness also have the same
outcome for the property ϕ as s. Robustness metrics have been pre-
viously studied by some of the authors for robust testing of hybrid
systems [12, 11, 18]. However, for the most part, they have been
described over continuous or switched systems trajectories and for
properties over the continuous state variables. We provide a defini-
tion for hybrid trajectories in this work.

Given a robustness metric, finding a counterexample to a given
property ϕ reduces to finding a trajectory s that minimizes the
robustness score w.r.t ϕ. This can be viewed as an optimization
problem over the space of inputs of the system. However, in prac-
tice, this optimization problem is not necessarily guaranteed to be
tractable [1]. In almost all cases, the optimization problem (objec-
tive function and constraints) cannot be written down in a closed
functional form. Nevertheless, such optimization problems can of-
ten be solved satisfactorily using Monte-Carlo techniques, that per-
form a random walk in order to sample from a probability distribu-
tion defined implicitly by the robustness metric [31]. Over the long
run, the random walk converges to a stationary distribution over
the input space such that the neighborhood of inputs with smaller
values of robustness are sampled more frequently than inputs with
larger values. Furthermore, Monte-Carlo techniques do not require
the distribution itself to be known in a closed form. Instead, these
techniques simply require the ability to compare the values (ratio)
of the probability density function at two given points in the search
space. In practice, this reduces to simulating the system using the
sampled inputs. The contributions of this paper can be summarized
as follows:

1. We show that metrics used for robust testing naturally define
objective functions that enable us to cast the problem of fal-
sifying MTL properties into a global optimization problem.

2. We demonstrate the use of hit-and-run Monte-Carlo samplers
to carry out this optimization in the presence of (possibly
non-convex) constraints over the inputs.

3. We extend our notions to hybrid systems, using quasi-metrics
over discrete state-spaces to provide a notion of robustness
for hybrid trajectories w.r.t properties that can involve dis-
crete as well as the continuous state variables.

Our approach is applicable even if the property has been proven
using a verification technique. In such cases, our technique ob-
tains system trajectories that have low robustness values w.r.t the



requirements. In practice, finding non-robust trajectories may im-
ply designs with smaller safety margins. Traditional testing or veri-
fication techniques do not consider such trajectories using Boolean
notions of temporal satisfaction. Our approach is readily applicable
to Simulink/StateflowTM (S/S) models, since simulating the system
is the only primitive needed. We have implemented our approach
inside Matlab (TM) and use it to discover counterexamples to MTL
properties. We establish that random walks guided by robustness
metrics can often falsify MTL properties that cannot be falsified
using blind (uniform random) search.

2. PRELIMINARIES

2.1 Problem Definition
In this section, we briefly present the autonomous hybrid au-

tomaton model [1]. Non-autonomous systems are considered in
Section 3.3. We then present metrics and use them to provide con-
tinuous semantics for Metric Temporal Logic (MTL) over continu-
ous time trajectories. This is based on our previous work [12].

Def. 2.1 (Hybrid Automaton). A hybrid automaton Ψ con-
sists of components 〈V,L, T ,Θ,D, I, `0〉, wherein, V = {x1, . . .,
xn} is the set of continuous variables; L is a finite set of loca-
tions (modes); T is a set of (discrete) transitions such that for each
τ : 〈`1 → `2, gτ 〉 ∈ T , we move from `1 ∈ L to `2 ∈ L and the
relation gτ over V ∪ V ′ is satisfied; H0 = {`0} × Θ is the set
of initial conditions with `0 ∈ L and Θ ⊆ R

n; D is a mapping
of each ` ∈ L to a vector field D(`); and, I is a mapping of each
` ∈ L to a location invariant set I(`) ⊆ R

n.

The product of the locations L with the continuous state-space de-
fines the hybrid state space H = L×R

n. A (timed) trajectory of a
hybrid automaton is an infinite sequence of states 〈l, ~x〉 ∈ L ×R

n

of the form 〈l0, ~x0〉, 〈l1, ~x1〉, 〈l2, ~x2〉, . . ., such that initially l0 =
`0 and ~x0 ∈ Θ, and for each consecutive state pair 〈li, ~xi〉, we ei-
ther make discrete transition from li to li+1 or we evolve under the
continuous dynamics D(li) from ~xi to ~xi+1. A hybrid automaton
Ψ is deterministic iff starting from some initial state 〈`0, ~x0〉 there
exists a unique trajectory h : R+ → H of the automaton (R+ is
the set of non-negative reals). Unless otherwise stated, we consider
deterministic hybrid systems throughout this paper. We will also be
using the notation l : R+ → L to denote the location trajectory and
s : R+ → R

n to denote the continuous trajectory of the system. In
other words, for t ∈ R+, h(t) = 〈l(t), s(t)〉.

MTL Falsification. It is well known that safety properties in them-
selves do not suffice to specify all system behaviors in practice.
This is especially true for real-time embedded systems wherein
richer properties such as timing requirements, stability and so on
are equally important. Metric Temporal Logic (MTL) introduced
by Koymans [20] is a popular formalism for expressing such prop-
erties. The problem of verifying a general MTL specification is un-
decidable for hybrid systems. Consequently, the bounded-time ver-
ification or falsification of such properties has been studied [27, 29,
11]. Our goal in this work is the efficient falsification of bounded
time MTL properties for non-linear hybrid systems.

PROBLEM 2.1. For an MTL specification ϕ, the MTL falsifica-
tion problem consists of finding a trajectory of the system Ψ starting
from some valid initial state 〈`0, ~x0〉 such that the resulting hybrid
trajectory h or the corresponding continuous trajectory s falsifies
specification ϕ, i.e., h 6|= ϕ or s 6|= ϕ, respectively.

Our proposed solution for Problem 2.1 quantifies the robustness
of satisfaction of an MTL formula over a system trajectory in order

to guide the search for a falsifying trajectory [12]. We now present
a brief discussion on metrics and the robustness of MTL formulas.

2.2 Metrics
We first consider state-spaces equipped with a metric function

that provides a rigorous notion of “distance” between states. For
continuous state spaces, a suitable norm such as Lp norm (p ≥ 1)
provides such a notion. One of our contributions here is an ex-
tension of these notions to structural (directed-) metrics for hybrid
systems. This is described in Section 4.1.

Def. 2.2 (Metric). A metric function d, defined over a state-
space X is a function d : X × X 7→ R+, where R+ = [0,+∞].
The metric d maps pairs of states to non-negative extended real
numbers, satisfying the following properties:

Identity: d(x1, x2) = 0 iff x1 = x2,

Symmetry: d(x1, x2) = d(x2, x1), and

Triangle Inequality: d(x1, x3) ≤ d(x1, x2) + d(x2, x3).

If the Symmetry condition is dropped from the definition, then d is
termed a quasi-metric.

Given a metric d, a radius ε > 0 and a point x ∈ X , the open ε-
ball centered at x is defined asBd(x, ε) = {y ∈ X | d(x, y) < ε}.
Finally, if s and s

′ are two system trajectories that take values in a
metric space with metric d, we will use ρd to denote the metric
ρd(s, s

′) = supt∈R{d(s(t), s
′(t))}.

2.3 Robustness of Trajectories
We briefly present the robust interpretation (semantics) of MTL

formulas. Details are available from our previous work [12]. In this
section, we will refer to system trajectories as signals.

Def. 2.3 (MTL Syntax). Let AP be the set of atomic propo-
sitions and I be any non-empty interval of R+. The set MTL
of all well-formed MTL formulas is inductively defined as ϕ ::=
> | p | ¬ϕ | ϕ ∨ ϕ | ϕUIϕ, where p ∈ AP and > is true.

For real-time/hybrid systems, the atomic propositions label sub-
sets of R

n. An observation mapO : AP → 2R
n

maps each propo-
sition p ∈ AP to a setO(p) ⊆ R

n. Without loss of generality, each
O(p) ⊆ R

n is assumed Lebesgue measurable. In Section 4.1, we
will demonstrate how to formulate specifications over the hybrid
state-space H instead of the continuous state-space R

n.
We provide semantics that maps an MTL formula ϕ and a tra-

jectory s(t) to a value drawn from the linearly ordered set R. The
semantics for the atomic propositions evaluated for s(t) consists of
the distance between s(t) and the set O(p) labeling atomic propo-
sition p. Intuitively, this distance represents how robustly the point
s(t) lies within (or outside) the set O(p).

Def. 2.4 (Signed Distance). Let x ∈ X be a point, S ⊆ X be
a set and d be a metric on X . We define the signed distance from x
to S to be

Distd(x, S) :=



− inf{d(x, y) | y ∈ S} if x 6∈ S
inf{d(x, y) | y ∈ X\S} if x ∈ S

If this distance is zero, then the smallest perturbation of the point
x can affect the outcome of x ∈ O(p). We denote the robust valu-
ation of the formula ϕ over the signal s at time t by [[ϕ,O]]d(s, t).
Formally, [[·, ·]]d : (MTL×P(X)AP )→ (XR+ × R+ → R).



Def. 2.5 (Continuous-Time Robust Semantics). Let s ∈ XR+ ,
c ∈ R and O ∈ P(X)AP , then the continuous-time robust seman-
tics of any formula ϕ ∈ MTL with respect to s is recursively
defined as follows

[[>,O]]d(s, t) := +∞

[[p,O]]d(s, t) :=Distd(s(t),O(p))

[[¬ϕ1,O]]d(s, t) :=− [[ϕ1,O]]d(s, t)

[[ϕ1 ∨ ϕ2,O]]d(s, t) := max([[ϕ1,O]]d(s, t), [[ϕ2,O]]d(s, t))

[[ϕ1 UIϕ2,O]]d(s, t) := sup
t′∈(t+I)

min
`

[[ϕ2,O]]d(s, t′),

inf
t<t′′<t′

[[ϕ1,O]]d(s, t′′)
´

where t ∈ R+ and t+ I = {τ | ∃τ ′ ∈ I . τ = t+ τ ′}.

For the purposes of the following discussion, let (s, t,O) |= ϕ
denote the standard Boolean MTL satisfiability. Note that Boolean
MTL satisfiability reduces to an application of Def. 2.5 wherein
the range of the valuation function is the Boolean set B = {T,F}
instead of R. It is easy to show that if the trajectory satisfies the
property, then its robustness is non-negative and, similarly, it the
trajectory does not satisfy the property, then its robustness is non-
positive. The following result holds [12].

Theorem 2.1. Given a formula ϕ ∈ MTL, an observation
map O ∈ P(X)AP and a continuous-time signal s ∈ XR+ , the
following hold: (1) If (s, t,O) |= ϕ, then [[ϕ,O]]d(s, t) ≥ 0. In
other words, s satisfies the formula ϕ at time instant t ≥ 0 if its dis-
tance valuation is non-negative. Conversely, if [[ϕ,O]]d(s, t) > 0,
then (s, t,O) |= ϕ. (2) If for some t ∈ R

+, ε = [[ϕ,O]]d(s, t) 6= 0,
then for all s

′ ∈ Bρd
(s, |ε|), we have (s, t,O) |= ϕ if and only if

(s′, t,O) |= ϕ. I.e, ε defines a robustness tube around the tra-
jectory such that other “nearby” trajectories lying inside this tube
also satisfy ϕ.

Theorem 2.1 establishes the robust semantics of MTL as a nat-
ural measure of trajectory robustness. Namely, a trajectory is ε
robust with respect to an MTL specification ϕ, if it can tolerate per-
turbations up to size ε and still maintain its current Boolean truth
value. Alternatively, a trajectory with the opposite outcome for ϕ,
if it exists, has a distance of at least ε away.

The precise complexity of the computation of MTL robustness
using formula rewriting procedures is still an open problem [12].
However, for LTL formulae ϕ, a dynamic programming style al-
gorithm can compute the robustness value using O(mn) compar-
isons, where m = |ϕ| is the size of the formula and n is the length
of the simulation trajectory. Similarly, if we assume that all the
simulation trajectory is sampled at integer time instants and that the
MTL formula involves integer time constants, then the robustness
value of an MTL formula can be computed with O(mnc) compar-
isons, where c is the largest time value that appears in ϕ. Note
that in either case, we also need kn distance computations, where
k is the number of atomic propositions that appear in ϕ. In turn, the
computational complexity of the distance computations depends on
the type of the sets used for modeling the regions of interest in the
state-space. Details are presented elsewhere [12].

3. FALSIFYING CONTINUOUS SYSTEMS
In this section, we provide the basic formulation of falsification

in terms of global optimization of a robustness metric defined in
Section 2 and describe a Monte-Carlo technique to solve this global
optimization.

Let Ψ be a given (deterministic) system whose initial states lie
inside the set H0. Let ϕ be a given MTL property that we wish to
falsify. Given a trajectory s, we have defined a robustness metric
[[ϕ,O]]d (s, t) that denotes how robustly s satisfies (or falsifies) ϕ at
time t. For the following discussion, we assume a fixed label map
O and always interpret the truth (and robustness) of MTL formulas
evaluated at the starting time t = 0. Let Dϕ(s) = [[ϕ,O]]d (s, 0)
denote the robustness metric for s under these assumptions.

Lifting Dϕ to Inputs: The robustness metric Dϕ maps each trajec-
tory s to a real number r. The sign of r indicates whether s |= ϕ
and its magnitude |r| measures its robustness. Our goal is to find
inputs ~x0 ∈ Θ such that the resulting trajectory s 6|= ϕ, or equiva-
lently Dϕ(s) ≤ 0. This can be expressed as the optimization of the
objective Dϕ over the space of all system trajectories:

min
trajectorys

Dϕ(s) s.t. initial state of s : ~x0 ∈ Θ

However, the trajectories are not the true decision variables for this
problem. For instance, it is hard to explore the space of trajectories
directly while guaranteeing that each trajectory considered is valid.
Fortunately, for deterministic systems, we may associate each in-
put ~x0 ∈ Θ with a unique trajectory s and vice-versa. Let σ(~x0)
denote the trajectory obtained starting from the initial state ~x0. Let
Fϕ(~x0) = Dϕ(σ(~x0)) denote the robustness of the trajectory ob-
tained corresponding to the initial state ~x0 ∈ Θ. Therefore, the
optimization can be expressed over the space of inputs as follows:

minimize~x0∈Θ Fϕ(~x0) .

The inputs ~x0 are the true decision variables of the problem and the
optimization is carried out subject to the constraints in Θ.

Non-deterministic Systems: For non-deterministic and stochastic
systems, a single input can be associated with multiple (possibly
infinitely many) behaviors. For stochastic systems, we may eval-
uate Fϕ(~x) as an expectation obtained by sampling a large but
finite set of trajectories. Non-deterministic systems can often be
determinized by adding new input variables to represent the non-
deterministic choice. For the most part, we consider determinis-
tic systems in this paper. For instance, systems modeled in for-
malisms such as Simulink/Stateflow diagrams (TM) are determin-
istic, at least in theory.

The resulting optimization problem can be quite complex, un-
likely to be convex for all but the simplest of cases. Furthermore,
the objective function F though computable for any given input
through simulation, is not expressible in a closed form. Directly
obtaining gradients, Hessians and so on is infeasible for all but the
simplest of cases. We now present Monte-Carlo techniques that
can solve such global optimization problems through a randomized
technique that mimics gradient descent in many cases.

3.1 Monte-Carlo Sampling
The Monte-Carlo techniques presented here are based on accep-

tance-rejection sampling [5, 2]. These techniques were first intro-
duced in statistical physics wherein they were employed to simu-
late the behavior of particles in various potentials [15]. Variations
of Monte-Carlo techniques are also widely used for solving global
optimization problems [31].

We first present the basic sampling algorithm for drawing sam-
ples from a probability distribution and then the technique of hit-
and-run sampling that respects the (convex) constraints on the input
space due to Θ.

Let f(~x) = Fϕ(~x) be a computable robustness function, given
a property ϕ . We seek to minimize f over the inputs in the set



Θ. We wish to sample Θ such that any two points a, b ∈ Θ with
robustness values f(a) and f(b) are sampled with probability pro-

portional to e−βfϕ(a)

e−βfϕ(b) , where β > 0 is a “temperature” parameter,
whose significance will be made clear momentarily.

Algorithm 1: Monte-Carlo sampling algorithm.

Input: Θ: Input Space, f(·): Robustness Function,
ProposalScheme(·): Proposal Scheme

Result: Samples ⊆ Θ
begin

Choose some initial input ~x ∈ Θ.
while (¬Target) do

/* Select ~x′ using ProposalScheme */
~x′ ← ProposalScheme(~x)1

α← exp(−β(f(~x′)− f(~x)))2

r← UniformRandomReal(0, 1)3

if (r ≤ α) then /* Accept proposal? */4

~x← ~x′5

if (f(~x) ≤ 0) then reachTarget := true6

else7

/* Reject & seek new proposal */8

end

Algorithm 1 shows the schematic implementation of the algo-
rithm. Each iteration of the sampler generates a new proposal
~x′ ∈ Θ from the current sample ~x using some proposal scheme de-
fined by the user (Line 1). The objective f(~x′) is computed for this
proposal. Subsequently, we compute the ratio α = e−β(f(~x′)−f(~x))

(Line 2) and accept the proposal randomly, with probability α (Line 3).
Note that if α ≥ 1 (i.e, f(~x′) ≤ f(~x) ), then the proposal is ac-
cepted with certainty. Even if f(~x′) > f(~x) the proposal may still
be accepted with some non-zero probability. If the proposal is ac-
cepted then ~x′ becomes a new sample. Failing this, ~x remains the
current sample.

A proposal scheme is generally defined by a probability distri-
bution P (~x′|~x) that specifies the probability of proposing a new
sample input ~x′ given the current sample ~x. For a technical reason
(known as detailed balance, see [5]), our version of the algorithm
requires that P (~x′|~x) = P (~x|~x′). Furthermore, given any two in-
puts ~x, ~x′ ∈ Θ, it should be possible with nonzero probability to
generate a series of proposals ~x, ~x1, . . . , ~x

′ that takes us from input
~x to ~x′. This is necessary in order to guarantee that the entire input
state space is covered.

For simplicity, let Θ be bounded and discrete with a large but
finite number of points (e.g., consider Θ as a set of finite preci-
sion floating point numbers). The robustness function f(~x) over Θ
induces a probability distribution:

p(~x) =
1

M
e−βf(~x) ,

where M is the normalizing factor added to ensure that the proba-
bilities add up to one. Suppose Algorithm 1 were run to generate
a large number of samples N . Let η denote the frequency function
mapping subsets of the input space to the number of times sam-
ple was drawn from the set. Let P (S) =

P

~x∈S p(~x) denote the
volume of the probability function for a set S ⊆ Θ.

Theorem 3.1. In the limit, the acceptance rejection sampling
technique (almost surely) generates samples according to the dis-
tribution p, P (S) = limN→∞

η(S)
N

As a direct consequence, one may conclude, for instance, that
an input ~x1 with f(~x1) = −100 is more likely to be sampled as
compared to some other input ~x2 with f(~x2) = 100 in the long run.
A similar result holds for the continuous case assuming a suitable
measure such that

R

Θ
f(~x)dΘ is well defined [31].

Importance of β: The overall algorithm itself can be seen as a
randomized gradient descent, wherein at each step a new point ~x′

in the search space is compared against the current sample. The
probability of moving the search to the new point follows an ex-
ponential distribution on the difference in their robustness values:
p ∼ e−β(f(~x′)−f(~x)). In particular, if fϕ(~x′) ≤ fϕ(~x), the new
sample is accepted with certainty. Otherwise, it is accepted with
probability e−β(f(~x′)−f(~x)). Informally, larger values of β ensure
that only reductions to f(~x) are accepted whereas smaller values
correspondingly increase the probability of accepting an increase in
f(~x). As a result, points with lower values of f are sampled with
an exponentially higher probability as compared to points with a
higher value of the function f .

It is possible, in theory, to prove assertions about the number N
of samples required for the sampled distribution to converge within
some distance to the desired distribution governed by e−βfϕ(~x).
The acceptance rejection sampling method implicitly defines a (con-
tinuous time) Markov chain on Θ, whose invariant distribution is
the distribution p(~x) = f(~x)

R

Θ df(~y)
we wish to sample from. For the

case of discrete input spaces, the convergence is governed by the
mixing time of the Markov chain defined by the proposal scheme.
This time is invariably large (polynomial in the number of input
points), and depends on the proposal scheme used.

Adapting β. One of the main drawbacks of Algorithm 1 is that,
based on nature of the distribution, the sampling may get “trapped”
in local minima. This typically results in numerous proposals get-
ting rejected and few being accepted. Even though we are guar-
anteed eventual convergence, the presence of local minima slows
down this process, in practice. We therefore periodically adjust the
values of β (and also the proposal scheme) to ensure that the ratio
of accepted samples vs. rejected samples remains close to a fixed
value (1 in our experiments). This is achieved by monitoring the ac-
ceptance ratio during the sampling process and adjusting β based
on the acceptance ratio. A high acceptance ratio indicates that β
needs to be reduced, while a low acceptance rate indicates that β
needs to be increased.

Proposal Schemes. It is relatively simple to arrive at viable schemes
for generating new proposals. However, designing a scheme that
works well for the underlying problem requires a process of ex-
perimentation. For instance, it suffices to simply choose an input
~x′ uniformly at random from the inputs, regardless of the current
sample. However, such a scheme does not provide many advan-
tages over uniform random sampling. In principle, given a current
sample ~x, the choice of the next sample ~x′ must depend upon ~x.

A typical proposal scheme samples from a normal distribution
centered at ~x with a suitably adjusted standard deviation (using
some covariance matrix H). The covariance can be adjusted pe-
riodically based, once again, on the observed samples as well as
the acceptance ratio. A smaller standard deviation around ~x yields
samples whose robustness values differ very little from f(~x), thus
increasing the acceptance ratio. However, it is hard to respect the
constraint ~x′ ∈ Θ using such a proposal scheme.

Hit-and-run proposal scheme. Hit-and-run schemes are useful in
the presence of input domains such as Θ. For simplicity, we assume
that Θ is convex. Therefore, any line segment in some direction ~v



Figure 1: Hit-and-run proposal scheme.

starting from ~x has a maximum offset u such that the entire segment
between ~x and ~x+ u~v lies inside Θ.

At each step, we propose a new sample ~x′ based on the current
sample ~x. This is done in two steps:

1. Choose a random unit vector ~v uniformly (or using a Gaus-
sian distribution) (Cf. Fig. 1). In practice, one may choose a
random vector ~h and generate a unit vector using ~v =

~h

|~h|2
.

2. Discover the interval [l, u], such that

∀λ ∈ [l, u], ~x+ λ~v ∈ Θ .

In other words, ~v yields a line segment containing the point
x along the directions ±~v and [l, u] represent the minimum
and maximum offsets possible along the direction ~v starting
from ~x. If Θ is a polyhedron, bounds [l, u] may be obtained
efficiently by using a variant of the minimum ratio test. For a
more complex convex set Θ, value of l (resp. u) may be ob-
tained by solving the one dimensional optimization problem
min(max) λ s.t. ~x+λ~v ∈ Θ, by using a bisection procedure
given an initial guess on [l, u].

3. Finally, we choose a value λ ∈ [l, u] based on some prob-
ability distribution with a mean around 0. The variance of
this distribution is an important parameter that can be used
to control the acceptance ratio (along with β) to accelerate
convergence.

Hit-and-run samplers can also be used for non-convex input do-
mains such as unions of polytopes and so on. A detailed description
of the theory behind such sampling techniques is available else-
where [34, 31].

However, care must be taken to ensure that the input space Θ
is not skewed along some direction ~r. In the worst case, we may
imagine Θ as a straight line segment. In such cases, the hit-and-run
proposal scheme fails to generate new samples. This is remedied by
adjusting the scheme for selecting unit directions to take the skew
of Θ, embedding of Θ inside a subspace spanned by the indepen-
dent variables and, finally, applying a suitable transformation to Θ
that aids in sampling.

In practice, hit and run samplers can work over non-convex, dis-
connected domains. Theoretical results on these samplers are very
promising. Smith [33] proves the asymptotic convergence of hit
and run sampling over arbitrary open subsets of R

n. Lovasz [22,
23] has further demonstrated convergence in time O(n3) for hit
and run sampling of uniform distribution over a convex body in
n dimensions. Algorithms for global optimization such as hide-
and-seek [30] and improving hit-and-run [36] have combined hit-
and-run sampling with Monte-Carlo techniques to generate useful
global optimization techniques.

3.2 Computing Robustness
We briefly discuss the computation of the robustness metric for

trajectories. Continuous trajectories are hard to compute precisely,
even when the analytical form of the solution of the system is
known. Thus, trajectories have to be approximated numerically.

An approximate simulation functionG that supports robust eval-
uation of the given property ϕ should guarantee that for some bounded
time horizon [0, T ), ||G(~x0, t) − F(~x0, t)|| ≤ ε, for all t ∈ [0, T )
and for a sufficiently small ε > 0. Such a robust simulation func-
tion suffices, in practice, to resolve properties that may be of in-
terest to the system designers. An appropriate simulation function
can be obtained for a large class of ODEs using numerical sim-
ulation techniques of an appropriate order such as Runge-Kutta
or Taylor-series methods with adaptive step sizes [28]. Numer-
ical integration schemes can also be adapted to provide reliable
bounds ε on the distance between the actual and the numerical so-
lution. Given a simulation scheme G for a time interval of interest
[0, T ), we obtain a trace GT (~x0) as a finite set of sample points
{G(~x0, t) | t ∈ [0, T )}. The robustness Dϕ can be approximated
using this set of sample points obtained by a numerical integrator.

Unfortunately, for a trajectory σ obtained as the output of a nu-
merical integrator with known error bounds, the trace distance func-
tion may no longer satisfy Dϕ(σ) ≥ 0 whenever σ |= ϕ. In-
stead, we may conclude the existence of some interval [−ε2, ε1] for
some ε1, ε2 ≥ 0, such that if Dϕ(σ) ≤ −ε2, then σ 6|= ϕ and if
Dϕ(σ) ≥ ε1 then σ |= ϕ. In general, we may not draw any conclu-
sions if−ε1 ≤ Dϕ(σ) ≤ ε2. Furthermore, the bounds ε1, ε2 are of-
ten unknown for a given system. Nevertheless, the presence of such
a bound implies that it still makes sense to perform the optimization
using a numerically simulated trajectory function G(~x0, t).

min. fP (~x0) s.t. ~x0 ∈ Θ .

In practice, such a minimally “robust” simulated trajectories will
often be of great interest to system designers even if mathematically
speaking they do not violate the property under consideration.

Example 3.1. Consider the time variant system

dx
dt

= x− y + 0.1t
dy
dt

= y cos(2πy)− x sin(2πx) + 0.1t

with the initial condition (x, y) ∈ [−1, 1] × [−1, 1]. We wish
to falsify the property 2[0,2]a, wherein O(a) = [−1.6,−1.4] ×
[−.9,−1.1]. Our simulation uses a numerical ODE solver with a
fixed time step over the time interval t ∈ [0, 2]. Figure 2(A) shows
the trajectory the falsifies our safety property using the hit-and-run
sampler and the scatter plot consisting of the samples generated by
the Monte-Carlo sampler. Figure 2(B) plots the robustness of the
sampled trajectory at each simulation step.

Remark 3.1. If the user is willing to tolerate additional com-
putational cost, then it is possible to bound the inaccuracies of the
numerical simulation even under the presence of floating-point er-
rors [13]. Then, these bounds can be used to provide bounds on the
robustness of the actual continuous-time trajectory [12].

3.3 Non-autonomous Systems
We now consider extensions to non-autonomous control systems

of the form ~̇x = f(~x, ~u), with time-varying inputs ~u : [0, T ] 7→
R

m constrained to belong to a (measurable) set of functions U .
Our goal is to recast the search for control inputs ~u ∈ U in terms of
a search for a set of parameters ~λu ∈ R

k that lie in some domain
Γ. Valuations to the parameters ~λ ∈ Γ, result in a set of appropriate
control inputs ~u(~λ) ∈ U . Such a parameterization helps us reduce



−2.5 −2 −1.5 −1 −0.5 0 0.5 1
−1.5

−1

−0.5

0

0.5

1

x

y

Scatter plot of sampled inputs along with the discovered violation

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Simulation Step#

F
itn

es
s 

F
un

ct
io

n 
V

al
ue

(A) (B)

Figure 2: (A) Time trajectory violating the property 2[0,2] ([−1.6,−1.4] × [−.9,−1.1]) along with the scatter plot of sampled inputs
and (B) robustness shown in the y-axis as a function of the simulation step number.

the search in terms of a standard global optimization over the space
of real-valued decision variables as opposed to functional valued
variables. However, such a reduction may not necessarily capture
all the control inputs possible in the set U , and therefore restrict our
search to a (proper) subset of inputs.

Given a space of inputs ~u ∈ U , there are numerous ways to
parameterize the space of control inputs. We discuss a few such
parameterizations below:

Piece-wise Constant Control. We partition the overall time inter-
val [0, T ] into a set of intervals

Sm

i=1[ti−1, ti), wherein t0 = 0
and tm = T . For each interval [ti−1, ti), i ≥ 1, the control u(t)
is restricted to be a constant value λi−1. The control is therefore
parameterized by the tuple 〈λ0, . . . , λm〉, chosen so that the con-
straints in U are respected.

Piece-wise Linear Control. Piece-wise constant control may be
extended to piecewise linear controls and beyond. Once again, we
partition [0, T ] intom disjoint intervals. For each interval [ti−1, ti],
we restrict the form of each control input to be piece-wise linear:
u(ti−1 + δ) = u(ti−1) + λi−1δ. This effectively yields the pa-
rameters 〈u(0), λ0, . . . , λm〉 that define the control inputs. These
parameters are chosen so that that the resulting controls respect the
constraints in U . Extensions to this scheme can introduce higher-
order parameters of the form u(ti−1 + δ) = u(ti−1) + δλ1

i−1 +
δ2λ2

i−1 and so on.

Spline Functions. We choose a family of splines functions υ(~x, ~λ)

over a set of parameters ~λ and seek to express each control input
u(~x) = υ(~x, ~λ0) for some instantiation of the parameters ~λ = ~λ0.
The splines could be varied at definite time instances and continu-
ity/differentiability conditions imposed at such instances.

Example 3.2 (Aircraft Model). We consider a simple aircraft
model describing the movement of an aircraft as a particle in the
vertical plane, taken directly from previous work of Lygeros [24].
The equations of motion can be described by the ODE:

~̇x =

2

4

−SρB0
2m

~x2
1 − g sin(~x2)

SρC0
2m

~x1 − g
cos(~x2)

~x1

~x1 sin(~x2)

3

5

+

2

4

u1
m

0
0

3

5 +

2

4

− Sρ

2m
~x2

1(B1u2 +B2u
2
2)

SρC1
2m

~x1u2

0

3

5

with state-space variables x1 describing the aircraft speed, x2 de-
scribing its flight path angle and x3 describing its altitude. The
control input u1 represents the thrust and u2 the angle of attack.
Numerical values for the parameters are as described by Lygeros [24].

The initial value ~x0 belongs to the box [200, 260]× [−10, 10]×
[120, 150]. The control inputs are within the range (u1(t), u2(t)) ∈
[34386, 53973]× [0, 16]. We wish to find initial values and control
inputs that falsify the MTL formula

ϕ = 2[1,1.5](x1 ∈ [250, 260])⇒ 2[3,4](x1 6∈ [230, 240]) ,

which claims that if the aircraft speed lies in range [250, 260] dur-
ing the time interval t ∈ [1, 1.5], then it cannot be within the range
[230, 240] within the time interval t ∈ [3, 4]. The time interval of
interest is taken to be [0, 4.0]. This is divided into 10 sub-intervals
and the control inputs were parameterized to be piece-wise con-
stant within each sub-interval, yielding 20 parameters. Overall,
the search space has 24 parameters. We wish to find a control in-
put so that the resulting trajectory falsifies ϕ.

A hit and run sampler was used for 2500 steps. The samples
along a falsifying trajectory found are shown in Fig. 3(a,b). Fig-
ure 3(c) shows how the robustness score varies with the number of
simulation steps. We note that our implementation assigns a score
zero to all falsifying traces. This is performed in order to explore
the space of falsifying traces uniformly.

4. FALSIFYING HYBRID SYSTEMS
In this section, we consider the case of falsifying MTL proper-

ties for (potentially non-autonomous) hybrid systems. In general,
the testing framework, which was presented in Section 3.3, can be
applied to switched systems with discrete modes and transitions be-
tween them as long as the property ϕ does not involve the system’s
discrete modes.

Given a deterministic hybrid system Ψ and an initial condition
h0, let G(h0, t) represent a simulation function for a set of time
instances T such that G approximates the trajectories of the hybrid
system. We assume that G approximates the time trajectories with
some given tolerance bound ε by adjusting the integration method.
In practice, this may be harder to achieve for hybrid systems than
for purely continuous systems due to the problem of robust event
detection [10]. However, assuming that such a simulator is avail-
able, we may translate the trace fitness function defined for contin-
uous simulations to hybrid simulations with discrete transitions.



235 240 245 250 255 260

−5

0

5

10
120

130

140

150

160

170

180

190

200

210

x
1

x
2

x 3

0 0.5 1 1.5 2 2.5 3 3.5 4
230

235

240

245

250

255

260

Time

x 1

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12

14

16

18

20

(a) (b) (c)

Figure 3: (a) Scatter plot of the samples, (b) the trajectory falsifying MTL formula ψ : 2[1,1.5](x1 ∈ [250, 260]) ⇒ 2[3,4](x1 6∈
[230, 240]) and (c) the variation of robustness of samples for the aircraft model over the simulation steps.

Specifications for hybrid automata involve a sequence of loca-
tions of the discrete subsystem. The simplest such property being
the (un)reachability of a given “error” location. As a result, contin-
uous state distance based on a norm (or a metric distance) does not,
in general, provide a true notion of distance between the specifica-
tion and the trace. This is especially true in the presence of discrete
transitions with reset maps.

4.1 Robustness of Hybrid Trajectories
For the case of hybrid systems with reset maps, the robustness

metric used thus far cannot be used to compare the hybrid states
(`, ~x) and (m,~y) in terms of some norm distance between ~x and
~y. Therefore, structural considerations based on the graph that con-
nects the different modes of the hybrid automata have to be consid-
ered while designing fitness functions. We now consider metrics
for hybrid systems.

First, we have to define what is the distance between two modes
of the hybrid automaton. We claim that a reasonable metric is the
shortest path distance between two locations. Intuitively, the short-
est path distance provides us with a measure of how close we are to
a desirable or undesirable operating mode of the automaton. Such
information is especially useful in the class of falsification algo-
rithms that we consider in this paper.

In the following, given hybrid automaton Ψ, we let Γ(Ψ) =
(L,→) represent the directed graph formed by its discrete modes
and transitions. The shortest path distance from node u to node v in
the graph Γ(Ψ) will be denoted by π(u, v). Note that π(u, v) =∞
iff there is no path from u to v in the graph Γ(Ψ). It is easy to
verify that the shortest path distance satisfies all the criteria for a
quasi-metric. The shortest path metric can be computed by running
a Breadth First Search (BFS) algorithm on the graph. It is well
known that BFS runs in linear time on the size of the input graph.

In order to reason about trajectories h in the hybrid state space
H, we introduce a generalized distance δ : H × H → B

+, where
B

+ = ({0} × R+) ∪ (N∞ × {+∞}) and N∞ = N ∪ {∞}, with
definition for h = 〈l, x〉 ∈ H and h′ = 〈l′, x′〉 ∈ H,

δ(h, h′) =



〈0, d(x, x′)〉 if l = l′

〈π(l, l′),+∞〉 otherwise

where π is the shortest path metric and d is a metric on R
n. In order

for our generalized distance to behave like a metric, the range B
+

must be an additive Abelian semigroup with identity and absorbing
elements and, also, it must be linearly ordered. We order the set
using the dictionary order. Given 〈k, r〉, 〈k′, r′〉 ∈ Z∞ × R+,
where Z is the set of integers and Z∞ = Z∪{±∞}, we define the

order relation ≺ as

〈k, r〉 ≺
˙

k′, r′
¸

iff



k < k′ if k 6= k′

r < r′ if k = k′

Hence, B
+ has a smallest element, namely 〈0, 0〉, and an absorbing

element, namely 〈+∞,+∞〉, which is also the least upper bound.
Finally, the addition (and the negation in the case of robust se-
mantics) is defined component-wise. It is easy to verify that the
generalized distance δ satisfies the identity and triangle inequality
properties. In other words, δ is a generalized quasi-metric on H.

The only requirement in the definition of the robust semantics
of MTL formulas (Section 2.3) is that both the trajectory under
study and the specifications take values from the same space. A
straightforward induction on the structure of formula ϕ will indi-
cate that Theorem 2.1 also holds in the case where the metric d is
replaced by a quasi-metric, e.g., δ, in the signed distance function
and the metric ρd. In the following, we will be using the notation
[[·, ·]]

Γ(Ψ)
δ to indicate that now the graph of the hybrid automaton

is required in the robustness computation. Formally, we have that
[[·, ·]]

Γ(Ψ)
δ : (MTL × P(H)AP ) → (HR+ × R+ → B), where

B = ((Z<0 ∪ {−∞})× {−∞}) ∪ ({0} × R−) ∪ B
+.

Theorem 4.1. Given a formula ϕ ∈ MTL, an observation
map O ∈ P(H)AP , a hybrid automaton graph Γ(Ψ) and a hy-
brid trajectory h ∈ H

R+ , the following holds. If for some t ∈ R+,
we have 〈ε1, ε2〉 = [[ϕ,O]]

Γ(Ψ)
δ (h, t) 6= 〈0, 0〉, then for all h

′ ∈
Bρδ

(h, 〈|ε1|, |ε2|〉), we have (h, t,O,Γ(Ψ)) |= ϕ if and only if
(h′, t,O,Γ(Ψ)) |= ϕ.

Therefore, we are in position to reason about hybrid trajecto-
ries without changing our definition of MTL robustness. Now the
atomic propositions can map to subsets of H placing, thus, require-
ments not only on the continuous state-space, but also on the mode
of the hybrid system. Informally, a robustness value of 〈k, r〉 will
mean the following:

• If k = 0 and r 6= 0, then we can place a tube of radius
|r| around the continuous part of the trajectory which will
guarantee equivalence under the MTL formula. Moreover, it
is required that at each point in time t, the locations are the
same for all such trajectories.

• If k > 0, then the specification is satisfied and, moreover, the
trajectory is k discrete transitions away from being falsified.

• If k < 0, then the specification is falsified and, moreover, the
trajectory is k discrete transitions away from being satisfied.



0 1 2 3 4
0

1

2

3

4

x
1

x 2

13 14 15 16

9 10 11 12

5 6 7 8

1 2 3 4

Figure 4: The environment of the vehicle benchmark example
(Example 4.1). The arrows indicate the direction of the vector
field in each location and the numbers the id of each location.
The green box indicates the set of initial conditions projected
on the position plane.

0 0.5 1 1.5 2 2.5 3 3.5 4
0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 5: The scatter plot of the sampled initial positions pro-
jected on the position plane, along with the least robust trajec-
tory of the vehicle benchmark example (Example 4.1).

This new hybrid notion of MTL robustness is useful in the con-
text of testing for hybrid systems. Namely, our original definition
of MTL robustness places requirements only on the observable
continuous-time trajectories of the system while ignoring the un-
derlying discrete dynamics. The new robustness notion can struc-
turally distinguish system trajectories that might have similar ro-
bustness values otherwise. Thus, it can be used to guide our search
algorithms towards less robust system modes. Moreover, we can
now impose different requirements at different operating modes of
the system. This was not possible before.

Example 4.1. Consider a complex instance of the vehicle bench-
mark [14] shown in Fig. 4. The benchmark studies a hybrid au-
tomaton Ψ with 4×4 discrete locations and 4 continuous variables
x1, x2, x3, x4 that form the state vector ~x = [x1 x2 x3 x4]

T . We
refer to the vectors [x1 x2]

T and [x3 x4]
T as the position and the

velocity of the system, respectively. The structure of the hybrid au-
tomaton can be better visualized in Fig. 4. The invariant set of
every (i, j) location is an 1× 1 box that constraints the position of
the system, while the velocity can flow unconstrained. The guards

in each location are the edges and the vertices that are common
among the neighboring locations.

Each location has affine constant dynamics with drift. In detail,
in each location (i, j) of the hybrid automaton, the system evolves
under the differential equation ~̇x = A~x−Bu(i, j) where

u(i, j) = [sin(πC(i, j)/4) cos(πC(i, j)/4)]T and

A =

»

0 0 1 0
0 0 0 1
0 0 −1.2 0.1
0 0 0.1 −1.2

–

B =

»

0 0
0 0

−1.2 0.1
0.1 −1.2

–

C =

»

4 2 3 4
3 6 5 6
1 2 3 6
2 2 1 1

–

Our goal is to find an initial state in the set H0 = {13} ×
[0.2, 0.8] × [3.2, 3.8] × [−0.4, 0.4] × [−0.4, 0.4] that will falsify
the formula ϕ = (¬ b) U[0,25.0] c, wherein atomic proposition
b refers to the shaded rectangle (bottom right) in Fig. 5 and c
to the unshaded rectangle above in Fig. 5. In detail, O(b) =
{4} × [3.2, 3.8]× [0.2, 0.8] ×R

2 and O(c) = {8} × [3.2, 3.8] ×
[1.2, 1.8] × R

2. Informally, ϕ says that the system should reach
c within 25 time units without passing through b. The least robust
(≈ 0) trajectory hl found by our algorithm is shown in Fig. 5 along
with the scatter plot for the samples. Note that it could be the case
that the system is correct with the respect to the specification, but it
is definitely not robustly correct.

5. EXPERIMENTS
We have implemented our techniques inside the Matlab(TM) en-

vironment. Our implementation is general enough to interact with
various means for describing hybrid systems including Simulink /
Stateflow models. We currently support full time bounded MTL for
continuous as well as hybrid time trajectories.

We perform a comparison of our implementation (MC) against a
simple uniform random (UR) exploration of the state-space. Both
MC and UR are each run for a set maximum number of iterations,
terminating early if a falsifying trajectory is found. Since these
techniques are randomized, each experiment was repeated numer-
ous times under different seeds in order to obtain statistically signif-
icant results. Uniform random exploration provides an ideal mea-
sure of the difficulty of falsifying a property over a given input.
Its rate of success empirically quantifies the difficulty of falsifying
a given property. Finally, we have already argued about the im-
portance of obtaining the least robust trajectory where falsification
cannot be achieved. To this end, we compare the set of minima
found using MC as well as that using UR. Table 1 reports on the
results of our comparison using different MTL properties for the
benchmark systems considered thus far. We find that the perfor-
mance varies depending on the ease with which the property can be
violated by means of uniformly sampling the input space. In almost
all the cases, MC technique performs better than uniform random
sampling, especially when a falsification is hard to find through UR
sampling. We also note, that while MC technique finds the least ro-
bust trajectory in almost all cases, the least robust trajectory suffers
from large outlying values in some cases. We believe that these
values represent local minima that the MC sampling is unable to
get away from within the limited number of iterations. In prac-
tice, we may periodically reset the MC simulation using random
restarts. However, such restarts were not used in our experimental
comparison.

6. RELATED WORK
Due to the known undecidability results in the analysis of hy-

brid systems [1] and the state explosion problem of the reachability
computation algorithms (see [18] for some related references), a lot
of recent research activity has concentrated on testing approaches
to the verification of continuous and hybrid systems [19].



Table 1: Experimental Comparison of Monte-Carlo vs. Uniform Random falsification. Legend: ψ: MTL formula number, #Fals.:
number of instances falsified, #MinRob.: best robustness scores, Time: Avg. time in seconds.

ψ #Run #Iter. #Fals. MinRob. Time
P(MC ≤ UR)

per MC UR MC UR MC UR
run 〈min, avg,max〉 avg avg

Aircraft Example 3.2
2[.5,1.5]a ∧ 3[3,4]b 100 500 88 100 〈0, 1.2, 18.6〉 〈0, 0, 0〉 5.6 .8
2[0,4]c ∧ 3[3.5,4]d 100 1000 100 66 〈0, 0, 0〉 〈0, .02, .2〉 10.2 28

3[1,3]e 100 2000 81 16 〈0, .9, 40〉 〈0, .5, 1.3〉 20.3 34.0
3[.5,1]f ∧ 2[3,4]g 100 2500 0 0 〈9.5, 9.7, 10.1〉 〈9.7, 10.7, 12.4〉 55.5 55.4

2[0,.5]h 100 2500 100 100 〈0, 0, 0〉 〈0, 0, 0〉 3 .5
2[2,2.5]i 100 2500 99 51 〈0, 0, 1.0〉 〈0, .2, 1.4〉 11.9 26.9

Vehicle Benchmark 4.1
(¬ b) U[0,25.0] c 35 1000 11 8 〈0, .02, .04〉 〈0, .02, .04〉 747 804

The use of Monte Carlo techniques for model checking has been
considered previously by Grosu and Smolka [17]. Whereas Grosu
and Smolka consider random walks over the automaton defined by
the system itself, our technique defines random walks over the in-
put state space. These are, in general, distinct approaches to the
problem. In practice, our approach does not have the limitation
of being restricted by the topology of the system’s state transition
graph. Depending on this topology, the probability of visiting states
deeper in the graph can sometimes be quite small in pathological
cases. On the other hand, Grosu et al.’s technique can be extended
readily to the case of systems with control inputs without requiring
a finite parameterization of the control. We are currently investi-
gating the possibility of combining both types of random walks in
a single framework. Previous work by some of the authors in this
work considered Monte-Carlo techniques for finding bugs in pro-
grams [32]. However, our previous efforts were restricted to safety
properties and did not have a systematic definition of robustness
that we employ here.

There exist two main approaches to the testing problem of hybrid
systems. The first approach is focused on choosing inputs and/or
parameters in a systematic fashion so as to cover the state-space of
the system [9, 3, 4, 25, 26]. These approaches are mainly based
on the theory of rapidly exploring random trees (RRTs). The other
approach is based on the notion of robust simulation trajectory [8,
16, 18, 21]. In robust testing, a simulation trajectory can repre-
sent a neighborhood of trajectories achieving, thus, better coverage
guarantees. Recently, the authors in [7] have made the first steps in
bridging these two aforementioned approaches.

On the research front of falsification/verification of temporal logic
properties through testing, the results are limited [27, 29, 11]. The
work that is the closest to ours appears in [29]. The authors of that
work develop a different notion of robustness for temporal logic
specifications, which is also used as a fitness function for optimiza-
tion problems. Besides the differences in the application domain,
i.e., [29] focuses on parameter estimation for biological systems,
whereas our paper deals with the falsification of hybrid systems,
the two works have also several differences at the theoretical and
computational levels. At the theoretical level, we have introduced a
new metric for hybrid spaces which enables reasoning over hybrid
trajectories, while at the computational level our approach avoids
set operations, e.g., union, complementation etc, which, in general,
increase the computational load.

Younes and Simmons, and more recently, Clarke et al. have pro-

posed the technique of Statistical Model Checking (SMC) [35, 6],
which generates uniform random inputs to a system subject to some
constraints, thus converting a given system into a stochastic system.
A probabilistic model checker can be used to prove assertions on
the probability that the system satisfies a given temporal property
ϕ. This probability can be safely approximated using Wald’s prob-
abilistic ratio test. Statistical model checking, like our technique,
requires a simulator to be available for the system but not a tran-
sition relation representation. In contrast to SMC, our approach is
guided by a robustness metric towards less robust trajectories. On
the other hand, the complex nature of the system and the robust-
ness metrics imply that we cannot yet provide guarantees on the
probability of satisfaction of the formula.

7. CONCLUSIONS
Embedded systems require the verification of elaborate specifi-

cations such as those that can be expressed in MTL. The undecid-
ability of the MTL verification problem over such complex con-
tinuous systems mandates the use of lightweight formal methods
that usually involve testing. In this paper, we have presented a
testing framework for the Metric Temporal Logic (MTL) falsifica-
tion of non-linear hybrid systems using Monte-Carlo optimization
techniques. The use of hit-and-run Monte-Carlo optimization is re-
quired in order to overcome the difficulties in handling the complex
system dynamics as well as the nonlinearities in the objective func-
tion. Moreover, in order to enable more efficient search in hybrid
state-spaces, a generalized distance function was introduced.

Experimental results indicate the superiority of our testing frame-
work over random search in most of the benchmark examples. The
advantages of our approach are not limited only to the fact that
we can falsify arbitrary systems, but also that we can provide ro-
bustness guarantees even to systems that have been proven cor-
rect. Even though our results are preliminary, the experiments are
promising enough to indicate that this might be a practical alterna-
tive to hybrid system verification methods.

8. ACKNOWLEDGEMENTS
This research was partially supported by NSF CSR-EHS 0720518.

9. REFERENCES
[1] ALUR, R., COURCOUBETIS, C., HALBWACHS, N.,

HENZINGER, T. A., HO, P.-H., NICOLLIN, X., OLIVERO,



A., SIFAKIS, J., AND YOVINE, S. The algorithmic analysis
of hybrid systems. Theoretical Computer Science 138, 1
(1995), 3–34.

[2] ANDRIEU, C., FREITAS, N. D., DOUCET, A., AND

JORDAN, M. I. An introduction to MCMC for machine
learning. Machine Learning 50 (2003), 5–43.

[3] BHATIA, A., AND FRAZZOLI, E. Incremental search
methods for reachability analysis of continuous and hybrid
systems. In HSCC (2004), vol. 2993 of LNCS, Springer,
pp. 142–156.

[4] BRANICKY, M., CURTISS, M., LEVINE, J., AND

MORGAN, S. Sampling-based planning, control and
verification of hybrid systems. IEE Proc.-Control Theory
Appl. 153, 5 (2006), 575–590.

[5] CHIB, S., AND GREENBERG, E. Understanding the
Metropolis-Hastings algorithm. The American Statistician
49, 4 (Nov 1995), 327–335.

[6] CLARKE, E., DONZE, A., AND LEGAY, A. Statistical model
checking of analog mixed-signal circuits with an application
to a third order δ − σ modulator. In Hardware and Software:
Verification and Testing (2009), vol. 5394/2009 of Lecture
Notes in Computer Science, pp. 149–163.

[7] DANG, T., DONZE, A., MALER, O., AND SHALEV, N.
Sensitive state-space exploration. In Proc. of the 47th IEEE
CDC (Dec. 2008), pp. 4049–4054.

[8] DONZE, A., AND MALER, O. Systematic simulation using
sensitivity analysis. In HSCC (2007), vol. 4416 of LNCS,
Springer, pp. 174–189.

[9] ESPOSITO, J. M., KIM, J., AND KUMAR, V. Adaptive
RRTs for validating hybrid robotic control systems. In
Proceedings of the International Workshop on the
Algorithmic Foundations of Robotics (2004).

[10] ESPOSITO, J. M., AND KUMAR, V. An asynchronous
integration and event detection algorithm for simulating
multi-agent hybrid systems. ACM Trans. Model. Comput.
Simul. 14, 4 (2004), 363–388.

[11] FAINEKOS, G. E., GIRARD, A., AND PAPPAS, G. J.
Temporal logic verification using simulation. In FORMATS
(2006), vol. 4202 of LNCS, Springer, pp. 171–186.

[12] FAINEKOS, G. E., AND PAPPAS, G. J. Robustness of
temporal logic specifications for continuous-time signals.
Theoretical Computer Science 410, 42 (2009), 4262–4291.

[13] FAINEKOS, G. E., SANKARANARAYANAN, S., IVANČIĆ,
F., AND GUPTA, A. Robustness of model-based simulations.
In IEEE Real-Time Systems Symposium (2009).

[14] FEHNKER, A., AND IVANČIĆ, F. Benchmarks for hybrid
systems verification. In HSCC (2004), vol. 2993 of LNCS,
springer, pp. 326–341.

[15] FRENKEL, D., AND SMIT, B. Understanding Molecular
Simulation: From Algorithms to Applications. Academic
Press, 1996.

[16] GIRARD, A., AND PAPPAS, G. J. Verification using
simulation. In HSCC (2006), vol. 3927 of LNCS, Springer,
pp. 272 – 286.

[17] GROSU, R., AND SMOLKA, S. Monte Carlo model
checking. In TACAS (2005), vol. 3440 of Lecture Notes in
Computer Science, pp. 271–286.

[18] JULIUS, A. A., FAINEKOS, G. E., ANAND, M., LEE, I.,
AND PAPPAS, G. J. Robust test generation and coverage for
hybrid systems. In HSCC (2007), no. 4416 in LNCS,
Springer, pp. 329–342.

[19] KAPINSKI, J., KROGH, B. H., MALER, O., AND

STURSBERG, O. On systematic simulation of open
continuous systems. In HSCC (2003), vol. 2623 of LNCS,
Springer, pp. 283–297.

[20] KOYMANS, R. Specifying real-time properties with metric
temporal logic. Real-Time Systems 2, 4 (1990), 255–299.

[21] LERDA, F., KAPINSKI, J., CLARKE, E. M., AND KROGH,
B. H. Verification of supervisory control software using state
proximity and merging. In HSCC (2008), vol. 4981 of LNCS,
Springer, pp. 344–357.

[22] LOVASZ, L. Hit-and-run mixes fast. Mathematical
Programming 86 (1999), 443–461.

[23] LOVASZ, L., AND VEMPALA, S. S. Hit-and-run from a
corner. SIAM Journal on Computing 35, 4 (2006), 985–1005.

[24] LYGEROS, J. On reachability and minimum cost optimal
control. Automatica 40 (2004), 917–927.

[25] NAHHAL, T., AND DANG, T. Test coverage for continuous
and hybrid systems. In CAV (2007), vol. 4590 of LNCS,
Springer, pp. 449–462.

[26] PLAKU, E., KAVRAKI, L. E., AND VARDI, M. Y. Hybrid
systems: From verification to falsification. In CAV (2007),
vol. 4590 of LNCS, Springer, pp. 463–476.

[27] PLAKU, E., KAVRAKI, L. E., AND VARDI, M. Y.
Falsification of LTL safety properties in hybrid systems. In
TACAS (2009), vol. 5505 of LNCS, pp. 368 – 382.

[28] PRESS, W. H., FLANNERY, B. P., TEUKOLSKY, S. A., AND

VETTERLING, W. T. Numerical Recipes: The Art of
Scientific Computing, 2nd ed. Cambridge University Press,
Cambridge (UK) and New York, 1992.

[29] RIZK, A., BATT, G., FAGES, F., AND SOLIMAN, S. On a
continuous degree of satisfaction of temporal logic formulae
with applications to systems biology. In 6th International
Conference on Computational Methods in Systems Biology
(2008), no. 5307 in LNCS, Springer, pp. 251–268.

[30] ROMEIGN, H., AND SMITH, R. Simulated annealing for
constrained global optimization. Journal of Global
Optimization 5 (1994), 101–126.

[31] RUBINSTEIN, R. Y., AND KROESE, D. P. Simulation and
the Monte Carlo Method. Wiley Series in Probability and
Mathematical Statistics, 2008.

[32] SANKARANARAYANAN, S., CHANG, R. M., JIANG, G.,
AND IVANČIĆ, F. State space exploration using feedback
constraint generation and Monte Carlo sampling. In
ESEC/SIGSOFT FSE (2007), ACM, pp. 321–330.

[33] SMITH, R. Monte Carlo procedures for generating points
uniformly distributed over bounded regions. Operations
Research 38, 3 (1984), 1296–1308.

[34] SMITH, R. L. The hit-and-run sampler: a globally reaching
Markov chain sampler for generating arbitrary multivariate
distributions. In Proceedings of the 28th conference on
Winter simulation (1996), IEEE Computer Society,
pp. 260–264.

[35] YOUNES, H. L. S., AND SIMMONS, R. G. Statistical
probabilistic model checking with a focus on time-bounded
properties. Information & Computation 204, 9 (2006),
1368–1409.

[36] ZABINSKY, A., SMITH, R., MACDONALD, J., ROMEIJN,
H., AND KAUFMAN, D. Improving hit-and-run for global
optimization. Journal of Global Optimization 3 (1993),
171–192.


