
Exploring the Internal State of User Interfaces by
Combining Computer Vision Techniques with

Grammatical Inference.
Paul Givens, Aleksandar Chakarov, Sriram Sankaranarayanan and Tom Yeh.

University of Colorado, Boulder.
Email: {paul.givens,aleksandar.chakarov,srirams,tom.yeh}@colorado.edu

Abstract—In this paper, we present a promising approach
to systematically testing graphical user interfaces (GUI) in a
platform independent manner. Our framework uses standard
computer vision techniques through a python-based scripting
language (Sikuli script) to identify key graphical elements in
the screen and automatically interact with these elements by
simulating keypresses and pointer clicks. The sequence of inputs
and outputs resulting from the interaction is analyzed using
grammatical inference techniques that can infer the likely inter-
nal states and transitions of the GUI based on the observations.
Our framework handles a wide variety of user interfaces ranging
from traditional pull down menus to interfaces built for mobile
platforms such as Android and iOS. Furthermore, the automaton
inferred by our approach can be used to check for potentially
harmful patterns in the interface’s internal state machine such as
design inconsistencies (eg,. a keypress does not have the intended
effect) and mode confusion that can make the interface hard
to use. We describe an implementation of the framework and
demonstrate its working on a variety of interfaces including the
user-interface of a safety critical insulin infusion pump that is
commonly used by type-1 diabetic patients.

I. INTRODUCTION

In this paper, we present a framework which aims to
discover the internal state diagram for an interface by inter-
acting with it from outside. To enable this, we combine two
seemingly disparate tools: (a) computer vision techniques to
recognize features on an interface and interact with them [1];
and (b) grammatical inference techniques to learn the internals
by observing the interaction [2]. We employ standard computer
vision techniques implemented in a tool called Sikuli script
to automate the interaction with the device [1]. Sikuli script
provides the basic infrastructure required to recognize input
and output elements on the graphical interface. It can be
programmed to systematically interact with these elements
while recording the sequence of inputs and outputs. Next,
we employ grammatical inference (GI) techniques over the
set of input/output sequences resulting from running Sikuli
to infer the smallest automaton that is consistent with these
observations [3], [2]. Such an automaton can be viewed as a
likely model of the device’s internal operation. The resulting

This work was supported by the US National Science Foundation (NSF)
under CPS award 1035845 and DARPA under grant number FA87501220199.
All opinions expressed herein are those of the authors and not necessarily of
NSF or DARPA.

model can reveal a lot about the interface, including: (a) Imple-
mentation bugs, wherein the interface implementation deviates
from its design specification, (b) mode confusion patterns,
wherein two internal states that perform inconsistent actions
on the same input nevertheless present identical outputs [4],
[5], [6], [7], and (c) cognitive complexity measures to quantify
the usability of the interface for a set of common tasks [8].

The key advantages of our framework are two-fold (a) plat-
form independence: our approach can (and has) been deployed
across a variety of platforms such as Mac OSX, iOS and
Android; and (b) precision: our approach does not necessitate
an expensive and often imprecise analysis of complex code
that implements the GUI features. We note that recognizing
standard features in a graphical display is often a much
easier problem than understanding the underlying code that
implements them.

Figure 1 depicts the overall framework and the key compo-
nents involved. The interface prototype is assumed to be run
through a simulator on the screen.

Automated Interaction: The Sikuli script tool actively
captures the screenshot image and is able to detect changes in
the interface state. Sikuli uses pattern recognition techniques
to recognize various input elements such as dialogs, pull
down menus and text input areas. It can simulate pointer
moves, clicks and key presses to interact with these elements.
Our framework can use many exploration strategies including
systematic depth first exploration or randomized interactions
with periodic restarts. The framework records the sequence
of inputs and outputs for each interaction. The outputs are
recorded by computing a hash function over the designated
output region images.

Grammatical Inference: The grammatical inference module
uses the input/output sequences gathered by Sikuli script. It
then attempts to build a finite state Moore machine model
(FSM) that is consistent with the observations gathered from
Sikuli. In other words, when fed an input sequence exercised
by Sikuli, the inferred FSM will yield the corresponding
observed output sequence. In accordance to the common
Occam’s razor principle in machine learning, the GI engine
seeks a consistent FSM with the minimal number of states.

Backend Analysis: We have implemented some elementary

{paul.givens, aleksandar.chakarov, srirams, tom.yeh}@colorado.edu 


Interface

Sikuli Script
OpenCV

Exploration
Strategy

Grammatical
Inference

Analysis

Fig. 1. Major components in our analysis framework and their interactions.

backend visualization and analysis tools. The visualization
tools reproduce the output of the interface, allowing the user
to examine the automaton. The analysis tool can search for
common property violations as specified by the user and check
for potential mode confusion.

We have implemented a GI engine using the Z3 SMT
solver [9]. As a proof of concept, we apply our implementation
to two complex interfaces: (a) a windows scientific calculator
and (b) a widely used commercial insulin infusion pump for
infusing insulin to type-1 diabetic patients to control their
blood glucose levels. We show how our framework goes
beyond a simple aggregation of the GUI inputs and outputs to
reveal facts about the internal state of the GUI.

Related Work: Tools such as Monkey can automate GUI
fuzz testing in platforms such as Android, helping developers
to stress test their applications 1. Our approach is targeted
towards finding subtle errors such as mode confusion that
are hard to discover using a fuzzing approach. In particular,
data from multiple traces need to be correlated for finding
these errors. Our approach in this paper has been inspired by
the previous work by Gimblett and Thimbleby [10]. Therein,
the authors provide a formal framework for systematically
interacting with a GUI and building models of the output.
This work extends their program by providing a truly platform
independent technique for interaction that is less cumbersome
to implement and performing more ambitious analysis on the
resulting interaction sequences through grammatical inference.

There have been many approaches to statically analyzing
models of interfaces. These include the analysis of interface
models for patterns that indicate mode confusion potential [5],
[6] and a systematic exploration of the interface in conjunction
with user models [11].

The inference of likely specifications by observing the
executions of a program has been well studied by software
engineering researchers [12], [13]. Our work differs in its
focus on studying the internal state of graphical user interfaces
as opposed to programming APIs. Grammatical inference
techniques have been employed in this context to obtain
abstractions for components [14].

Roadmap: The rest of this paper will provide further
details on the various components of our framework. Section II
provides a brief overview on Sikuli script and its use in
our framework. Section III briefly describes the grammatical

1Cf. http://developer.android.com/tools/help/monkey.html/

Fig. 2. Illustration of Sikuli’s look and recognize actions. (Left) The original
calculator interface, (Middle) Sikuli identifies patches that are edges of likely
buttons and (Right) Sikuli identifies the buttons and the text/number on them.

inference procedures used and our implementation. Section IV
describes the experimental evaluation of the ideas presented in
this paper. Concluding remarks are provided in Section V.

II. SIKULI SCRIPT

Sikuli 2 automates the interaction with a GUI by executing
it, recognizing widgets such as buttons and text fields from
their visual appearance on the screen, and interacting with
those widgets by simulating mouse pointer or keyboard ac-
tions [1]. As such, the tool is intended to automate laborious
tasks performed using a GUI and to automate GUI testing in
a platform independent manner [15]. The three core technical
capabilities of Sikuli are Look, Recognize and Interact. We
explain each of these capabilities below.
Look: Sikuli uses a system API to grab the pixel data from
the screen buffer and analyzes it. This basic system function
for screen capture is available on most modern platforms
including Windows, Mac, Linux and Android.
Recognize: Sikuli “recognizes” widgets on a GUI using
pattern matching based on visual appearance. There are two
use cases that must be dealt with separately: recognizing
a specific widget and recognizing a class of widgets. To
recognize a specific widget such as the OK key, Sikuli needs a
programmer to provide an example image of the key. It uses
standard template matching techniques to recognize areas in
the screen that match the given image. To recognize a class
of widgets such as all the buttons on a GUI, we exploit the
consistency in the style of GUI elements across interfaces.
Sikuli extracts style features for common GUI elements in-
cluding the corners (see Fig. 2), the border, the background
color, and the foreground color. Sikuli scans the screenshot
from the GUI, and first looks for all small patches of pixels
that exhibit some preset style features. It then considers all
possible groupings of these patches and score each grouping
based on geometry (e.g., are corners aligned?) and continuity
(e.g., are edges connected?). Finally, groupings with scores
above a threshold are recognized, as illustrated in Figure 2.
Interact: Sikuli uses the Java Robot class to simulate mouse
and keyboard interaction. After recognizing a widget, Sikuli
knows that widget’s location on the screen, and can move the
pointer to that location. At that location, it can issue a click
command which will effectively click on that widget. If that

2Sikuli script is available free online at http://www.sikuli.org.

2

http://developer.android.com/tools/help/monkey.html/
http://www.sikuli.org


widget is a text field, the widget can gain focus. Sikuli can
type or paste text into the text field.

We use Sikuli with two basic exploration strategies: (a)
random exploration first identifies all widgets on the current
screen image and chooses to interact with one uniformly at
random. The interaction is continued upto a user given length
cutoff and restarted from the initial state of the application.
(b) Depth-first search exploration systematically explores all
paths upto a given depth. Systematic exploration relies on the
basic assumption that the application is deterministic.

III. GRAMMATICAL INFERENCE

Grammatical inference pertains to a large area of machine
learning and natural language processing that is concerned
with learning an unknown language from observations [2]. Our
framework in this paper uses grammatical inference techniques
to infer parts of the internal state machine from the set
of input/output sequences produced from the interaction. As
mentioned earlier, this is achieved by finding the smallest size
automaton that is consistent with the recorded observations.

Unfortunately, the problem of finding the smallest automa-
ton is well known to be NP-hard, and thus quite hard to
solve in practice [16]. However, the significant breakthroughs
achieved in solving the propositional SAT problems over the
last decade gives us hope that grammatical inference is feasible
for large enough inputs. Promising, SAT-based schemes for
learning minimal consistent automaton have been proposed
by Gupta et al. [14] and by Heule & Verwer [17]. However,
these techniques have been proposed for learning FSMs with
two types of labels (accepting or rejecting). Our setup requires
us to learn a Moore machine with many labels arising from
the interface output images. The encodings obtained are quite
large (quadratic in the size of the trie) in this case since a
disequality constraint is needed for each pair of nodes with
differing output and there are many such pairs.

We use an SMT-based algorithm for grammatical inference
that is suited for inference of Moore machines which have
output labels associated with states. Our approach encodes
the problem of finding the smallest automaton into a set of
constraints which are solved to obtain the smallest solution.
Our approach first builds a trie based on the input/output
sequences. The nodes of the trie with the same output labels
can potentially be merged to yield the final FSM. However,
care must be taken to ensure that nodes that yield different
outputs on the same inputs should not be merged. We encode
these constraints in linear arithmetic by associating a number
with each node. Nodes with the same number are considered
to be merged. Our tool uses the SMT solver Z3 to solve
the constraints [9]. Our approach uses heuristic clique finding
techniques to set certain nodes in the trie to fixed constant
IDs. This yields a significant reduction in the running time.

IV. EXPERIMENTS

In this section, we describe the use of our tool on two
example interfaces: a calculator application that is available

TABLE I
PERFORMANCE OF GRAMMATICAL INFERENCE ENGINE ON BENCHMARK

EXAMPLES. INTER: TOTAL LENGTH OF INTERACTION WITH SIKULI,
#RESET: NUMBER OF TIMES THE INTERFACE WAS FORCED TO RESET TO

THE START STATE, #TRIE: LENGTH OF THE TRIE, #AUTSIZE: FINAL
AUTOMATA SIZE LEARNED, TIME (SECONDS) AND MEMORY (MBS).

ID Inter #Reset #Trie #AutSize Time Mem
Pump 400 20 360 13 0.6 115
Pump 1000 20 965 15 21.8 581
Pump 1000 50 871 15 16 447
Pump 1250 25 1199 15 95.4 903
Pump 2500 50 2367 - mem out-
Calc 100 5 96 24 0.1 78
Calc 500 20 350 49 10h10m28s 1957

in windows and the mockup of a commercial insulin infusion
pump that is used by diabetic patients to infuse insulin.
Windows Calculator: The windows calculator was used
off-the-shelf (see Figure 2 (left)). Sikuli was used to identify
buttons on the calculator and systematically interact with them.
The screen was recorded for each interaction as the output. Our
use of sikuli did not involve any kind of instrumentation of
the calculator code. The input/output sequences were recorded
and analyzed by our GI solver to yield a likely state machine
describing the internals of the calculator. We note that the
calculator can have a large number of internal states depending
on the current output of the calculator and the contents of its
internal registers. To simplify the problem, we restricted Sikuli
to press the numerical key “5” along with arithmetic operators
and the “=” key. This vastly reduces the number of states of
the internal machine that is well in excess of 1012 to a much
smaller set. Figure 3 (a,b) depict the infered automton. Fig. 3
(b) demonstrates how GI techniques identify different internal
states even when the output is the same.
Insulin Pump Mockup: We performed a mockup of a
commonly available commercial insulin infusion pump model.
Figure 4 shows the original pump placed alongside a mockup
constructed. A physical pump served as the basis for construct-
ing the mockup. Figure 3(c,d) show the inferred likely state
diagram. In Fig. 3(d), we highlight a potential mode confusion
involving two states with the same display “Enter BG” that
prompts the user to enter the blood glucose by pressing arrow
keys. In one instance, the “B” key leads to a new screen that
prompts for the manual bolus type whereas in the other case,
it does not have an effect. On the other hand, pressing the
“A” key in both modes have similar effects. Another potential
interface fault involves the “E” key, which serves to take the
user back to the previous screen on all but a few notable
occasions. We are investigating these findings to check if they
can potentially lead to dangerous mode confusion scenarios in
diabetic patients.

Table I summarizes the performance of the GI engine. We
note that GI can be carried out for interactions that are longer
than 1000 steps for the Pump example and around 400 steps
for the calculator. However, the running time and memory used
increase sharply beyond a limit that varies, depending on the

3



(a) (b)

__initial__

R

EB

A

E

B

A

E

BA

E

B

A

E

B

A

E

A

B

A

E

A

E

B

E

A

A

E

B E

A

E

A

B

E

A

B

E

B

A

A

E

B

(c) (d)

Fig. 3. (a) Inferred automaton for windows calculator, (b) Magnified region showing the state transitions. Each state shows the image captured on the output
area. (c) Inferred automaton for the insulin infusion pump and (d) Magnified region showing the states and transitions between them. Two highlighted states
have identical screens but entirely different actions when keys “E” or “A” are pressed showing potential mode confusion.

Fig. 4. (Left) Original pump interface and (Right) a mockup constructed by
physically interacting with a pump.

interface. The number of states in the final machine is strongly
correlated with the overall running time, while the length of
the interaction matters to a lesser extent.

V. FUTURE DIRECTIONS

We have presented a framework that combines computer
vision techniques with grammatical inference to yield a likely
model for the internal state. We have noted the ability to
uncover potential interface inconsistencies and mode confu-
sion errors. Our framework, however has a long way to go.
Our current implementation can handle interactions of upto
a 1000 input actions. We are considering improvements to
symbolic encodings that can yield further increases in the size
of the interactions that can be handled. Yet another challenge
is to use “plausible” inputs that are likely to be exercised
by a human [18]. To address this, we are considering the
integration of ideas from cognitive analysis of interfaces such
as automated design walkthroughs [19], cognitive complexity
metrics to predict user performance [8] and integratio with
cognitive architectures [20]. The ideas presented here can
naturally complement some emerging work in the broader area
of program synthesis from demonstrations [21].

Acknowledgents: We wish to acknowledge Prof. Clayton
Lewis for giving us helpful insights, and introducing some of
the authors to this problem domain.

REFERENCES

[1] T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: using GUI screenshots
for search and automation,” in UIST’09. ACM, 2009, pp. 183–192.

[2] C. de la Higuera, Grammatical Inference: Learning Automata and
Grammars. Cambridge University Press, 2010.

[3] D. Angluin and C. H. Smith, “Inductive inference: Theory and methods,”
ACM Computing Surveys, vol. 15, no. 3, Sept. 1983.

[4] N. Leveson, L. D. Pinnel, S. D. Sandys, S. Koga, and J. D. Reese,
“Analyzing software specifications for mode confusion potential,” in
Proc. Human Error and System Development, 1997, pp. 132–146.

[5] J. Rushby, “Using model checking to help discover mode confusions
and other automation surprises,” in Proc. HESSD’99, June 1999.

[6] A. Joshi, S. P. Miller, and M. P. Heimdahl, “Mode confusion analysis
of a flight guidance system using formal methods,” in DASC’03, 2003.

[7] N. Sarter, D. D. woods, and C. Billings, “Automation surprises,” in
Handbook of Human Factors and Ergonomics. Wiley, 1997, pp. 1–25.

[8] B. E. John and D. E. Kieras, “The GOMS family of user interface
analysis techniques: comparison and contrast,” ACM Trans. Comput.-
Hum. Interact., vol. 3, no. 4, pp. 320–351, 1996.

[9] L. M. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in
TACAS, ser. LNCS, vol. 4963. Springer, 2008, pp. 337–340.

[10] A. Gimblett and H. Thimbleby, “User interface model discovery: towards
a generic approach,” in EICS’10, 2010, pp. 145–154.

[11] M. Bolton, R. Siminiceanu, and E. Bass, “A systematic approach
to model checking human-automation interaction using task analytic
models,” IEEE Trans. Systems, Man and Cybernetics, Part A, vol. 41,
no. 5, pp. 961 –976, sept. 2011.

[12] J. W. Nimmer and M. D. Ernst, “Automatic generation of program
specifications,” in ISSTA ’02. ACM press, 2002, pp. 232–242.

[13] G. Ammons, R. Bodı́k, and J. R. Larus, “Mining specifications,” in
POPL. ACM, 2002, pp. 4–16.

[14] A. Gupta, K. L. Mcmillan, and Z. Fu, “Automated assumption generation
for compositional verification,” Form. Methods Syst. Des., vol. 32, no. 3,
pp. 285–301, 2008.

[15] T.-H. Chang, T. Yeh, and R. C. Miller, “GUI testing using computer
vision,” in CHI’10. ACM, 2010, pp. 1535–1544.

[16] E. M. Gold, “Complexity of automaton identification from given data,”
Information and Control, vol. 37, pp. 302–320, 1978.

[17] M. J. H. Heule and S. Verwer, “Exact DFA identification using SAT
solvers,” in Intl. Conf. on Grammatical Inference (ICGI), ser. LNAI,
vol. 6339. Springer–Verlag, 2010, pp. 66–79.

[18] V. Chinnapongse, I. Lee, O. Sokolsky, S. Wang, and P. Jones, “Model-
based testing of GUI-driven applications,” in Prof. SEUS’09, ser. LNCS,
vol. 5860. Springer, 2009, pp. 203–214.

[19] P. Polson, C. Lewis, J. Rieman, and C. Wharton, “Cognitive walk-
throughs: A method for theory-based evaluation of user interfaces,”
International Journal of Man-Machines Studies, vol. 36, pp. 741–773,
1992.

[20] J. R. Anderson, D. Bothell, , M. D. Byrne, S. Douglass, C. Lebiere, and
Y. Qin, “An integrated theory of the mind,” Psychological Review, vol.
101, no. 4, pp. 1036–1060, 2004.

[21] S. Gulwani, W. R. Harris, and R. Singh, “Spreadsheet data manipulation
using examples,” Commun. ACM, vol. 55, no. 8, pp. 97–105, 2012.

4


	Introduction
	Sikuli Script
	Grammatical Inference
	Experiments
	Future Directions
	References

