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Abstract Modern cyber-physical systems (CPS) are often developed in a model-
based development (MBD) paradigm. The MBD paradigm involves the construc-
tion of different kinds of models: (1) a plant model that encapsulates the physical
components of the system (e.g. mechanical, electrical, chemical components) using
representations based on differential and algebraic equations, (2) a controller model
that encapsulates the embedded software components of the system, and (3) an envi-
ronment model that encapsulates physical assumptions on the external environment
of the CPS application. In order to reason about the correctness of CPS applications,
we typically pose the following question: For all possible environment scenarios,
does the closed-loop system consisting of the plant and the controller exhibit the de-
sired behavior? Typically, the desired behavior is expressed in terms of properties
that specify unsafe behaviors of the closed-loop system. Often, such behaviors are
expressed using variants of real-time temporal logics. In this chapter, we will exam-
ine formal methods based on bounded-time reachability analysis, simulation-guided
reachability analysis, deductive techniques based on safety invariants, and formal,
requirement-driven testing techniques. We will review key results in the literature,
and discuss the scalability and applicability of such systems to various academic
and industrial contexts. We conclude this chapter by discussing the challenge to for-
mal verification and testing techinques posed by newer CPS applications that use
AI-based software components.
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1 Introduction

Cyber physical systems (CPS) involve the tight coupling of physical components
such as electrical, mechanical, hydraulic and biological with software systems that
are primarily involved in tasks such as sensing, communication, control and inter-
facing with human operators. Software components in CPS are often designed using
the model-based development (MBD) paradigm [113]. The MBD process proceeds
in many steps: (a) First, the designer specifies the plant model, i.e., the dynami-
cal characteristics of the physical parts of the system using differential-, logical-,
and algebraic equations. Examples of plant models include the rotational dynam-
ics model of the camshaft in an automobile engine, the thermodynamic model of
an internal combustion engine, kinematic and dynamic models for ground and air
vehicles, and pharmacokinetic models of human physiology. (b) The next step is to
design control software to regulate the behavior of the physical system. This step
often involves the use of techniques from control theory to design embedded con-
trollers, techniques from distributed systems to achieve communication and coordi-
nation, and more recently, techniques from artificial intelligence to allow learning
and adaptation. (c) The final step is to define an environment model which encapsu-
lates physical assumptions on the exogenous quantities that affect the system (such
as atmospheric turbulence, driver behavior, or meal intake by a patient). The compo-
sition of these three types of models (plant, software and environment) constitutes
the overall closed-loop system.

Typically, plant models in an MBD process are deterministic. Any uncertainty is
encoded in the environment model as either a nondeterministic choice on inputs to
the plant model (subject to an appropriate set of constraints), or a random choice on
the inputs subject to an appropriate probability distribution. Though it is also pos-
sible to model certain phenomena such as manufacturing variations, uncertainties
in physics-based modeling, and sensor/actuator noise using a stochastic dynamical
plant model, industrial MBD frameworks rarely use stochastic models during the
control design process. The controller models are typically deterministic, as they
represent a software implementation. In this chapter, we focus on plant and con-
troller models that are deterministic, and environment models that are nondetermin-
istic (not stochastic1).

Mathematical models for CPS applications help us analyze the system in multi-
ple ways: (A) models are simulated under various input conditions to predict how
the system as a whole would behave. Often these input conditions may be hard and
expensive to recreate in the physical world. For systems involving human operators,
models serve as an important alternative to real physical tests that may be danger-
ous or even unethical; and (B) models can expose latent/hidden system variables
that are hard to measure, and thus allow us to examine their presumed behavior. In

1 Allowing stochasticity in the plant or environment model necessitates treating the closed-loop
CPS model as a stochastic dynamical system. The techniques for verification and testing of such
systems are quite different. As we wish to focus on techniques that are closer to industrial use of
MBD for CPS applications, we refer the reader to [71, 36] for excellent surveys.
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Section 2, we summarize various kinds of mathematical models that are used in the
CPS domain, and typical applications for which each model type.

Next we describe behavioral specifications. Note that many industrial settings
use the term requirements to mean behavioral specifications. The term specification
is instead used to designate a specification model – a high-level programmatic de-
scription of the embedded software code. Behavioral specifications go hand-in-hand
with models and describe desirable properties of the system as a whole. The specifi-
cations can be high level (“end-to-end”), describing a desired property of the system
as a whole (eg., the car will not be physically damaged by the action of the adaptive
cruise control subsystem) or at the modular level, focusing on an individual module
of the system (eg., when the input to the controller is within [−2,2], the output must
be within [−1,1]). In Section 2, we also discuss a formalism used for behavioral
specifications of CPS models.

Given a mathematical model of the system M, and a behavioral specification ϕ ,
there are two main kinds of analysis problems that focus on ensuring correctness
of the CPS design: formal verification and falsification. The main purpose of ver-
ification is to prove the absence of failures in a given CPS model, where a failure
is defined as the violation of a given formal specification. Many verification pro-
cedures perform a best-effort search for a proof of system correctness, wherein a
failure to find one may lead to an inconclusive result. On the other hand, test gener-
ation or falsification focuses on providing evidence of the presence of failures in the
form of counterexamples. Falsification procedures perform a best effort search for a
counter-example to the property of interest, with a failure to find a counter-example
leading to an inconclusive result.

We now formalize these problems. A typical abstraction for a mathematical
model of a CPS, M, is as a stateful system that maps timed input behaviors (i.e.
input signals) to output signals. A signal is defined as a function mapping a time
domain – a finite or infinite subset of positive real numbers – to some value in a
signal domain. For simplicity, we consider signal domains that are compact subsets
of the real numbers. For ease of exposition, we assume that the time domain for the
input and output signals is the same set T, and the input and output signal domains
are respectively U and Y . Let the initial set of states for M be the set X0. Let
u ∈ TU be an input signal and let y ∈ TY be an output signal. Thus, M defines a
function that maps a state x0 ∈X0, and an input signal u to an output signal y, i.e.
y = M(x0,u). Finally, assume that we are given a specification ϕ , which maps every
pair (u,y) to true or false.

Definition 1 (Verification). Given a model M, with initial states X0, a time-domain
T, input domain U and output domain Y , and a specification ϕ , the formal ver-
ification problem provides a proof that for all x0 ∈ X0, and for all u ∈ TU , if
y = M(x0,u), then ϕ(u,y) is true.

There are several techniques that have been proposed to solve the verification
problem for CPS models. The most popular among these are reachability analysis
techniques that are based on computing the set of states reachable (usually within a
given finite time-horizon) from a given set of initial conditions and for a given set
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of input signals. In such such techniques, a common assumption is that the system
state is fully observable (i.e. the output signals are simply the state trajectories of
the system). Further, the specification is typically provided as a set of unsafe states
that should not be reached by the system. We discuss these techniques in Section 3.

The advantage of techniques based on reachability is that they are highly au-
tomatic; however, for systems with nonlinearities and switching behaviors, these
techniques may suffer from imprecision. An alternative approach is to use manual
insight to propose an invariant for the given CPS model. An invariant is a set that is
guaranteed to contain the system behaviors for all time. The computational effort is
then to automate the invariant generation process (as much as possible) and verify
the validity of the system invariant. We discuss such techniques in Section 4.

In Section 5, we discuss various specification-driven falsification techniques for
CPS models. A falsification problem attempts to provide a refutation to a verification
question for a system. Formally, we define falsification as follows.

Definition 2 (Falsification). Given a model M, with initial states X0, a time-domain
T, input domain U and output domain Y , and a specification ϕ , the falsification
problem provides a proof that there is some x0 ∈X0, and some u ∈ TU , such that
y = M(x0,u), and ϕ(u,y) is false.

Falsification approaches are based on systematically searching for a counterex-
ample to a specification. In Section 5, we present robustness-guided falsification
approaches that use a robustness metric to map properties ϕ(u,y) that provide
true/false interpretation to signals to real-valued interpretations that measure how
close a trace comes to satisfying or violating a property.

Finally, in Section 6, we highlight a significant challenge on the horizon for CPS
applications that aspire to become autonomous or semi-autonomous. Developers for
such applications are increasingly using AI-based software such as artificial (and
deep) neural networks for various aspects such as perception, planning/decision-
making and control. We review some of the key challenges in this domain and sum-
marize some of the recent work seeking to address these challenges.

1.1 Motivating Examples

In this section, we describe two motivating examples that illustrate the need for
model-based design supported by formal design verification tools.

1.1.1 Autonomous Driving

There has been significant recent interest in the ability of vehicles to drive au-
tonomously, i.e., without any intervention by a human driver [100, 77, 28]. The typ-
ical software stack for an autonomous vehicle consists of several components: (1)
a perception component that processes data about the environment coming through
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sensors such as a Radar, forward-facing cameras, and LiDAR (Light Detection and
Ranging), (2) a decision/planning component that uses the environment models cre-
ated by the perception component to plan the motion of the vehicle, and (3) a low-
level control component that interfaces with the actuators of the vehicle to physi-
cally realize the motion plan determined by the planning component. There is ample
scope for model-based design for the interfaces between each of these components.
In particular, we consider one of the simplest problems for an autonomous vehicle,
which is that of regulating its speed. This is based either on a desired speed de-
termined by the high-level motion planner in accordance with the current weather
conditions and speed-limit regulations, or based on the speed of the vehicle in front
(whichever is lesser). The objective is two-fold, if there is a lead car, then the ego
car should always maintain a safe following distance from the lead car, otherwise, it
should maintain a speed close to that suggested by the high-level motion plan.

An adaptive cruise controller (ACC) is a control scheme that seeks to auto-
mate the task of choosing the right acceleration for the ego vehicle so as to main-
tain its safety and performance objectives. Radar-based ACC systems have been
implemented in several commercial cars, but continue to be of relevance in the
autonomous-driving space, where the sensor inputs are not restricted to Radar. Fur-
thermore, a typical autonomous vehicle has several subsystems that may try to con-
trol the longitudional acceleration of the car (e.g., a controller that attempts to ex-
ecute a lane-change maneuver, or a controller to execute an emergency stopping
maneuver). In such cases, it is important that the ACC system is not designed in
isolation, but is cognizant of other systems around it.

A schematic model of a typical ACC system is shown in Figure 1. The typical
model of the environment is to construct a kinematic model of the lead car (based on
Newton’s laws of motion), while assuming that the lead car can dynamically change
its acceleration (denoted by alead(t)). The sensor model then captures the quantities
in the lead car’s motion that can be measured by the ego car. For example, for a
Radar-based sensor, this would be the relative distance between the cars and the ve-
locity of the lead car. The kinematic model of the ego car models the effect of the
controller and environment inputs on the ego car’s motion. We assume that the adap-
tive cruise controller estimates the ego car’s motion through speed sensors (possibly
coupled with an odometry-based position computation model). These sensors could
have an associated measurement noise (modeled by n(t)). Finally, the ACC outputs
a control signal (typically the ego car’s acceleration, shown as aego(t)).

Recent work has focused on formal verification and correct-by-construction syn-
thesis of ACC systems. In [102], the authors use quantified dynamic logic to ver-
ify the local lane control problem which uses an invariant-based theorem-proving
approach. In [104], the authors use reachability analysis for proving safety of ACC
systems. On the other hand, in [17, 114], the authors use correct-by-construction ap-
proaches using Lyapunov theory and control barrier certificates to automatically ob-
tain safe implementations of ACC systems. While these studies have demonstrated
the power of formal verification, more work can be done in formalizing behavioral
specifications for an ACC system, and then applying the different techniques con-
sidered in this chapter to prove correctness of such a system.
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Fig. 1 Schematic Diagram for an Adaptive Cruise Control System
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Fig. 2 Overview of the key components of an artificial pancreas control system. b(t): external
insulin, u(t): insulin infused, G(t): BG level, n(t): measurement error, Gs(t): sensed glucose level,
uc(t): insulin infusion commanded.

1.1.2 Artificial Pancreas

Type-1 diabetes is characterized by the inability to regulate the blood glucose (BG)
levels within an euglycemic range [70,180]mg/dl in the human body due to the
absence of insulin, a hormone that is responsible for reducing BG levels. The treat-
ment is to externally replace the lost insulin. However, this insulin must be deliv-
ered to compensate increases in blood glucose levels due to meals or endogenous
glucose production by the liver. Too much insulin can expose the patient to the risk
of hypoglycemia wherein the blood glucose levels fall below 70mg/dl, whereas too
little insulin causes high BG levels due to hyperglycemia wherein BG levels rise
above 180mg/dl leading to long term damage to kidneys, eyes, heart and the periph-
eral nerves. In order for insulin to be delivered, it is often infused subcutaneously
through an insulin pump - a device that is programmed to deliver a constant low rate
of insulin, known as basal insulin, or a larger bolus of insulin in advance of a meal
or to treat high BG values [138, 38].

The artificial pancreas project seeks to partially or fully automate the delivery
of insulin by combining a continuous glucose sensor which periodically senses BG
levels subcutaneously, an insulin pump that delivers insulin, and a closed-loop con-
trol algorithm that uses inputs from the CGM and the user to control BG levels to a
target value [48, 86, 143]. A schematic diagram is shown in Figure 2.
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Because of the severe risks posed by hypo- and hyperglycemia, AP devices are
safety critical. They need to be used by patients 24/7/365 without expert supervision,
though they are capable of serious harm to the patient. As a result, their design
and implementation requires careful consideration and thus form an ideal target for
formal methods/automated reasoning approaches.

Notable attempts to verify medical devices include work on pacemakers and im-
plantable cardiac defibrillators (ICDs). This started with physiological models of
excitable cells in the heart [119], leading to approaches that employ these models to
test closed loop systems [117, 88].

Lee and collaborators studied a PID-based closed loop system meant for intra-
operative use in patients [39], using the dReal SMT solver [76] to prove safety
for a range of parameters and controller gains. Other approaches to verifying ar-
tificial pancreas systems have relied on falsification, using temporal logic robust-
ness [68, 56], and incorporated in tools such as S-Taliro [111, 1] and Breach [55].
Sankaranarayanan et al have studied the use of falsification techniques for verifying
closed loop control systems for the AP [34]. Their initial work investigated a PID
controller proposed by Steil et al. [140, 141] based on published descriptions of
the control system available. Another recent study by Sankaranarayanan et al [135]
was performed to test a predictive pump shutoff controller designed by Cameron et
al. [35] that has undergone outpatient clinical trials, recently [103]. Recently, Kush-
ner et al studied a personalized approach to analyzing controller parameters using
data-driven models [96]. These studies have demonstrated the ability of formal ap-
proaches to verification and falsification to provide important behavioral specifica-
tions, combine a variety of models for every aspect of the artificial pancreas, and
prove/falsify important properties.

2 Mathematical Models and Specifications

“All models are wrong but some are useful” – George E. Box [32].

Verifying properties of a system requires mathematical models and formal speci-
fications. In this section, we briefly describe the varieties of mathematical models
and specification formalisms that are used in Cyber-Physical Systems (CPS). As
mentioned earlier, CPS combine a variety of heterogeneous components, including
physical (mechanical, electrical, chemical and biological) systems, electronic (ana-
log and digital circuits) and software components. Furthermore, they are subject to a
wide variety of input stimuli from the environment that can range from disturbances
such as wind to inputs from human operators. As a result, mathematical modeling is
a key first step in order to provide a framework wherein we can define key properties
of the system in a formal manner. A variety of mathematical models are employed
in CPS, including Ordinary and Partial Differential Equation models for physical
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Table 1 Commonly employed mathematical models for various aspects of a CPS.

Model Type Component Type Examples
Ordinary Diff. Eq. (ODE) [107] Physical / Analog Vehicle Body, Engine Speed,

Drug Pharmacokinetics

Partial Diff. Eq. Physical Continuum Fluid Flow, Electromagnetic
Field, Fabric, Paper

Finite State Automata [137] Software/Electronics Switching Logic, Relays, Digi-
tal Circuits, Software

Extended State Automata Software Software Controllers
Timed Automata [12] Real-Time Software Schedulers, Watchdog Timers

Markov Chains [115] Disturbances/Failures Component failures, Job
arrivals

Stochastic Diff. Eq. (SDE) [116] Disturbances Wind disturbances, Measure-
ment Noise

and biological components, automata-based models for digital electronic compo-
nents and software. Finally, stochastic models capture the behavior of disturbances
such as the wind, noise, measurement errors, component failures or mistakes made
by human operators.

2.1 Mathematical Models

Table 1 lists some commonly employed mathematical models and the type of com-
ponents that they are used to model. These models range from continuous time
models such as ODEs and SDEs to discrete time models such as finite and extended
state machines. Each of these models have been well studied by communities of
mathematicians, physicists and engineers.

However, the challenge of CPS applications arises in the combination of multiple
modeling paradigms within the same system. Due to this combination, the modeling
of CPS has focused on the combination of discrete-time models such as automata
and continuous models such as ODEs to yield hybrid dynamical systems that are
capable of continuous time evolution in conjunction with discrete mode transitions.

2.1.1 Hybrid Systems

Hybrid systems model processes that combine the continuous evolution of state
over time with discrete jumps that can instantaneously change the state as well as
the future course of the dynamics. Such systems arise from a variety of sources:
physical systems involving contact forces, biological systems, controlled systems
with switched or periodically updated control action and in general, software driven
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dQ
dt = (Th−Tr)Mdc
dQL
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dt
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Fig. 3 Hybrid automaton model for the house heating demo example. The state variables include
Q, the heat flowing in to the room, QL, the heat lost to the outside, Tr , the room temperature and
W , the total heating cost. The parameters are shown in blue and include Ma the mass of air inside
the house, Req the “thermal resistance” equivalent of the house, Md , the air flow rate through the
heater, c the heat capacity of air at constant pressure, W0 is cost per unit heat and Tre f the desired
reference temperature. The disturbance input is To the outside air temperature, shown in red.

control systems. The field of hybrid systems evolved historically from two com-
plementary sources that included computer scientists studying languages and for-
malisms defined by the interaction of automata with physical process [83, 9]; con-
trol theorists extending previously well studied continuous models to include dis-
crete switching actions [139, 33]. Labinaz et al present an early survey that touches
upon the historical development of hybrid systems [97].

The hybrid automaton model was proposed to provide a conceptual model for
expressing hybrid systems [10]. Figure 3 shows an example of a hybrid automa-
ton model expressing a temperature controller for a house that is heated by turning
on/off a source of heated/cooled air. The automaton has two modes ON: represent-
ing the dynamics of the room temperature when the heater is turned on and OFF:
representing the dynamics when the heat is turned off.

Definition 3 (Hybrid Automaton). Given a vector of system variables x ∈ X , con-
trol inputs u ∈U and disturbances w ∈W , a hybrid automaton H : 〈L,E, I,F,G,R〉
consists of the following components:

1. A finite set of modes L : {`1, . . . , `n} and transitions that form edges between
locations E ⊆ L×L,

2. A map I that associates each location ` ∈ L, a location invariant I` ⊆ X ,
3. A map F that associates each mode `i ∈ L with a vector field Fl : X×U×W 7→

(T X) that forms the RHS of the ODE: dx
dt = F̀ i(x,u,w). The function F̀ is

assumed to be Lipschitz continuous over x and continuous over the remaining
inputs for all ` ∈ L.

4. A guard map G that associates with a guard set G(`1,`2) with each transition, and
5. A reset map R that associates each transition with an update function R(`1,`2) :

I`1 7→ I`2 .

The initial condition of a hybrid automaton is given by a location `0 ∈ L and an
initial state x0 ∈ I`0 . Let u : [0,T ] 7→U be a control input signal and w : [0,T ] 7→W
be a disturbance input. The state of a hybrid automaton is given by a pair (`,x)
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where ` ∈ L and x is a state belonging to the invariant set I` associated with the
mode `. The execution of a hybrid automaton over a time horizon T (can be finite
or infinite T = ∞) is given by a sequence of flows and jumps:

• A flow (`,x,τ)  (`,x′,τ + δ ) for δ ≥ 0 is a solution to the ODE dx
dt =

F̀ (x,u,w) starting from the initial condition t0 = τ,x(τ) = x with u(·) as
the signal u(t) with t ∈ [τ,τ + δ ) and likewise, w as the signal w(t) over
t ∈ [τ,τ + δ ). This trajectory is uniquely defined since F̀ is Lipschitz. Finally,
x′ is the state x(τ +δ ).

• A jump (`,x,τ)→ (`′,x′,τ) is an instantaneous transition from mode ` to `′

wherein (`,`′)∈ E, and x∈G(`,`′) must belong to the guard set of the transition.
The state x′ = R(`,`′)(x) is obtained by applying the reset map corresponding to
the transition (`,`′) to the state x.

An execution trace of the hybrid automaton yields a hybrid time trajectory com-
prised of flows and jumps starting from the initial state (`0,x0) at time 0.

(`0,x0,0) (`1,x1, t1)→ (`′1,x
′
1, t1) (`2,x2, t2)→ ···

2.2 Specifications

In the formal methods literature, the term specifications is often used to describe
the expected behavior of the overall system. Specifications can express properties
defined over several behaviors of the system (e.g. the average energy consumption,
mean time to failure, etc.), and can also express properties over individual system
executions (e.g. the value of the overshoot is less than 10% of the reference value,
the response time is at most 5 seconds, etc.). The first class of properties (that are
defined over several system behaviors) are called hyperproperties [47]. The second
class of properties are trace properties, i.e., given a (discrete or continuous) trace
representing a system behavior, we can check the satisfaction or violation of such a
property on this trace.

Types of Properties. In hyper-properties, we can further make a distinction between
statistical hyper-properties, i.e. properties that reason about statistical aspects of
the system (such as average energy consumption, mean time to failure, etc.), and
relational hyper-properties. There has been limited work on estimating statistical
properties of CPS models [2], but not much work has been done to verify or falsify
statistical hyperproperties. Relational hyper-properties are gaining popularity for
expressing security and privacy properties such as information leakage, robust I/O
behavior, non-interference, non-inference etc. [112, 47]. For example, consider a
potential side-channel power attack: there exists a system behavior where for the
input u the signal representing the magnitude of power (say y) that exceeds the
value c for τ seconds, but for all other inputs u′ near u, the corresponding y′ is
always below some value d s.t. d < c. There has not been much work on verification
of relational hyper-properties for CPS models. Thus, as verification or testing for
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hyper-properties is a nascent field with limited results for narrow sub-problems [53,
29, 30, 70]. Hence, we do not discuss this aspect in detail in this chapter, but instead
focus on verification and falsification for trace properties.

2.2.1 Temporal Logics for Trace Properties

There are several possible ways in which trace-level properties can be expressed
and checked. Many industrial practitioners often write custom programs in their
preferred programming language to check a trace-level property. These programs
also known as property monitors. An offline monitor checks the satisfaction of a
finite time trace-level property by a given finite-time system execution after the exe-
cution has terminated. On the other hand, an online monitor continuously checks the
satisfaction or violation of the property as the system runs. In an MBD framework,
the same terminology applies to simulations of system behavior: offline monitoring
requires the simulation to have terminated.

Having customized programs for property monitors can pose challenges in terms
of interpretability and maintainability, and is prone to manual programming errors.
An elegant alternative is to use a suitable logical formalism to describe the desired
trace-level property. One such formalism is that of Linear Temporal Logic (LTL).
LTL was introduced in the late 1970s [123] to reason about the temporal behaviors
of reactive systems, i.e., input-output systems with Boolean, discrete-time signals.
CPS rarely have discrete-valued, discrete-time behaviors, as the physical compo-
nents in a CPS have real-valued behaviors that evolve continuously in time. To rea-
son about such systems, later, temporal logics such as Timed Propositional Tem-
poral Logic (TPTL) [14], the Duration Calculus [37], and Metric Temporal Logic
(MTL) [94] were introduced to deal with dense-time system executions. These log-
ics required first creating a set of atomic Boolean predicates over signals, and then
introduced formulas that contained temporal operators that could be interpreted over
dense-time.

Signal Temporal Logic (STL). STL [106] was proposed in the context of analog
and mixed-signal circuits as a specification language for expressing constraints on
real-valued signals directly in the formula expressing the property of interest. Let
x be an n-dimensional signal representing the system execution over some finite
time, and for simplicity, let the codomain of this variable be Rn. Without loss of
generality, these predicates can be reduced to the form µ = f (x) ∼ c, where f is a
scalar-valued function from Rn to R.

Temporal formulas are formed using temporal operators, “always” (denoted as
G), “eventually” (denoted as F) and “until” (denoted as U). Each temporal operator
is indexed by intervals of the form (a,b), (a,b], [a,b), [a,b], (a,∞) or [a,∞) where
each of a,b is a non-negative real-valued constant. If I is an interval, then an STL
formula is written using the following grammar:
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ϕ := true
| µ atomic proposition
| ¬ϕ negation
| ϕ1∧ϕ2 conjunction
| ϕ1 UI ϕ2 until operator

The always and eventually operators are defined as special cases of the until
operator as follows: GIϕ , ¬FI¬ϕ , FIϕ , trueUI ϕ . When the interval I is omitted
for the until operator, we take it as the default interval of [0,+∞). The semantics of
STL formulas are defined informally through examples as follows.

Example 1. The signal x satisfies an atomic prediate f (x) > 10 at time t (where
t ≥ 0) if the value of f (x(t)) at time t is greater than 10.

The signal x satisfies ϕ = G[0,2) (x >−1) if for all time 0≤ t < 2, x(t)>−1.
The signal x1 satisfies ϕ = F[1,2) x1 > 0.4 iff there exists time t such that 1≤ t < 2

and x1(t)> 0.4.
The signal x = (x1,x2) over two dimensional space satisfies the formula ϕ =

(x1 > 10) U[2.3,4.5] (x2 < 1) iff there is some time u where 2.3≤ u≤ 4.5 and x2(u)<
1, and for all time v in [2.3,u), x1(u) is greater than 10.

We formally define the semantics of STL as follows:

Definition 4 (STL Semantics). STL semantics are defined in terms of the satisfac-
tion operator |=, for a given signal x at each time t as follows:

(x, t) |= µ ⇐⇒ x satisfies µ at time t
(x, t) |= ¬ϕ ⇐⇒ (x, t) 6|= ϕ

(x, t) |= ϕ1∧ϕ2 ⇐⇒ (x, t) |= ϕ1 and (x, t) |= ϕ2
(x, t) |= G[a,b]ϕ ⇐⇒ ∀t ′ ∈ [t +a, t +b](x, t ′) |= ϕ

(x, t) |= F[a,b]ϕ ⇐⇒ ∃t ′ ∈ [t +a, t +b](x, t ′) |= ϕ

(x, t) |= ϕ1 U[a,b] ϕ2 ⇐⇒ ∃t ′ ∈ [t +a, t +b] s.t.
(x, t ′) |= ϕ2 and
∀t ′′ ∈ (t, t ′),(x, t ′′) |= ϕ1

Beyond STL. Recently, there have been several efforts to consider alternatives to
STL to address specific properties that may be cumbersome to express in STL, or
inexpressible in STL. Timed Regular Expressions (TRE) first introduced in 2002
[21] allow expressing localized patterns in CPS behaviors. An efficient monitor-
ing procedure has been proposed for TREs in [150], and an implementation of this
procedure is available in the Montre tool [149]. Quantitative Regular Expressions
(QREs) [13, 16], is yet another modeling and programming abstraction for specify-
ing complex numerical queries over data streams. These have been used for analyz-
ing complex behaviors such as arrhythmia in cardiac signals [4].

Finally, differential dynamic logic [120] is a logic for specifying and verifying
correctness of hybrid systems. The language allows specifying hybrid systems oper-
ationally as hybrid programs and uses automated deduction-based theorem proving
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tools (such as KeyMaera and its extensions [122, 74]) to verifying program correct-
ness. A key difference between deductive techniques and those that we consider in
this chapter is that deductive techniques often require manual intervention in the
form of lemmas and proof strategy selection when the automated theorem prover
fails to prove program correctness. We omit such techniques from this chapter, and
the interested reader can find an extensive treatment in [121].

3 Reachability Analysis

Reachability analysis asks whether a hybrid system starting from a set of initial
states X0, can reach any state in a given target set U . The problem is of fundamental
importance to hybrid systems since the target set U often describes dangerous states
which we wish to avoid reaching during an execution of the system.

Example 2. Consider the house heating system shown in Figure 3. It is consid-
ered dangerous if the temperature of the house falls below 10 centigrade, while
the system continues to be operational and the outside temperature behaves “rea-
sonably”: I.e, it must be in the range [−20,50]C and cannot increase/decrease
more than 5C/hr. Let us assume an initial state with Tr = 27. Is there a sce-
nario in which the value of Tr ≤ 10 is possible under the constraints on the be-
havior on the behavior of the outside temperature? Here the target unsafe set is
U : {(`,Q,QL,Tr,W ) | Tr ≤ 10}.

Another safety property asks whether it possible for T ≤ Tre f −5 and simultane-
ously, the heater is in the “OFF” state. Here the unsafe set is V : {(`,Q,QL,Tr,W ) | T ≤
Tre f −5 ∧ `= OFF}.

Reachability analysis has been studied using a variety of approaches, and for
various restrictions on the hybrid automaton model.

3.1 Decidability of Reachability

First, it is well known that the reachability problem is undecidable even for simple
cases. For instance, in the absence of hybrid dynamics, reachability is undecidable
for polynomial ODEs involving 3 or more state variables [82]. Furthermore, for lin-
ear dynamical systems, it is known that reachability of a single target state y from
a single given initial state x0 is decidable. However, the reachability problem of a
hyper-plane target from a single state initial set (known as the Skolem-Pisot prob-
lem) is open. Recent result by Chonev connects the undecidability of this problem
to a well-known and open number theoretic conjecture called the Schaunel con-
jecture [44]. Alur and Dill showed that the reachability problem is decidable for
timed automata that can be seen as hybrid automata whose continuous variables
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System Outcome Description
Timed Aut. [12] Decidable dxi

dt = 1 for all xi and all modes, guards xi{≤,≥,=}c
and resets xi := c.

Stopwatch Aut. [84] Undecidable Timed Automata + at least one stopwatch with
dxi
dt = 0 allowed in some modes.

Init. Rect. Aut. [83, 84] Decidable Rectangular dynamics dxi
dt ∈ [li,ui] for each xi and

mode, guards + resets as in timed automata. Transi-
tion between different dynamics should reinitialize
a variable.

Polyhedral Hyb. Aut. [23] Undecidable Decidable for 2 or fewer state variables.

O-minimal Hyb. Aut. [98] Decidable Automata whose guards, reset maps and flows can
be defined in an o-minimal logical theory.

Table 2 Summary of a few results establishing decidability/undecidability of reachability for hy-
brid systems.

are all clocks with dynamics dT
dt = 1. Furthermore, the guard conditions are re-

stricted to comparing clocks with fixed constants and resets are limited to setting
clocks to fixed constant values. The result relies on an untiming construction through
the region-abstraction that produces a finite state automaton which is bisimulation
equivalent to the original infinite state timed automaton [12]. However, Henzinger
et al. show that if we allow “stopwatches”, i.e, clocks that can be stopped by setting
dT
dt = 0 in certain modes, even the presence of a single stopwatch in a timed automa-

ton model renders the reachability problem undecidable [84]. The timed automaton
model can be generalized to rectangular hybrid dynamics that allow the derivative of
each variable xi to lie within an interval dxi

dt ∈ [l
(m)
i ,u(m)

i ] in each mode m. Henzinger
et al (ibid) show that the reachability problem is decidable for initialized rectangular
hybrid automata that adds the following constraint: for every transition τ from mode
m to m̂, if the dynamics for dxi

dt changes going from m to m̂, then the variable xi must
be reset to constant value by τ . However, failing this condition, the problem is unde-
cidable, in general. Asarin et al consider polyhedral hybrid systems that are defined
by partitioning the state space into polyhedral regions defining modes and associat-
ing each polyhedral region with a mode m and a corresponding constant differential
equation dxi

dt = c(m)
i [23]. Transitions happen when the system moves from one poly-

hedral region to another in this model. While the reachability problem is decidable
for 2D (planar) systems, it is undecidable for systems involving 3 or more variables.
Table 2 summarizes some of the significant results on decidability/undecidability of
reachability for various classes of hybrid systems.

Understanding the boundary between decidable and undecidable subclasses has
been an active area of investigation with some open problems. However, early results
showed that seemingly simple hybrid automata models can exhibit a high degree of
complexity in terms of their behaviors. As a result, the focus has gradually shifted
from finding new decidable classes to finding practical algorithms that can be useful
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Fig. 4 S: Over-approximation of reachable set of states includes the initial condition X0 and all
states reached by trajectories starting from X0. P: Backward over approximation containing all
states that can reach U . The set of states U is proven unreachable since U ∩S is empty, or alterna-
tively, However, the set of states V may or may not be reachable since V ∩S is not empty.

to analyze models of interest to practitioners, even if the overall problem is known
to be undecidable.

3.2 Reachability using Over-Approximations

As discussed previously, the problem of deciding questions of reachability is unde-
cidable. However, for many practical systems, the problem of reachability analysis
can be resolved by computing over-approximations of the reachable set of states
starting from the initial set X0, or alternatively, by computing over-approximations
of the backward reachable set starting from the unsafe/target set U . This is picto-
rially illustrated in Figure 4. Over-approximations can be obtained for a finite time
horizon if the value of T is finite, or an infinite time horizon if T = ∞. Naturally,
infinite time horizons approximations are more complicated and approached using
deductive methods discussed in subsequent sections. The rest of this section focuses,
for the most part, on finite time horizon reachability analysis.

Let S ⊆ X be a subset of states of a system and X0 be the initial set. We say
that S is a (forward) over-approximation for a time interval [0,T ) iff for any initial
state x(0) ∈ X0, any state x(t) reachable from x(0) at time t ∈ [0,T ) belongs to S.
Using the forward over-approximation S, we may conclude that U is unreachable if
U ∩S = /0.

Alternatively, we can prove unreachability by computing a set of backward reach-
able states P⊆X such that U ⊆P for the target set and every trajectory of the system
x(·) such that x(t) ∈U at time t ∈ [0,T ) must satisfy x(0) ∈ P. If P∩X0 = /0, we
may now conclude that no run of the system starting from X0 may reach U within
the given time horizon. Figure 4 illustrates how a backward reachable set can be
used to prove unreachability, as well.
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3.2.1 Approximate Reachability: Overview

We will now discuss how reachability analysis works at the high level, focusing first
on computing over-approximations of forward reachable states starting from the
initial state X0 and an initial mode `0 of the hybrid system. The approach is based on
symbolic model checking, wherein a set of reachable states is iteratively computed
by repeatedly applying the post-condition operator to the initial set of states. The
post-condition operator applied to a set of states S captures all the states reachable
from S in a single “computational” step. Let post(S) denote the post condition of S.
Thus, we would normally compute

X0∪post(X0)∪post2(X0)∪·· · .

However, there are three core problems with this approach:

1. Hybrid systems combine the continuous evolution of state variables with dis-
crete transitions. There is no natural notion of a single discrete computational
step.

2. The sets postk(X0) become increasingly complicated to represent in a computer,
making the process prohibitively expensive.

3. The iteration does not terminate in finitely many steps for most systems, and
therefore, the approach may not terminate.

The other alternative is to perform a backward iteration, starting from the unsafe
set of states and iterating the weakest pre-condition operator. The pre-condition op-
erator applied to a set of states S captures all those states that will reach S in one
computational step. Let pre(S) denote the weakest pre-condition operator applied to
a set S. Thus, we would normally compute

U ∪pre(U)∪pre2(U)∪·· · .

Once again, the same three problems we encountered for post conditions arise for
pre-conditions as well.

Reachability algorithms overcome the three key problems mentioned above
through two important and closely intertwined ideas (A) abstraction of the hybrid
system by a simpler model; and (B) abstract (over-approximate) representation of
sets of states by geometric primitives such as rectangles, polyhedra, ellipsoids, zono-
topes and Taylor models.

3.2.2 Abstractions

A system abstraction seeks to replace a given hybrid automaton S by another finite
or infinite state system T over the same state-space and set of modes as S , such
that every trajectory of S is also a trajectory of T . In this case, we will write
S � T . Note however, that T may have more trajectories that are not trajectories
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of S . It is easy to show that any reachable state of S starting from a given state X0
is also reachable in T (starting from a suitable superset of X0).

Early approaches considered finite state abstractions that transform a given hy-
brid automaton into a finite state machine which simulates the original system, or in
special cases, such as timed automata or initialized rectangular automata, exhibits a
stronger connection through bisimulation relations [24, 15]. However, most systems
of interest have been observed not to have finite bisimulation quotients. To circum-
vent this, Girard and Pappas consider the notion of an approximate bisimulation
relation that is defined by means of a comparison metric between states of the two
systems so that as the systems evolve in time starting from related initial states, the
distance decays over time [79]. The notion of approximate bisimulation relations
expands the class of systems for which we may find suitable finite state abstractions
with some property preservation guarantees. Nevertheless, it remains the case that
finding finite (approximate) bisimulation quotients is rare and seldom feasible for
practical systems. Other approaches for finding finite abstractions have employed
the use predicate abstractions with counterexample guided refinements [11]. While
the approach can perform well if the right set of predicates were to be provided,
the problem of deriving such a set of predicates is often hard in practice. Further-
more, the refinement loop may often generate a large number of predicates mak-
ing the finite state abstraction prohibitively expensive. More recently, hybridization
approaches have investigated the abstraction of more complex dynamics such as
nonlinear ODEs, linear hybrid systems by simpler dynamics such as rectangular
automata [22, 50, 125, 132]. On one hand, these approaches can provide tradeoffs
between the accuracy of the abstraction and its size. On the other, these approaches
can also suffer from the curse of dimensionality since they rely on decomposing
the state-space into small compact regions in order to bound the error between the
original system and the abstraction.

A related class of abstractions seeks to eliminate continuous dynamics by replac-
ing the ODEs by relational models that relate a state x and a future reachable state x′.
Building such relational models can then allow off the shelf tools for model check-
ing infinite state discrete systems to tackle the verification problem. The idea of re-
lationalization though implicit in earlier works such as Podelski and Wagner [124],
was first formalized by Tiwari and Sankaranarayanan under the notion of relations
that abstracted time away as well as relations that captured change in state over a
fixed time step [136, 154]. Subsequent work studied various ways of constructing
these relations that tracked time explicitly as “time-aware” relations [109]. Recently,
Chen et al explored the construction of these relations for nonlinear systems [42].
One of the key drawbacks for existing methods lies in the lack of approaches to
refine these relations once they are constructed. A related issue lies in the tradeoff
between constructing a coarse but simple relation versus a more complex and less
conservative approximation. Approaches that can construct “multi-scale” relations
that selectively refine interesting parts of the relation remain unexplored at the time
of writing.
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Fig. 5 Illustration of basic primitives for flowpipe computation. Starting from initial set in mode
1, we perform a continuous image computation for a given time horizon. Next, we compute states
from which a transition to a different mode (mode 2) is possible. From these states, we compute
the reachable states for mode 2 shown in orange.

3.2.3 Flowpipe Computation

Flowpipe computation approaches rely primarily on computing reachable sets by
approximating the time trajectories of the system rather than abstracting the system
itself. A large variety of flowpipe computation approaches have been proposed in
the literature and many proposed techniques are supported by tools for experimental
validation. Some of these tools are specialized to linear hybrid systems, while others
tackle a larger class of nonlinear systems. Most flowpipe construction methods are
instances of the forward reachability computation using the post-condition operator
presented previously. However, in order to extend this scheme to hybrid systems, it
is important to consider four important aspects (illustrated in Figure 5).
1. A systematic way to represent sets of continuous states. Since not all sets are rep-

resentable inside a computer, common representations include intervals, convex
polyhedra, ellipsoids, zonotopes, support vectors and Taylor models.

2. Once a representation is chosen, we need to compute sets of reachable states
for given nonlinear dynamics inside a mode. This operation has been variously
termed “time elapse”, “continuous postcondition” or “continuous image com-
putation” in the literature.

3. The effect of a discrete transition must be computed. This operation is called
“discrete post” or “discrete image” computation.

4. Finally, the primitives mentioned above must be integrated into a model check-
ing scheme that employs them in order to compute the reachable set estimation
for the system as a whole. To this end, operations such as subsumption checks,
aggregation, simplification and extrapolation are often used.

The fundamental scheme of performing forward reachability using a combination
of continuous and discrete image computation with specialized operators has been
carried out through a variety of approaches, which are summarized in Table 3.
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Table 3 Reachability analysis approaches using flowpipe construction at a glance. Legend: NLHy-
brid: Nonlinear Hybrid, NLODE: Nonlinear ODEs with continuous RHS, LODE: Linear ODEs
and LHybrid: Linear Hybrid.

Reference, Representation & Dynamics Remarks

Krogh et al [45, 46], Polyhedra, NLHybrid
Precise flowpipes for linear systems. Uses nu-
merical optimization for nonlinear systems.
Builds abstract finite state model for checking.

Dang et al [31, 49], Orthogonal Polyhedra,
LHybrid

Introduced face lifting algorithm for computing
reachable sets.

Kurzhanski & Varaiya [95], Ellipsoids, LODE

Uses ellipsoidal calculus and introduced the idea
of support vectors. Handling of discrete transi-
tions requires approximations due to ellipsoid-
hyperplane intersections.

Mitchell & Tomlin [108], Level Sets, NLHy-
brid

Uses Hamilton-Jacobi PDEs solved using state-
space discretization. Solves viability problems
(computation of control and reachability)

Girard [78], Zonotopes, LHybrid

Efficient image computation for continuous dy-
namics. Handling of discrete transitions remains
problematic similar to Ellipsoids. Available as
part of Spaceex tool.

Frehse et al [73], Support Functions, LHybrid
Efficient image computation and handling
of discrete transitions. Implemented in tool
SpaceEx

Berz & Makino [27, 105], Taylor Models,
NLODE

No handling of discrete transitions. Introduced
higher order interval methods for guaranteed
ODE integration.

Chen et al [40, 41], Taylor Models, NLHybrid
Extends techniques from Berz et al with han-
dling of discrete transitions.

Althoff et al [7, 8], Multiple, NLHybrid

Combination of multiple set valued represen-
tations including nonlinear zonotopes, matrix
zonotopes, Taylor models for nonlinear hybrid
systems reachability analysis.

Bak & Duggirala [25], Polyhedron, LODE

Using simulations to implicitly compute reach-
able sets and resolve safety properties. Shown
to scale beyond hundreds of thousands of state
variables.

Table 3 presents an overview of selected approaches based classified in terms of
the representations used for sets, and the type of models handled by the approach. As
we note in the table, there has been significant recent work in scaling up the reacha-
bility analysis of linear ODEs to millions of variables [25], linear hybrid systems to
many hundreds of variables [73] and nonlinear systems up to a few tens of variables
(assuming non-chaotic and non-stiff ODEs) [41, 7]. Furthermore, a variety of recent
tricks including decomposition of a monolithic model into smaller submodels that
can be exploited by the reachability analysis [43]. However, significant variability
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in performance is seen across models. Furthermore, many of the approaches have
numerous tunable parameters that need to be carefully adjusted for each model to
obtain optimal performance. Another important drawback lies in the lack of support
for richer models of hybrid systems that can incorporate features such as lookup ta-
bles, gain scheduling, predictive models and learning-enabled loops involving neu-
ral networks. Supporting these features remains the subject of ongoing research at
the time of writing this survey.

3.2.4 Constraint Solvers and Reachability

Another approach relies on using constraint solvers for estimating reachable sets
that can be used to prove properties of interest. This approach essentially integrates
many of the ideas summarized thus far naturally into a constraint solving frame-
work. The approach has been termed the SAT-modulo ODE approach, originated
in the work by Ratschan, Franzle and others [129, 130, 72], incorporated into tools
such as HySAT [85]. More recently, the approach was formalized by Gao et al. into
delta-decision procedures for proving properties of hybrid systems [76]. The key
idea is to provide procedures that can either conclude that a system does not sat-
isfy a property or that the system under a bounded perturbation violates a perturbed
property, under a well defined perturbation model. A similar idea is presented in-
dependently by Ratschan wherein termination of the reachability analysis is guar-
anteed under the condition of robust safety wherein a bounded perturbation of the
system continues to satisfy the safety property in question [130].

3.2.5 Simulation-Guided Reachability Analysis

A significantly different approach for estimating reachable states relies on using
simulations coupled with user-provided annotations. The main idea is to obtain a
simulation trajectory and to bloat the trajectory in such a way that for each initial
state included in the bloated trajectory, the trajectory beginning at this initial state
is also included in the bloated trajectory. Such a bloated trajectory is also known
as a reach tube. The first idea to compute reach tubes was by exploiting the sensi-
tivity of the numerical solutions of an ODE to perturbations in its initial conditions
[57]. A similar idea was also explored in [91] for continuous dynamical systems
with inputs. Recent advances in simulation-based reachability have shown promise
in being able to handle models with industrial-scale complexity [69, 62, 63]. These
techniques rely on a user-provided annotation in the form of a discrepancy func-
tion. Essentially, a discrepancy function provides a mechanism of bounding the dis-
tance between adjacent trajectories as a function of the distance between the initial
states for the trajectories. Thus, with a reasonably tight discrepancy function, an
over-approximation of the reachable state space can be obtained by performing a
(potentially) small number of simulations.
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4 Techniques based on safety-invariants

Techniques based on reachability are highly automated and have shown remarkable
progress. However, when faced with highly nonlinear plant models, and especially
in the presence of discrete switching, these techniques can suffer from loss of pre-
cision.

A different approach is offered by semi-automated techniques based on invari-
ants. The simplest definition of an invariant is that it is a set such that starting from
an element of this set, the time-evolution of the system trajectories remains within
this set at all times. Typically, we consider the forward time-evolution of the sys-
tem trajectories (i.e. time increases along a trajectory), and thus focus on forward
invariants. Given a set of safe states S, an invariant set I is called a safety invari-
ant, if I ∩S = /0. Various kinds of invariants have been proposed in the literature to
help automate proofs of safety. The prime challenge in invariant-based verification
is that it is typically very difficult to find invariants in an automated fashion, and
may require human insight.

A key body of work in invariant-based verification is with the use of the Key-
Maera and KeyMaeraX theorem proving tools [122, 74]. These tools allow a user
to systematically construct the proof of safety of a hybrid system (modeled as a hy-
brid program). The user has the choice of introducing various kinds of invariants to
automate safety proofs. An important class considered is that of differential invari-
ants [120]. These are invariants that allow proving the properties of a differential
equation without having to solve the equation itself. See [120] for a comprehen-
sive survey. There are certain specializations of invariant-based reasoning that we
discuss now.

Control Envelopes. Arechiga et al [20] present the problem of safety verification for
embedded control systems. Here, given a model of the continuous dynamics of a
plant, the technique postulates the computation of an envelope-invariant pair. The
technique assumes that the plant dynamics are given by an ODE of the form:

ẋ = f (x,u),

where x is the state of the plant, and u is the control input from some set U . We
assume that we are given an invariant set N (a subset of the plant state-space X).
We then compute a control envelope E that is a function from X to P(U)2. The
pair (N,E) satisfy the property that for all times t, for any given state x(t) ∈ N,
if the input provided by the controller u(t) is in the set E(x), then for all t ′ > t,
x(t ′) ∈ N. Further, if the intersection of N and the set of unsafe states is empty,
this gives us a proof of the safety of the closed-loop control system. They also
provide specific examples of control envelope-invariant pairs, but does not provide
a procedure to compute such pairs for general systems. Computing such control
envelopes remain an interesting problem that has attracted recent interest due to
applications to runtime monitoring.

2 For a set X , let P(X) denote its power set.
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Barrier Certificates. A barrier certificate is a type of a safety certificate. Let X be
the state space of a system specified by the ODE ẋ = f (x), let I be the set of ini-
tial states for the system, and let S be the set of safe states for the system. Then a
barrier certificate is defined as a differentiable function B, which has the following
properties:

1. ∀x ∈ I : B(x)≤ 0,
2. ∀x ∈ S : B(x)> 0,
3. ∀x ∈ X : (B(x) = 0) =⇒ ∂B

∂x · f (x)< 0

The intuitive idea is that the set B(x) = 0 serves as a barrier preventing the tra-
jectories of the system that originate in the set I from reaching the set S. As B is a
continuous and differentiable function, every trajectory that starts at a point where B
is negative must pass a point where B is zero before reaching a point where B is pos-
itive. However, because the Lie derivative of B along the manifold where B(x) = 0 is
negative, at each point, the system dynamics forces the B function from not increas-
ing. Barrier certificates were first proposed in [127, 126], and a procedure based
on Sum-of-Squares programming was proposed for finding barrier certificates for
systems with polynomial dynamics. These techniques were extended for systems
with certain non-polynomial dynamics [118, 81]. However, the problem of finding
barrier certificates for general nonlinear systems remains open.

Simulation-guided search for invariants. Though invariant based techniques show
a lot of promise to prove safety of systems with highly nonlinear and hybrid dy-
namics, finding the required invariants remains a hard problem. In [146, 145], the
authors suggested a simulation-guided technique to estimate the region-of-attraction
(ROA) for a given dynamical system, The main idea in this work was to convert a
set of bilinear matrix inequalities encountered in estimating the ROA (which are
computationally expensive to solve) into linear matrix inequalities, which are com-
putationally less expensive.

In [90], the authors propose a technique to iteratively compute an invariant using
simulations, based on the idea of estimating Lyapunov functions. Given a system of
the form ẋ = f (x), where f (0) = 0, a Lyapunov function V (x) is a function that is
positive everywhere except when x = 0, its Lie derivative ∂V

∂x is negative everywhere
except at 0, and at x = 0, both the value of V and its Lie derivative is 0. A Lyapunov
function is a tool that can be used to prove stability of a system to the point x = 0.
Furthermore, any level set of the Lyapunov function, i.e., L(x) = {x|V (x) = `} is
an invariant for the system. The iterative procedure in the technique proposed in
[90] is as follows: (1) the technique fixes the form of a candidate Lyapunov function
as some polynomial P(c,x), where c is a vector of coefficients of the polynomial
function, (2) it uses a set of discrete-time trajectories of the system from a given set
of initial states, and uses these to impose constraints on c, (3) it solves the constraints
using an appropriate solver to obtain a candidate Lyapunov function, (4) it searches
for counterexample for the candidate using an SMT solver, (5) if a counterexample
exists, it is added to the set of initial conditions used in step 2, and the method
repeats; else, it terminates with an answer.
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The key step is in the formulation of constraints in step 2. For a fixed polyno-
mial form with unknown coefficients, imposing positivity of V at each point in a
system trajectory results in a linear constraint. Suppose we are given two points in
a discrete-time trajectory of the system, (say xn = x(tn), and xn+1 = x(tn+1), where
tn+1 > tn. Then, a sufficient condition for the negativity of the Lie derivative is to
impose that V (xn)−V (xn+1) > 0. Note that this is again a linear constraint in the
coefficients of V as xn and xn+1 are known. Thus, solving the constraints in step 3
can be done using a standard linear-programming solver.

Step 4 also merits a remark. A candidate Lyapunov function (or by extension a
candidate invariant that is the level set of the candidate Lyapunov function) obtained
in Step 4 satisfies the required conditions for being a valid Lyapunov function (resp.
invariant) on the selected set of system trajectories, but there is no guarantee that
these conditions are met globally in the state space. Thus, the method use a satisfi-
ability modulo theories (SMT) solver that is equipped to reason about satisfiability
of arbitrary nonlinear queries; δ -sat solver dReal is such a solver [76]. It returns an
answer unsat if the query is unsatisfiable, otherwise returns a interval of width δ in
the state-space where the query may be satisfiable. As checking validity of a condi-
tion is equivalent to checking the satisfiability of its negation, an unsat answer from
dReal helps us establish the conditions required for a given set to be an invariant.

5 Falsification Techniques

In this section, we will review techniques to perform requirement-driven test gen-
eration of CPS models. There are several automated test generation procedures and
heuristics that attempt to tackle this problem by viewing it as a special case of soft-
ware testing. Commercial tools such as the Simulink Design Verifier

TM
(SLDV) tool-

box from the Mathworks [99, 75], the Reactis R© [131] tool and the TestWeaver tool
from QTronic [89] are notable for their adoption within industrial MBD practice.

The Reactis Tester tool evaluates open-loop controller models with a patented
technique to generate test inputs using a combination of random and targeted meth-
ods. The targeted phase of the tool uses data structures to store intermediate states,
and constraint solving algorithms to search for previously uncovered coverage tar-
gets. SLDV uses techniques based on SAT modulo theories (SMT) in conjunction
with the Prover tool to automatically generate test inputs to maximize coverage cri-
teria. SLDV is intended for open-loop (discrete-time) controller models, as it cannot
process closed-loop (hybrid) models.

The TestWeaver tool does test generation with the goal to maximize state cover-
age of the underlying system (where coverage is defined in a specific fashion). The
test generation algorithm itself is based on proprietary heuristics. The tool relies on
the user to quantize the inputs to the model-under-test, discretize the time domain,
and also to manually identify system variables that are most sensitive to the inputs.
This user intervention may require an understanding of the system dynamics and
engineering intuition to use the tool effectively.
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With the exception of certain features in TestWeaver, the above tools are pri-
marily focused on testing the controller models for CPS systems, while unable to
effectively reason about the plant/environment model. Furthermore, the properties
that these tools check are typically hand-coded by the user and tend to be simpler
static properties (such as the bounds on a signal value over a specified time interval).

We now discuss falsification techniques that overcome some of the shortcomings
of the existing commercial techniques in various ways:

1. They allow specifications expressed in formal specification languages such as
those based on Signal Temporal Logic (STL). This allows complex tempo-
ral properties over continuous-valued, continuous-time signal to be seamlessly
specified.

2. They can effectively search both continuous and hybrid state-spaces that arise
from closed-loop models.

3. They can be augmented with metrics to measure coverage of continuous and
hybrid state-spaces.

4. They can combine search for bugs in the software controller with corner case
behaviors in the continuous plant model.

In this chapter, we discuss two main classes of such techniques. The first class
of techniques allows falsifying closed-loop specifications of temporal behavior with
the help of black-box optimization tools. The second class of techniques combines
a novel exploration of plant model behaviors with a technique inspired by multiple
shooting methods found in numerical ODE solving with symbolic execution tech-
niques for analyzing controller code.

5.1 Falsifying Temporal Specifications using Optimization

A key technology that enables falsification techniques is quantitative satisfaction
semantics for real-time temporal logics. Robust satisfaction semantics were pro-
posed for Metric Temporal Logic by Fainekos and Pappas in their seminal paper
[68], while quantitative semantics for STL were proposed by Donzé and Maler [58],
which we now explain.

Quantitative Semantics of STL. For a formula ϕ in a given logical formalism and
a signal trace x, Boolean satisfaction semantics for the logic provide a true/false
answer for whether x satisfies ϕ . Quantitative semantics extend this notion to robust
satisfaction, i.e., they define a robust satisfaction degree (abbreviated as robustness)
of ϕ by x. The intuition is that if the robustness value is a positive number, then x
satisfies ϕ; if it is negative, it does not satisfy ϕ , and the magnitude of the robustness
degree indicates how strongly ϕ is satisfied (or violated).

We provide the formal robustness semantics for STL below in terms of a function
ρ that maps a given trace x, a formula ϕ and a time t to a real number. This function
for a predicate of the form f (x)> 0 at time t is simply the value of f (x) at time t, i.e.,
ρ( f (x) > 0,x, t) = f (x(t)). Then, ρ is defined inductively for every STL formula
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using the following rules:

ρ(¬ϕ,x, t) =−ρ(ϕ,x) (1)
ρ(ϕ1∧ϕ2,x, t) = min(ρ(ϕ1,x, t),ρ(ϕ2,x, t)) (2)

ρ(FIϕ,x, t) = sup
t ′∈t+I

ρ(ϕ,x, t ′) (3)

ρ(GIϕ,x, t) = inf
t ′∈t+I

ρ(ϕ,x, t ′) (4)

ρ(ϕ1UIϕ2,x, t) = sup
t ′∈t+I

(
min

(
ρ(ϕ2,x, t ′), inf

t ′′∈[t,t ′)
ρ(ϕ1,x, t ′′)

))
(5)

By convention, the robustness of ϕ by x is then simply ρ(ϕ,x,0). If we omit the
time argument, the implicit assumption is that we are computing the robustness at
time 0, i.e., ρ(ϕ,x) = ρ(ϕ,x,0).

We recall that a closed-loop model M can be viewed as a function mapping finite-
time input signals u (defined over time [0,T ]) to output signals y. For simplicity, we
assume that the specification ϕ is an appropriate STL formula over output signals.
Then the falsification problem can be restated as a search for an input signal u such
that ρ(ϕ,y)< 0. The central idea in most falsification tools is to solve this problem
by solving the following optimization problem:

u∗ = argmin
u s.t.y=M(u)

ρ(ϕ,y) (6)

If we find a u∗ such that ρ(ϕ,M(u∗)) < 0, then we have effectively found a
violation of the specification, or successfully falsified the model. While the above
setup seems straightforward, there are several caveats.

Input Signal Parameterization. The first is that optimizing over a dense-time input
signal is an infinite-dimensional optimization problem. A common approach is to
make the search space finite by assuming a finite parameterization of the input signal
space. For example, one of the approaches adopted by tools such as S-TaLiRo [19]
and Breach [55] is to introduce n uniformly spaced discrete time-points t0, . . . , tn−1
along the time axis, also known as control points. Here, t0 = 0, and tn−1 = T . Then,
the input signal u is defined in terms of (u0, . . . ,un−1), as follows: for all i ∈ [0,n−
1]: u(t) = ui if i

n−1 T ≤ t < i+1
n−1 T . In simpler terms, the signal u(t) is obtained by

constant interpolation over values (u0, . . . ,un−1) equally spaced in time. This notion
can be generalized by introducing variably spaced time-points, and user-defined
interpolation functions (such as piecewise linear, splines, etc.).

Another approach is to define a finite grid over the input signal space, i.e. in
addition to discretization of the time axis, we also quantize the value axis of the
signal. The input signal is ultimately constructed using interpolation over points
over this finite grid. (See Fig. 6(a) for an illustration.) Such a grid can then be refined
iteratively by the optimization algorithm. This is the approach explored in [52].

Non-convex search space. Most optimization tools critically rely on the optimiza-
tion problem being defined over a convex space, which enables gradient-descent



26 Jyotirmoy V. Deshmukh and Sriram Sankaranarayanan

t

u

(a)

`1

`2

`3

`4

t1 t2 t3 t4 t5t0 t

u

(b)

`1

`2

`3

`4

t1 t2 t3 t4 t5t0

Fig. 6 (a) Example of using a finite-grid to approximate an input signal. The input signal u(t)
is obtained by constant interpolation over the sequence (`2, `2, `2, `2, `4, `4) over the time-domain
(t0, t1, t2, t3, t4, t5). (b) Example of a grid-neighbor of the input signal shown in (a).

like optimization methods. Further, such approaches may also require the exact an-
alytic gradient to be available. The optimization problem set up in Eq. (6) almost
never has such nice properties. First, the method M can be an arbitrary hybrid dy-
namical system with a high-dimensional state space. Further, the cost function ρ

is itself not a smooth function of its input. Thus, most falsification tools rely on
black-box optimization techniques such as the derivative-free Nelder-Mead tech-
nique used in Breach [55], heuristic search techniques such as genetic algorithms
[19], Ant Colony optimization [18], the Cross Entropy method [134], or stochas-
tic gradient descent combined with discrete Tabu-search [52]. A common theme in
these methods is to evaluate the cost function, i.e., the robustness value for a heuris-
tically sequence of points in the input-space, and generally choose input points with
lower costs. The exact heuristics of how the sequence of inputs is chosen depends
on the specific algorithm in question. For example, in Fig. 6(b), we show how an
input signal corresponding to the grid-neighbor of the input signal in Fig. 6(a) is
chosen for cost function evaluation.

Recently, given the immense success of machine learning techniques in learn-
ing and approximating black-box functions, there have been efforts to apply such
methods to the falsification problem [51, 6, 92].

Yet another class of methods focuses on simultaneously trying to maximize cov-
erage of the hybrid state-space and find a violation of the property of interest.
The technique in [59] iteratively computes the input signal incrementally using the
Rapidly Exploring Random Trees (RRT) algorithm used for motion planning. The
RRT algorithm is tuned to pick goal states that maximize a weighted combination
of the (incremental) robustness of the output signal, and a coverage metric over
the continuous state-space of the closed-loop model. In [5], the authors combine a
coverage metric on the input signal space with a machine learning technique to clas-
sify already covered regions in the input space. In [54], the authors define a hybrid
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Fig. 7 An illustration of the trajectory splicing approach: (a) segmented trajectory reaching unsafe
states (shaded red) starting from initial states (shaded blue), (b) refining an abstract counterexam-
ple and narrowing the inter-segment gap, (c) further narrowing the gap by refinement, and (d) a
concrete trajectory with no gaps.
.

distance metric to obtain coverage over discrete mode switches in the closed-loop
model.

5.2 Falsification using Trajectory Splicing

Thus far, the approaches to falsification are single shooting approaches that search
over a single trajectory starting from some initial condition that falsifies the speci-
fication. An alternative approach is to use multiple shooting, wherein the approach
splices a collection of trace segments that take us from one state to another in the
state-space. An approximate trajectory takes a sequence of such trace segments with
possible gaps between the ith trace segment and the (i+1)th segment. The approach
then iteratively narrows the gap through a suitable optimization procedure, leading
from an initial sequence of segments to a trajectory of the system obtained when
the gaps are reduced to zero. The trajectory splicing approach using local gradient
descent was first proposed by Zutshi et al, inspired in turn by collocation-based ap-
proaches to integrating systems of differential equations and similar multiple shoot-
ing approaches to optimal control (see [152]). Subsequently this was extended to
a larger class of systems using graph-based search and iterative refinement [153].
See Figure 7 for an illustration of the iterative refinement procedure used in the tool
S3CAM that performs trajectory splicing for arbitrary hybrid systems.

Trajectory splicing is essentially a state-space exploration technique for hybrid
systems. Recall that in many CPS applications, the closed-loop system model is
often expressed as a hybrid or continuous plant model composed with a discrete
software controller. It is possible to enhance the efficacy of splicing-based falsifica-
tion techniques by combining trajectory segments explored in the plant’s state space
by symbolic execution of the controller. This approach was explored in [151], and
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uses symbolic path exploration tools based on SMT solvers. The scalability of this
technique is currently limited by that of existing SMT solvers.

6 Challenge Problem: Verification of AI-based systems

AI-based systems, especially those based on artificial neural networks (ANNs) and
by extension, deep neural networks (DNNs) have gained increasing prominence in
CPS applications where they support perception tasks from rich image, LIDAR and
other sensor data [80], and the design of control using ideas such as reinforcement
learning [142]. However, a key drawback of neural networks lies in the inability
of humans to understand their operation and the well publicized instances of incor-
rect operation that can potentially endanger life [110]. How do we verify systems
governed by deep neural networks? Currently, the problem of verifying CPS appli-
cations that use ANNs/DNNs has received increasing attention from researchers and
two independent streams have emerged.

Testing for Perception Components. The first set of techniques focuses on test-
ing deep neural networks used for perception tasks. One approach lies in reasoning
about properties of the perception tasks such as recognizing features in images reli-
ably. The main challenges in this area include the hard challenge of writing behav-
ioral specifications for perception tasks that involve feature rich input sources such
as images, videos, and LIDAR data streams. Another challenge lies in the sheer
size of the network in terms of the number of neurons and the depth of the net-
work, which makes existing verification tools hard to apply directly. Adversarial
test generation is a popular paradigm which has spawned a number of research pa-
pers, focused on identifying mild perturbations to images that result in failed object
recognition. Typical approaches use gradient search over the network, or a mixed in-
teger linear programming problem to analyze the robustness of classification tasks
to a set of changes to pixels in the images [144, 133]. Another related direction of
research is framed as a search for “adversarial” inputs that expose problems with
the current network. A linear programming based approach for finding adversarial
inputs is presented by Bastani et al[26]. A related approach for finding adversar-
ial inputs using SMT solvers that relies on a layer-by-layer analysis is presented
by Huang et al [87]. Currently, falsification-based approaches have proven advan-
tageous for these tasks given the sheer size and complexity of the neural networks
involved. Yet, the number of simulations needed, and time taken for each simula-
tions remain astronomically high. Currently, it is important to derive approaches that
can significantly reduce both these bottlenecks for falsification.

Dreossi et al present an approach that uses falsification to test neural network-
based perception systems used in autonomous driving by manually generating
scenes with known ground truth data [60, 61]. A more elaborate end-to-end ap-
proach has been proposed by Abbas et al using falsification tools to drive the pro-
cess of testing various scenarios and popular gaming engines to recreate the driving
scenarios in order to provide visual inputs to the cameras [3], or the use of robotic
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simulators to create visual inputs to the perception algorithm (in concert with a
closed-loop vehicle dynamics model and a controller) [147].

Testing/Verification of AI-based Control. The second stream of work considers
the safe learning of control laws that take the form of neural network, starting from
high level behavioral end-to-end specifications. Here, verification approaches have
reported more initial successes due to the much smaller size of neural networks
involved in these tasks, when compared to perception tasks. A fundamental primi-
tive that arises in such verification involves the propagation of interval uncertainties
over a neural network. Recently, there has been a surge of interest in this problem
starting from an approach that linearizes the nonlinear activation function [128],
the Reluplex solver by Katz et al that modifies the Simplex approach to handle
piecewise linear constraints posed by the nonlinear rectified linear units [93], an ap-
proach using a reduction to mixed integer solvers [101], a combination of local and
global search [65], and an integration of convexification with confict clauses driven
by a SAT solver [67]. Whereas these works have considered the neural network in
isolation, recent work by Dutta et al have focused on integrating the learning and
verification in a systematic manner using both plant and controller models [64, 66].
The work in [148], uses a closed-loop model of a plant and a neural-network based
controller (trained using reinforcement learning), and obtain a barrier certificate for
the system. The technique relies on using simulations to find an appropriate bar-
rier certificate, and uses the interval constraint propagation based SMT solver dReal
[76] to provide the ultimate proof of safety.

While most of the above approaches have initiated the work of tackling the hard
problem of verifying AI-based systems, there is more work to be done. Scaling cur-
rent approaches to real-world DNNs is a significant challenge, as is the challenge
of expressing verification goals for such algorithms in a clean mathematical formal-
ism.

7 Conclusion

In this chapter, we reviewed some of the main topics in the formal verification and
falsification of Cyber-Physical Systems. The key challenge for such systems is the
coupling of the continuous-time behaviors of a physical component with discrete-
time control software in the presence of an uncertain environment. Such systems
can be mathematically modeled as hybrid dynamical systems. Proving safety of such
systems over a bounded time-horizon can be addressed by solving the reachability
analysis problem for such hybrid systems, which involves over-approximating the
set of behaviors of the system, and proving that this set does not include the unsafe
behaviors. An alternate approach is to use falsification techniques, that seek to find
incorrect system behaviors through systematic search procedures. A key assumption
for verification or falsification is the ability to express safe behaviors of a system in a
formal specification language. We review Signal Temporal Logic, which is a formal
logic capable of expressing several interesting properties for CPS applications. We
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conclude the chapter with a challenge problem that will test the limits of existing
verification and falsification techniques.
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