State Space Exploration using Feedback Constraint
Generation and Monte-Carlo Sampling.

Sriram
Sankaranarayanan
NEC Laboratories America.
srirams@nec-labs.com

Richard M. Chang

University of Texas, Austin.
rchang@cs.utexas.edu

Guofei Jiang
NEC Laboratories America.
gfi@nec-labs.com

Franjo Ivancic
NEC Laboratories America.
Iivancic@nec-labs.com

ABSTRACT

The systematic exploration of the space of all the behaviours
of a software system forms the basis of numerous approaches
to verification. However, existing approaches face many
challenges with scalability and precision. We propose a
framework for validating programs based on statistical sam-
pling of inputs guided by statically generated constraints,
that steer the simulations towards more “desirable” traces.
Our approach works iteratively: each iteration first simu-
lates the system on some inputs sampled from a restricted
space, while recording facts about the simulated traces. Sub-
sequent iterations of the process attempt to steer the future
simulations away from what has already been seen in the
past iterations. This is achieved by two separate means:
(a) we perform symbolic executions in order to guide the
choice of inputs, and (b) we sample from the input space
using a probability distribution specified by means of previ-
ously observed test data using a Markov Chain Monte-Carlo
(MCMC) technique. As a result, the sampled inputs gener-
ate traces that are likely to be significantly different from the
observations in the previous iterations in some user specified
ways. We demonstrate that our approach is effective. It can
rapidly isolate rare behaviours of systems that reveal more
bugs.
Categories and Subject Descriptors: D.2.5 [Testing

and Debugging]: Symbolic execution, D.2.4 [Software/Program

Verification]: Model checking, Statistical methods.
General Terms: Verification, Reliability, Theory.
Keywords: Model-Checking, Statistical Sampling, Monte-
Carlo, Verification.

1. INTRODUCTION

Dynamic verification of software consists of simulating (or
executing) some or all of its behaviours in a systematic fash-
ion. The simulation can be carried out directly by inter-

Permission to make digital or hard copies of all or part of thiork for
personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

ESEC/FSE' 07, September 3-7, 2007, Cavtat near Dubrovnik, Croatia.
Copyright 2007 ACM 978-1-59593-811-4/07/0009 ...$5.00.

preting the source code, or indirectly by instrumenting and
compiling it. Simulation-based approaches may be classified
in many ways based on the underlying methodology. The
simulation can be symbolic or concrete, exhaustive or user
guided, systematic or random.

The main advantage of dynamic approaches is the reli-
ability of the bugs found, since these bugs correspond to
real program executions. On the other hand, they can-
not provide any guarantees on the absence of bugs unless
applied exhaustively. Exhaustive testing is intractable and
cost-ineffective in practice. Its use is limited in practice to
safety critical software with relatively small input spaces. In
practice, various coverage metrics such as line and branch
coverage serve to quantify the thoroughness of the testing
process with respect to a given metric.

Static verification techniques use source code traversal
along with symbolic reasoning techniques on system abstrac-
tions to prove properties, and hence expose bugs. Static
analysis techniques can deduce the presence of bugs or prove
their absence by using different forms of mechanized reason-
ing. In theory, static analysis can be sound and exhaustive,
i.e, it can guarantee 100% coverage of the program paths and
input values. In practice, soundness and exhaustive search
are sacrificed for scalability. Nevertheless, the success of the
many popular static analysis tools such as CoVerity [20],
FindBugs [19], PreFix [3], PolySpace [21] and so on are
mainly due to their independence from an actual running
environment.

Our approach to validation uses symbolic execution and
input sampling directed by properties learned from the test
output. At each iteration of our technique, the tests from
the previous iterations are run and different aspects of the
resulting traces are fed to learning modules to record general
properties of the test outputs so far. These aspects may in-
clude standard notions such as statement coverage, branch
coverage, function call sequences and various types of pred-
icates on the program state. The goal of future iterations is
to steer the simulation away from what has already been ob-
served to expose “new” behaviours of the code. The learned
facts define what has been seen so far, and therefore, the
types of new behaviours that we are interested in observing.

The properties learned are used to guide future simula-
tions in two ways. Some of the properties learned are fed
into a symbolic executor to produce constraints on inputs
that are more likely to yield unseen program behaviours.
Secondly, the learned facts are used to specify a bias func-

tion that measures the “ distance” of a given program trace
from the previously observed runs. Such a function is used
to reward runs which are dissimilar to the previously seen
behaviors while punishing similar behaviors.

Our simulator combines the constraints and the bias func-
tions by sampling inputs satisfying the constraints accord-
ing to the bias function. The sampling is performed using
the Metropolis-Hastings algorithm, and is based on a class
of techniques called Markov Chain Monte-Carlo (MCMC)
methods [6, 1]. In the long run, the algorithm ensures that
inputs are sampled in proportion to the value of their bias
functions. Therefore, inputs with higher bias values are sam-
pled more often than inputs with lower bias values. As a re-
sult, the sampled traces exhibit higher bias values, or more
distance from the learned facts than uniform random sam-
pling of inputs. The resulting samples are again fed to the
the learning modules, which add to the pool of learned facts
from previous iterations.

In order to further enhance its effectiveness, our tech-
nique employs a lightweight static analysis front end that
processes the input program and constructs a CFG repre-
sentation. This representation is repeatedly simplified using
property-specific slicing and constant folding. We then per-
form static analysis using abstract interpretation to prove
as many properties of the program as possible, eliminating
them from further consideration. The remaining properties
are analyzed using our approach to obtain concrete inputs
that drive the system to violate them. The front end makes
the problem small enough to improve the overall efficacy of
our technique on the parts of the code which matter to the
property being checked.

We have implemented our technique as a part of the F-
Soft framework to check common runtime safety properties
of C programs including array overflows, pointer access vio-
lations, string usage patterns and memory leak checks. Our
experiments on small and medium sized examples show that
our technique is effective. As compared to uniform random
testing, the combination of sampling and constraint gener-
ation achieves more coverage and finds more violations in
the same amount of time. Furthermore, we show that the
constraint generation and sampling are both essential to en-
suring this performance.

Organization. Section 2 describes the basic components
of our approach. Section 3 describes the simulation and
the Metropolis-Hastings Algorithm. Section 4 describes the
learning schemes used, Section 5 sketches the constraint gen-
eration and Section 6 describes the related work. Section 7
describes some of the implementation details. The results of
experiments are described in Section 8.

2. APPROACH

Our framework consists of four basic parts as depicted in
Figure 1.
Front End. The program is first passed through a static
analysis front end. This constructs a CFG representation,
instruments and simplifies the resulting CFG using slicing,
constant folding and powerful static analyses using abstract
interpretation for proving properties, thus removing many
of the properties from further consideration. As a result
of these simplifications, the only statements preserved are
those that have a bearing on the property being checked.

The CFG built through static analysis is then simulated in

Table 1: Useful facts learned for different properties.

Pointer Access
node/branch Coverage
Function Call Sequence
Null Pointer Parameters
Pointer Aliases

Array Overflow
node/branch Coverage
Function Call Sequence
Variable Ranges
Pointer Aliases

Input| Front End | CFG
. il
Analyses CFG Trace L
_-— T e = -
| Simulator | Output earner
1
-
|| . -
[Input Bias___ 1 1
1
: .
| 1
I_Input_ | Symbolic [Tearned !
Constraints | Execution Facts

Figure 1: Block diagram summarizing our simula-
tion framework.

our framework to find inputs that lead to bugs. Our frame-
work is iterative with each round consisting of an application
of the simulator, learner and symbolic executor.

Simulator. The simulator runs the CFG on selected inputs
given a constraint restricting the set of inputs and a bias
function guiding the selection from amongst the ones that
satisfy the input constraints. The simulator works by sam-
pling the input space using a Monte Carlo Markov Chain
(MCMC) approach [6, 1]. The resulting trace data is sent
to the learner module.

Learner. The learner module is responsible for accumulating
facts about the traces that have been observed so far. These
properties can be used to guide the simulation through con-
straints on the input and bias functions for sampling their
solutions. The nature of the learner may be specific to the
type of program being analyzed and property being checked.
Table 1 shows some of the possible properties of the test out-
put that we may infer automatically. These properties are
used to generate test cases. Note that the properties listed
therein also happen to be commonly inferred static proper-
ties when the program is statically analyzed for verification.
Such properties can be obtained by learning algorithms of
different levels of sophistication. Properties of interest may
include standard notions of coverage, such as line coverage
and branch coverage, the sequence of function calls and re-
turns, the ranges of function parameters at the entry to a
function, the points-to relationships between chosen points
in the heap at different points in the program, or even the
text printed out by the program.

Symbolic Execution. In order to capture some unexplored
behaviours of the program, we use symbolic execution to in-
fer constraints on inputs. Such inputs could exercise previ-
ously unseen function call sequences, visit specified program
points with parameters that lie outside the inferred ranges,

or with different pointer alias sets. In our approach, we use
abstraction and static analysis to generate such constraints.

3. SIMULATION & SAMPLING

In this section, we describe techniques for simulating the
CFG and sampling from a set of inputs.
CFG Simulation. Given a CFG representation of the pro-
gram and some initial values, we simulate the program on
the given input values in order to produce a trace. One of
the issues with simulations is the potential for nontermina-
tion especially if the inputs do not respect the environment
constraints or implicit assumptions at function entry. This
is remedied by simulating the CFG for a large but fixed
number of steps and artificially terminating the rest of the
execution. It is also possible to encounter dead-ends in the
CFGs as a result of simplification by static analysis tech-
niques such as slicing and constant folding. The simulation
automatically stops upon reaching a dead end.

Sampling: Metropolis-Hastings Algorithm

Input sampling is the most important part of the simula-
tion process. We assume that we are given a constraint ¢
on the input space, and that it is possible to solve ¢ and
obtain some solution s. The constraint arises from symbolic
execution, and ideally, it guarantees that all its solutions
produce distinct behaviours in some desired aspect of the
output trace. In reality, however, the constraints are gener-
ated using approximations for efficiency. Therefore, not all
their solutions may guarantee the desired behaviour. The
objective of statistical sampling is to compensate for these
approximations by controlling the choice of solutions.

In the ensuing discussion, let) represent the space of in-
puts of a program satisfying the constraint . For simplicity,
we assume deterministic execution, i.e., a one-to-one map-
ping between each input and the resulting program trace.
Our results hold even if this assumption is not satisfied.

In our framework, the learner produces a bias function v
using data learned from previous iterations. Given a pro-
gram trace T, the bias function v returns a positive real
value v(T") > 0 that measures the “distance” of this trace
from previously seen traces. Higher bias values for a trace
indicates larger distance from previously seen behaviours.
Under the deterministic execution model, this bias function
may be indirectly applied on inputs s by first simulating
them and evaluating the distance function on the resulting
trace. If the execution is not deterministic, we may define
v(s) by averaging over a large number of distinct traces that
running s may produce.

We now wish to sample from the input space according
to the bias function v(-) over the inputs. This is achieved
by means of a variation of the popular simulated anneal-
ing algorithm called the Metropolis-Hastings Algorithm [6,
1]. Algorithm 1 shows the schematic implementation of the
algorithm. At each step, the algorithm generates a new
proposal s’ from the current sample s using some proposal
scheme defined by the user. Subsequently, we compute the
ratio @ = v(s")/v(s) and accept the proposal randomly, with
probability a. Note that if a > 1, i.e., v(s’) > v(s), then
the proposal is accepted with certainty. If the proposal is
accepted then s’ becomes a new sample. Failing this, s re-
mains the current sample and no new sample is produced.

A proposal scheme is defined by a probability distribution
P(s'|s) that specifies the probability of proposing input s’

Algorithm 1: Metropolis-Hastings Algorithm.

Input: Q: Input Space, v(-): Bias Function,
ProposalScheme(+): Proposal Scheme
Result: Samples C 2
begin
Choose some initial input s € Q.
while (---) do /* Require More Samples? */
/* Select s’ using ProposalScheme */
s’ < ProposalScheme(s)
v(s’)
v(s)
r < UniformRandomReal(0, 1)
if (r <a) then /* Accept proposal? */
s« s
Samples < Samples U {s}
else
| /* Reject & seek fresh proposal */

Q —

end

given the current sample s. For a technical reason (known
as detailed balance, see [6]), our version of the algorithm
requires that P(s’|s) = P(s|s’). Furthermore, given any two
inputs s, s’, it should be possible with nonzero probability
to generate a series of proposals s,si,...,s that takes us
from input s to s’.

Suppose Algorithm 1 was run many times to generate a
sufficiently large number N > 0 of samples. Let N(s) denote
the number of times an input s was sampled.

im N(s1) _ w(s1)

Theorem 3.1. Forinputs s1,s2 € €, NlﬁC><> N(ss) = v(o2) -

As a direct consequence, one may conclude, for instance,
that a state s; with v(s1) = 100 is ten times more likely
to be sampled than a state s2 with v(s2) = 10 in the long
run. In theory, it is possible to prove assertions about the
number N of samples required for a particular scheme to
produce samples in proportion to their bias values. This
number, also known as the mixing time, is invariably large,
depending on the size of 2. Our use of the sampling scheme
simply draws for a fixed number of samples, or alternatively,
until the maximum value function so far exceeds the initial
value by some factor A.

Proposal Schemes. 1t is relatively simple to arrive at vi-
able schemes for generating new proposals. For instance, it
suffices to simply choose an input s uniformly at random
from among the inputs. However, designing a good sam-
pling scheme needs some insight into the nature of the input
space and the bias function. For our application domain,
we rely on a locality principle for sampling the input space.
We assume that if an input s is suboptimal, there exists a
“nearby” input s + A, that improves the value of the bias
function. Furthermore, such a nearby input generally pro-
vides some directional information for guiding the sampling
of new inputs.

One of the main complications that arises in our applica-
tion is the input domain used for the sampling. The space
of inputs (domain) is specified in our scheme by a constraint
p, generated by a symbolic execution. Therefore, we require
proposal schemes that sample from the space of solutions to
these constraints. We first consider bounding-box domains
wherein ¢ is of the form A, z; € [l;, w;], where I; and u; are

the lower and upper bounds on the input variable x;. Under
such conditions, we may use a proposal scheme known as
the Gibbs Sampler. Let s be the current state wherein each
variable x; lies in the range [l;, u;].

1. Choose an input variable z; uniformly at random among
the inputs,

2. With equal probability, we increment or decrement the
chosen variable by 1, i.e., 2} := x;41. Furthermore, we
may force the result in the range by wrapping around.
If ; > u; then 2} := I; and vice versa.

The Gibbs Sampler chooses next inputs that differ from the
current input by £1 over exactly one input variable. Such
a sampler always works for bounding boxes and produces
good convergence results in many cases, depending on the
nature of the bias function used.

On the other hand, the Gibbs Sampler poses problems
in input domains that are not bounding boxes. One such
domain that will be used in our application is that of linear
constraints. Consider the constraint

Vi @+ 20 =0Az €[—10,10] A 25 € [—10, 10]

over input variables x1,z2. The state (z1,z2) = (0,0) is a
valid input satisfying 1. On the other hand, all the neigh-
bouring states (0, +1) , (1, 0) that will be considered by the
Gibbs Sampler lie outside [[¢)]]. Therefore, the Gibbs sam-
pler will fail to sample faithfully in such a case.

In order to sample from an arbitrary domain ¢, we may
form a bounding box ¢ that overapproximates . Subse-
quently, one may sample from ¢, and accept only those sam-
ples that satisfy ¢. Whereas sampling from bounding boxes
is computationally inexpensive, the loss in samples due to
the overapproximation may be quite high. The bounding
box approximation ¥ : z1,z2 € [—10, 10] of ¢ shown above
has ~ 400 input states, whereas the domain ¢ itself has
~ 10 possible inputs. Therefore, using the bounding box
approximation leads to one viable sample in the domain)
for every 40 samples from the bounding box, on an average.
This problem is exacerbated when the number of inputs in-
creases.

On the other hand, it is possible to sample directly from
the input domain itself, albeit at a higher computational
cost. Let us assume a randomized constraint solver C' that
is able to return a solution s to a given constraint ¢ at ran-
dom by using some random seeds provided by the user in
the constraint solving process. We may modify the Gibbs
sampler to sample from the input domain using such a con-
straint solver in the proposal scheme. Let s be the current
input satisfying the domain constraint ¢. The constraint

Ps np/\/\(s(xi)fAS:cigs(xi)+A),

for some constant A > 0, strengthens . Furthermore, any
solution s’ of ¢, is obtained by an increment (decrement) of
at most A to each variable in the current input state s.

A key drawback to this scheme is the ability to build
a good randomized constraint solver. Techniques such as
WALKSAT can be generalized to extract satisfiable solutions
to SAT and CSP problems in a randomized fashion, ap-
proaching uniform random sampling [35, 16]. Our imple-
mentation builds randomized solver for linear constraints
by using the SIMPLEX algorithm with a randomly generated
objective function.

Input: (z,y): Integers, (x,y) € [-100,100] x [0, 10]
begin

int z = multiply(z,y)

assert(z # 210)
end

Figure 2: A program with an assertion violation.

Bias Functions. We now consider the specification and
computation of bias functions. The bias needs to mea-
sure the “distinctness” of a trace from previously observed
ones. There are many measures of distinctness imaginable.
However, we may combine many different bias functions
V1,...,Um into a single function by simply multiplying the
values of the individual biases on a particular input, i.e.,
v(s) = II72 v (s). Secondly, there are numerous ways of pro-
viding values to a trace for some given concept. However,
the sampling algorithm considers only the ratio of bias val-
ues for two different input values rather than the actual val-
ues. Therefore, the scale of the valuations does not matter.
We demonstrate some possible bias functions corresponding
to some of the facts shown in Table 1 such as node/edge
coverage, variable ranges and function sequences:

Coverage Bias: Coverage is computed by recording the nodes
(statements) and edges (branches) visited so far. Let s be a
proposal with its simulated trace w. Let m, be the number
of mew nodes visited by w. A simple bias value is given by
the fraction v(s) : my/|m|. On the other hand, we may wish
to reward traces that visit an unseen node earlier in their
execution. Let [be the earliest position in the trace where
a previously unseen node is visited. A bias function of the
form w(-) : 2% rewards traces that visit a fresh CFG node
earlier in their execution. Similar notions may be formu-
lated for the uncovered CFG edges. Note that this function
changes for each iteration as the nodes and edges covered
also change. Also, a trace that is indistinct from a pre-
viously seen trace gets the least possible value under this
scheme.

Distance to Violation: The bias function may be used to
reward traces that “almost” cause an assertion in the code
to be violated. Consider, for instance, an assertion that is
violated whenever e = 0, for some arbitrary program expres-
sion e. Let T" be some threshold value of e. A bias function
of the form

0.5, le| > |77,
v(-) =
100.0, e| < |T|

can be used to reward traces that achieve a value of e in the
range [—T,T] with some large value. Example 3.1 demon-
strates one such function. Assertions of the form e; (relop) ea
can be similarly treated for other relational operators. The
learner may control the bias by narrowing the threshold for
each iteration based on the learned data.
Range Bias: Given the ranges of selected variables at some
instrumented program points, the range bias given a trace
7 is the number of times it visits an instrumented point
with the value of some variable of interest lying outside the
range given by the learner. Alternatively, one may formu-
late different notions of distance based on the actual devi-
ation of the observed values from the ranges recorded so
far. Once more, the bias function rewards inputs that visit
instrumented points with new values for the variables.

In practice one may define numerous other bias functions

FE - +

P T T T R
B T
O, ws | 4 e e s b ;

-100 -50 0 50 100

(a)

T T
+ (zxy=210) *
iSampled Points” +

Figure 3: Input simulation for example program using (a) uniform random sampling, and (b) Metropolis-
Hastings algorithm. “+” denotes the sampled points and the solid curve shows the objective.

based on the property being checked and the output of the
learner module.

Example 3.1. Consider the program in Figure 2 with
two inputs x,y in the range (x,y) € [—100,100] x [0, 10].
The assertion z = xy # 210 is violated only for very few
selected values of x,y. We compare two schemes for choos-
ing the input (z,y): (a) sample uniformly at random from
inside its range, and (b) use the Metropolis-Hastings algo-
rithm with a bias function rewarding traces that get close to
violating the assertion in question:

o) { , if xy # 210

100, otherwise
Figure 8 shows the scatter plots of the sampled points from
a typical run of both the schemes. Note the clustering of the
sampled points about the target points when the bias function
is used.

0.9\1y7210\

The example also shows the benefit of using statistical
techniques to handle nonlinear expressions such as x * y.
These expressions cannot be handled by techniques relying
purely on symbolic execution, since they typically give rise
to intractable satisfiability problems.

4. LEARNING

The learning used in our framework simply records useful
facts about what has been seen so far in the trace data. The
learner is used to generate constraints on the input space
and define the bias functions for the statistical sampling de-
scribed in Section 3. In our framework, we consider learning
schemes that go beyond faithfully recording output data.
Our schemes also generalize from the traces seen so far to
ensure that future iterations produce behaviours that are
significantly different.

Coverage Learning. Coverage learning simply records if a
node or an edge in the CFG has been visited in an earlier
round or otherwise. This can be performed inexpensively
by associating a Boolean flag with each node or edge. The
resulting annotation can be used to compute a bias function
that rewards traces which visit previously unseen nodes and
edges. It can also be used to guide the symbolic execution
process to ensure that previously unseen nodes and edges
are visited in the future.

Function Call Sequences. Syntactic notions of coverage in-
clude function call sequences, that are key determinants of a

program’s behaviour. Many common causes of bugs includ-
ing API usage errors are directly dependent on function call
sequences encountered during execution. A simple scheme
for “learning” such call sequences could be to store all en-
countered sequences.

We employ a more sophis-
ticated approach that can gen-
eralize the call sequences to
produce a finite state machine

B

model of the calling sequences CDE

in the program [23]. The key

to this approach is its use of

NGRAMS to learn automata. Figure 4: Ngram Au-
An NGRAM is a word consist- tomaton

ing of a sequence N > 0 letters. For example, “ABCD”
and “EF” are 4-grams and 2-grams, respectively. NGRAMS
are commonly used in natural language modeling and un-
derstanding. We use this concept to represent automata
characterizing sub-sequences of a trace. Each state of the
automaton is an NGRAM of length n € [1, N], denoting the
occurrence of all the events denoted by the letters that make
up the NGRAM. Automata edges connect these NGRAMS to
represent a set of traces. Figure 4 shows an example of such
an automaton. The NGRAMS in this automaton are “A”,
“B” and “CDE”. The automaton generated from the call se-
quences defines a bias function based on the size of the path
prefix that belongs to the language of the automaton.
Ranges. We record the ranges of variables of interest at spe-
cific program points by simply recording them. Nodes of
interest include function entry and exit points. Variables
of interest include parameter and return values, array in-
dices and pointer dereferences. We also record the ranges
of expressions at branch points and assertions. Note that
recording the maximum and minimum values encountered
rather than the individual values seen by each trace is the
generalization involved in this form of learning. This enables
us to compute bias functions that measure the distance to
a particular assertion violation, as described earlier. Dy-
namically inferred invariants along the lines of tools such as
Daikon can also be used as characterizations of previously
seen traces [12].

5. SYMBOLIC EXECUTION

The symbolic executor utilizes the output of the learning
module to generate constraints on inputs refuting the prop-
erties learned. In order to make the execution tractable,

our symbolic executor treats nonlinear branches and assign-
ments as nondeterministic. This ensures that the resulting
constraints belong to tractable theories such as linear arith-
metic, and therefore, are easy to solve. However, it is well
known that an overapproximate symbolic execution along a
path does not always lead to inputs that necessarily exercise
the desired paths. Nevertheless, the constraints so obtained
can improve the probability of observing the statistically
rare behaviours upon sampling.

In general, the generation of constraints depends on the
type of learning used for its input. Different types of learn-
ing require different abstractions and reasoning engines. In
this section, we restrict ourselves to test case generation cor-
responding to a few of the aspects described in Section 4.
Coverage Enhancement. We compute constraints to visit a
node n or an edge e that has not been previously explored.
The constraints are obtained by symbolic execution of paths
in the code that reach the uncovered node/edge. The process
is continued until we find a feasible path that traverses the
node or edge, or enough paths have been explored and none
found feasible.

Function call sequences can also guide static constraint

generation through a process of chaining [25]. Given a de-
sirable sequence of function calls, we may formulate a series
of subgoals, each of which could consist of an extension of
a CFG path through an uncovered edge. The sub-goal for-
mulation is performed through data and control dependence
analysis on the flow graph.
Range Enhancement. Let n be a node of interest and z
be a variable that has so far been observed in some range
[, B]. We choose paths that ends in n and execute them
symbolically. In order to extend the range, we simply extend
each path by adding an extra “virtual” condition z < « or
x > (to the end of the path. One may stop extending the
range of the variable based on the results of a static range
analysis. The resulting symbolic execution, if feasible, may
enable a visit to the node n with a value of x lying outside
the range [«, 3].

A typical test generation problem has two aspects to it:

(a) Path Selection and (b) Symbolic Ezxecution.
Path Selection. Paths through the CFG may be chosen by
systematically exploring the CFG using a search strategy.
However, for large programs, there are numerous syntactic
paths, a majority of which may be infeasible. Furthermore,
an exhaustive search through the CFG may be time con-
suming. Our solution is to perform a best effort search for
reachability using a database of previously explored feasible
paths. Given a reachability objective, we consider minimal
extensions to the prefixes of paths in our path database that
enable us to reach the objective. For each such extension,
we compute a path constraint, which is checked for feasibil-
ity. The process terminates once enough feasible paths are
found.

The database of feasible paths can be built from two
sources: (a) The paths exercised by previously seen traces
from test data, and (b) paths found to be feasible by pre-
vious attempts at constraint generation. The paths in the
database may be stored and accessed efficiently using a mod-
ification of the trie data-structure [24]. The trie represen-
tation may be kept small by merging nodes inside loops to
prevent unnecessary replication of loop nodes along a path
and also by summarizing straight line code.

Finally, our path selection scheme maintains the stack of

function calls encountered along each path in order to match
calls properly with returns. While this matching happens
automatically for paths obtained from concrete executions,
care must be taken while extending such paths to ensure that
the extensions also produce interprocedurally valid paths.
Thus, all the paths selected are interprocedurally valid.
Symbolic Execution. Our objective is to obtain input con-
straints to exercise a particular path. Such an input con-
straint can be computed using the weakest precondition (WpC)
along the chosen path. The computation of WPC is common
to numerous approaches in verification and test generation.
Therefore, we omit the details of this computation from this
discussion.

In order to simplify the weakest precondition, we first
construct a linear abstraction of the program by replacing
non linear operations such as multiplication, integer division,
modulo and bitwise operations to nondeterministic choice.
Given a CFG, computing its linear abstraction involves a
simple transformation that can be achieved in linear time.
The computation of the WpC involves substitution and syn-
tactic manipulations. It can be performed in polynomial
time in the size of the path and the number of variables
involved. The linearization ensures that given a path the re-
sulting WPC is a conjunction of linear inequalities. Such
constraints can be solved using standard linear program-
ming(LP) solvers.

Common operations over path constraints include solving
them to obtain some sample points, and a proposal scheme
to choose a new solution at random, given a current solu-
tion. Even though these operations can be performed in
polynomial time for linear arithmetic assertions, doing so
repeatedly may lead to a large overhead. The bounding box
abstraction can be used to further over-approximate the con-
straint v by means of a outer bounding box. To do so, we
compute bounds [, §;] for every input variable z;. This can
be performed efficiently based on simple ideas from interval
arithmetic solvers.

6. RELATED WORK

Using Feedback. Many approaches have directly or indirectly
used the coverage information from the exploration so far
to guide new exploration, using many different notions of
coverage. Tasiran et al. use coverage data to modify the
parameters of a Markov chain model of the system under
test, in order to guide further test generation for functional
testing of hardware [32]. Fine & Ziv use a Bayesian network
to discover relationships between the inputs and the result-
ing coverage. The resulting network is then used to guide
the further generation of test vectors for functional testing
of hardware designs [13]. Ganai & Aziz use a notion of “rar-
ity” based on the frequency of occurrence of different compo-
nents of the system state to guide state space exploration for
the circuit verification [14]. Edelstein et al. present a tool
that explores different context switch patterns of a multi-
threaded program in order to generate race conditions in a
coverage guided fashion [11].

Pacheco et al. use random test generation in combination
with a set of heuristics that guides the extension of previ-
ously seen unit tests to produce new tests for Java programs.
They demonstrate the superiority of their approach vis-a-vis
other systematic approaches to the problem [30].

Random Testing. Numerous approaches to testing rely on
inputs that are sampled randomly from fixed or changing

probability distributions. Random testing samples uniformly
at random from the space of inputs, essentially treating the
program as a black box [17]. This approach has been im-
plemented in tools such as JCrasher [9] and QuickCheck [7].
Simplicity and ease of implementation are the essential ad-
vantages to random testing. There are many disadvantages:
inputs of interest frequently have a low probability of being
discovered by chance alone.

Distance Metrics. Bias functions, or more generally, dis-
tance metrics have been used elsewhere to guide test gener-
ation. The work of Korel uses goal-directed exploration of
program paths by minimizing a distance metric [25]. The
distance metric is similar in form to the “distance to vio-
lation” metric discussed in Section 3. This work also uses
the chaining method for using a sequence of subgoals to sat-
isfy a larger goal. Michael et al. use a similar approach of
formulating objective functions, which are minimized using
genetic algorithms and gradient descent [27].

Model Checking & Symbolic Execution. Numerous approaches
use model checking and symbolic execution to explore the
state space of programs either systematically or otherwise.
Model checking for software has been implemented in tools
for explicit state exploration such as Mury [10], SPIN [18],
JPF [33], CMC [28], among many others; and symbolic ex-
ploration in tools such as CBMC [8] and F-Soft [22]. Tools
such as JPF [34], Symstra [36] and jCUTE [31] use sym-
bolic execution in order to generate constraints exercising
program paths.

Combining Static & Dynamic. Recently, there has been a
slew of work on combining symbolic and concrete execution
for test case generation [15, 4, 31]. The approach (termed
concolic testing by Sen et al.) consists of instrumenting a
running program to produce constraints along its execution
path, so that the path exercised by the program can be sym-
bolically executed to perform further test case generation.
Our approach shares many similarities with concolic test-
ing, including the idea of combining symbolic and concrete
executions. On the other hand, whereas CUTE symboli-
cally executes all paths up to some fixed depth cutoff, our
approach uses a learning scheme to drive path exploration
towards new paths for symbolic execution. Finally, rather
than run the program on a few solutions to symbolic execu-
tion constraints, our approach samples many inputs from the
constraints discovered by the symbolic execution according
to a bias function learned from previously observed tests.

The recent work of Majumdar and Sen extends concolic
testing with random simulation. This approach, called Hy-
brid Concolic testing uses a combination of random explo-
ration of the state space along with directed symbolic exe-
cution to test software [26].

Learning. Numerous approaches combine random testing
with static reasoning to obtain novel ways of proving prop-
erties or finding bugs in programs. In general, data from
testing has been used to infer invariants, construct abstrac-
tions by learning predicates, specifications and likely invari-
ants. The work of Ernst et al. uses test data to infer likely
invariants [12]. These invariants have been used in a static
analysis framework to prove program properties [29]. Com-
monly generated invariants include linear equalities among
the variables in the program and properties of data struc-
tures such as linked lists.

Facts learned from test output have been used as formal
specifications. The work of Yang et al. infers common func-

tion call sequences from the test data. These sequences are
used as specifications for static analyzer such as ESP to dis-
cover anomalous call sequences [37]. Chang, et al. propose
a similar technique that refines a set of candidate property
specifications based on programs executions to efficiently in-
fer a wider set of commonly occurring properties [5]. We use
the approach of Jiang et al. [23] to learning call sequences.
However, whereas the resulting automata in this approach
is used in the aforementioned work to monitor the program
and flag deviations, we use it to guide our simulation by
means of a bias function.

7. IMPLEMENTATION

We have implemented an instance of our framework using

the front-end infrastructure for checking C programs [22].
Our implementation checks for memory safety issues such
as the absence of overflows, pointer access violations, double
frees and so on. We can also check the usage of the standard
library string functions for the C language. In this section,
we discuss some of the implementation details.
Front-End & Static Analysis: We use various front-end fea-
tures such as instrumentation for the insertion of extra vari-
ables to track allocated boundaries of arrays and pointers,
heap and stack modeling, the automatic insertion of checks
for array accesses, pointer dereferences, memory allocations,
reallocations and frees. The model is then simplified by
a series of transformations. Many of the checks inserted
are eliminated through pointer analyses at different levels
of precision, and abstract interpretation techniques such as
interval analysis, octagon analysis and polyhedral analysis,
along the lines of the Astreé project [2]. At each stage, we
statically slice the CFG to eliminate code irrelevant to the
properties being checked. The resulting CFG consists of the
slice that corresponds to the uneliminated checks.

The front end transformations are faithful to the seman-
tics of the original code. However, one important exception
is the handling of the contents of large arrays. It is in-
tractable to handle the contents of large arrays, especially
those of unknown size, during the CFG construction phase.
Therefore, we model a bounded number of positions as spec-
ified by the user, while soundly abstracting the remaining
positions to nondeterministic choices. This limitation also
carries over to dereferences of pointers which may point to
unmodelled array positions, and heap data structures such
as linked list, which frequently use arrays of pointers.
Simulator: We simulate the effect of the CFG nodes and
branches along with those of many standard library func-
tions such as memory management, string handling and
other common utilities. Other functions with unknown source
code are assumed to return random values. A future exten-
sion could enable the use of precompiled libraries for such
functions.

The environment at the start of the simulation can be
specified by function preconditions that are checked during
simulation and incorporated into the symbolic execution.
However, such preconditions are rarely available in a level
of detail sufficient to recreate valid inputs. As a result of
this, and other abstractions during the CFG building pro-
cess, some of the bugs we produce during simulations are
potentially false bugs. Table 2 summarizes some of the is-
sues handled in the implementation of simulators.
Learning: Our implementation provides hooks for many
types of learning modules that may be specific to the type

Table 2: Language and system issues that complicate simulation.

Issue Solution

Long (nonterminating) simulations
Unknown input environment
System calls, library functions

Large array indexing
Data-structures

User-defined limit on the number of steps

User-specified preconditions

Explicitly model common func. Rest are treated as nondeterminstic.
Pointer dereference of untracked address | Evaluate to a random value.

Track array length, null termination and a bounded number of elements.
Enable preconditions on data structure shapes (not implemented).

of code being analyzed or the property being checked. Cur-
rently, we have implemented learning schemes for recording
CFG node and edge coverage, function call sequences using a
variant of the algorithm described by Jiang et al. [23], ranges
for function parameters and expression ranges at assertion
violations. Each learning module also implements bias func-
tions along the lines of those discussed in Section 3, that can
be called by the sampler to evaluate a proposed input. Fur-
thermore, the coverage and range data are used to generate
constraints by symbolic execution.

Symbolic Ezxecution: As described in detail in Section 5,
we search for interesting paths by extending existing paths
in the CFG stored in a trie to satisfy coverage or range
enhancement objectives. Our symbolic execution currently
supports linear arithmetic (LP) and bounding box (BBOX)
constraints.

Our implementation tightly couples the components de-
scribed above. Each round of the procedure consists of sam-
pling a fixed number of inputs from each of the constraints
produced in the previous round. The traces resulting from
the samples are added to the database. The bias function
is updated using the learning output, and the test gener-
ator module is run to produce a new set of constraints.
The overall process consists of iterating our procedure for
a fixed number of rounds. We observe that a small num-
ber of rounds (typically 10) suffices for our test examples.
The number of samples drawn per constraint can be varied
depending on the estimated number of solutions to the con-
straint. For the purpose of our experiments, this number is
fixed at 1000 samples.

8. EXPERIMENTS

We have applied our techniques to a few example C pro-
grams shown in Table 3. The benchmarks are typically im-
plementations of modules offering various functionalities to
the system as a whole. These functionalities are broadly

classified into a series of initializations, operations and cleanup.

The benchmarks include common data structure implemen-
tations used heavily in the F-Soft front-end (and our tool im-
plementation), small application libraries and device drivers.
In some cases harnesses were already available to exercise
all the operations exported by the library. In other cases,
we built our own harnesses to exercise some initialization
sequence, operation sequence and cleanup based on input
arguments to the harness function. Table 3 also shows the
performance of the front end. Note that in many cases, the
front end is able to prove a large fraction of the properties.
We performed the following experiments to measure the
impact of the various components of our framework on the
coverage and the number of checks violated by our inputs:

(A) Symbolic execution & bias function sampling. Two
versions of this experiment were run to compare sym-

Table 5: Bug Analysis for Experiments.

Name Bug | Comment

ARRAYCR | 4 Write to unallocated pointer field.
BIGINT 1 Double free.

VAR-SET 13 Handling of corner case.

bolic evaluators using LP (linear arithmetic) and BBOX
(bounding box) abstractions, respectively.

(B) Bias function sampling using MCMC, but no symbolic
execution.

(C) Uniform random sampling of inputs (given as much
time as Expt. A(LP)). This experiment serves as a base-
line for comparison with the results of the other exper-
iments.

Experiments A and B are each iterated for 10 rounds.
Table 4 shows the results of the experiments. For each ex-
periment, we report the time taken in seconds, number of
warnings found and the coverage as a percentage of the to-
tal number of nodes and edges in the CFG. This coverage is
measured on the sliced CFG and has no bearing on the cov-
erage on the code as a whole. Secondly many of the nodes
left in the CFG may never be reached. Therefore, 100%
coverage may not always be possible on the sliced CFG.

We find that in almost all cases the presence of constraints
and the sampling helps find bugs faster achieve more cover-
age on the simplified CFG. Comparing symbolic execution
engines using linear arithmetic and bounding boxes, the LP
engine seems to provide better coverage in all but one of the
cases. However, this improved coverage is at the cost of an
almost 2x extra overhead in terms of time. In practice, it is
a straightforward matter to combine the relative merits of
the experiments by running different option sets repeatedly
and slicing the CFG each time based on the checks violated
thus far.

Table 5 shows the bugs found by our techniques on the
examples. Our tool found a bug in the ARRAYCR example
due to the access of an uninitialized pointer. For the VAR-
SET example, our tool found 13 distinct violations, one of
which was due to the wrong usage of the API in our test
harness code (insufficient documentation), and the rest due
to the corner case of sets with zero elements in the universe.
However, very few of these violations could be found by
random simulation. The warnings issued by our tool in the
other cases turned out to be false because of precondition
violations, missing functions and heap modeling.

Finally, Table 6 shows the result of running the CUTE
tool due to Sen et al. [31] on some of the smaller bench-
marks. The larger benchmarks proved to be difficult to run
in CUTE since they had numerous library calls for which the

Table 3: Description of programs used for experiments. Time taken for the front end is in seconds. #Prop:
Total Checks, #Prf.: Checks eliminated by front-end, N/E: Nodes/Edges in the remaining CFG.

Name LOC | #Funs | Description Property Checked Static Analysis
Time | #Prop. | #Prf | N/E

ARRAYCR || 280 7 Arrays with constant time reset | Overflow 6 65 56 105/116
SKIPLIST 400 6 Skiplist implementation Pointer Access 33 53 15 332/404
BIG-INT 663 9 Arithmetic on big integers Overflow 66 90 65 359/443
VAR-SET 768 11 Sets with bit-vectors Overflow 190 212 31 697/932
ST-TABLE 790 10 A hashtable implementation Overflow 92 258 170 519/654
STRAPP1 2.1K | 3 Voice recognition system C String Usage 21 24 17 185/221
STRAPP2 24K | 2 Voice recognition system C String Usage 29 75 70 225/270
DRIVEL 394 | 6 An example block driver Pointer Access 1.6 47 32 144/164
IPOIB 7K | 11 A linux device driver Pointer Access 730 155 114 1363/1749

Table 4: Summary of results of our experiments on the benchmark programs. T: running time in seconds,

#E: Number of warnings, Cov.: Node/Edge Coverages in percentages.

Name Expt. A(LP) Expt. A(BBOX) || Expt. B (MC. Rand.) || Expt. C (Unif. Rand.)
T #E | Cov. T #E | Cov. T #E | Cov. T #E | Cov.
ARRAYCR || 20 4 94/90 14 |4 94/90 || 5 4 94/90 20 2 92/86
SKIPLIST 64 3 29/26 64 3 29/26 || 60 3 29/26 66 3 29/26
DRIVEL 40 7 89/83 2 4 41/37 || .2 1 13/10 40 0 35/30
BIGINT 95 |2 |33/20 95 |2 |[33/20 (95 |2 |33/20 95 |0 |87
VAR-SET 568 16 | 75/62 39 |4 32/26 || 0.72 | 4 31/25 569 2 26/21
ST-TABLE || 32 11 | 66/58 32 |11 | 66/58 | 27 14 | 67/59 32 14 | 67/59
strappl || 39 |2 | 51/47 15 |2 |51/46 |7 |2 |s51/47 39 |1 |15/14
STRAPP2 27 1 54/51 8 1 44/40 || .4 0 26/23 27 0 17/15
IPOIB 214 20 71/69 209 | 21 71/69 || 95 21 71/69 214 19 70/68
Tot. 1120 | 74 | 65/59 (Avg) || 492 | 60 | 55/50 || 216 | 59 | 51/47 1125 | 49 | 44/40

Table 6: Result of CUTE on the benchmarks.

code was unavailable. Our front end automatically rewrites
such calls to return nondeterministic values. The coverage
reported by the tool cannot be directly compared to the
CFG coverage. Our attempts to run CUTE directly on the
CFG representation (output as a C program) have so far
been unsuccessful.

9. CONCLUSION

We have presented a framework for state space exploration
by combining static analysis with sampling based on learning
and bias functions. Our approach has been experimentally
validated and our preliminary results are quite promising. In
the future, we hope to remove some of the hurdles towards
making the tool practical by addressing some of its current
limitations. We also plan to extend our approach to other
domains such as the analysis of multi-threaded systems.

Acknowledgements. We thank Aswin Sankaranarayanan for

providing many useful pointers to Monte-Carlo techniques.
We thank the anonymous referees for their insightful re-

10. REFERENCES
[1] Christophe Andrieu, Nando De Freitas, Arnaud

Doucet, and Michael 1. Jordan, An introduction to
MCMC for machine learning, Machine Learning 50
(2003), 5-43.

[2] Bruno Blanchet, Patrick Cousot, Radhia Cousot,
Jerome Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, and Xavier Rival, A static analyzer
for large safety-critical software, ACM SIGPLAN
PLDI’03, vol. 548030, ACM Press, June 2003,
pp. 196-207.

[3] William R. Bush, Jonathan D. Pincus, and David J.
Sielaff, A static analyzer for finding dynamic
programming errors., Softw., Pract. Exper. 30 (2000),
no. 7, 775-802.

[4] Cristian Cadar and Dawson R. Engler, Ezecution
Generated Test Cases: How to make systems code
crash itself., SPIN, LNCS, vol. 3639, Springer—Verlag,
2005, pp. 2-23.

[5] Richard M. Chang, George S. Avrunin, and Lori A.
Clarke, Property inference from program executions,
2006, University of Massachusetts, Amherst, Tech
report number: UM-CS-2006-26.

Name Bugs Found | Cov(%) | Time ;
ARRAYCR | 0 - <1 VIEWS.
SKIPLIST - <1

VARSET 1 47 3

ST-TABLE | O 55 87

BIGINT 1 18 <1

(6]

[7]

[8

[9

(10]

(11]

[12

(13]

(14]

[15

(16]

(17]

Siddhartha Chib and Edward Greenberg,
Understanding the Metropolis-Hastings algorithm, The
American Statistician 49 (1995), no. 4, 327-335.
Koen Claessen and John Hughes, Quickcheck: a
lightweight tool for random testing of haskell
programs., ICFP, 2000, pp. 268-279.

Edmund Clarke, Daniel Kroening, and Flavio Lerda,
A tool for checking ANSI-C programs, TACAS, LNCS,
vol. 2988, Springer, 2004, pp. 168—176.

Christoph Csallner and Yannis Smaragdakis, Jcrasher:
an automatic robustness tester for Java., Softw.,
Pract. Exper. 34 (2004), no. 11, 1025-1050.

David L. Dill, The muryp verification system,
Conference on Computer-Aided Verification, LNCS,
Springer-Verlag, July 1996, pp. 390-393.

Orit Edelstein, Eitan Farchi, Yarden Nir, Gil Ratsaby,
and Shmuel Ur, Multithreaded java program test
generation., IBM Systems Journal 41 (2002), no. 1,
111-125.

Michael D. Ernst, Dynamically discovering likely
program invariants, Ph.D., University of Washington
Department of Computer Science and Engineering,
Seattle, Washington, August 2000.

Shai Fine and Avi Ziv, Coverage directed test
generation for functional verification using bayesian
networks, DAC’03, ACM Press, 2003, pp. 286—291.
Malay K. Ganai and Adnan Aziz, Rarity based guided
state space search., ACM Great Lakes Symposium on
VLSI, 2001, pp. 97-102.

Patrice Godefroid, Nils Klarlund, and Koushik Sen,
DART: Directed Automated Random Testing, ACM
SIGPLAN 2005 Conference on Programming
Language Design and Implementation (PLDI’05),
2005, pp. 213-223.

Vaibhav Gogate and Rina Dechter, A new algorithm
for sampling csp solution uniformly at random, CP’07,
2007.

R. Hamlet, Random testing, Encyclopedia of Software
Engineering (J.Marciniak, ed.), Wiley, 1994,

pp.- 970-978.

Gerard J. Holzmann, The SPIN Model Checker:
Primer and reference manual, Addison-Wesley, 2004.
David Hovemeyer and William Pugh, Finding bugs s
easy, ACM SIGPLAN Notices 39 (2004), no. 12,
92-106.

CoVerity Inc., Coverity verification toolsuite,
http://www.coverity.com.

PolySpace Inc., Polyspace verification toolsuite,
http://www.polyspace.com.

Franjo Ivancié, Zijiang Yang, Malay K. Ganai, Aarti
Gupta, and Pranav Ashar, F-SOFT: Software
verification platform, Computer-Aided Verification
(CAV 2005), LNCS, vol. 3576, Springer—Verlag, 2005,
pp- 301-306.

23]

(24]

(25]

28]

29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

Guofei Jiang, Haifeng Chen, Cristian Ungureanu, and
Kenji Yoshihira, Multi-resolution abnormal trace
detection using varied-length N-grams and automata.,
ICAC, IEEE Computer Society, 2005, pp. 111-122.
Donald E. Knuth, The art of computer programming,
vol. 8, Addison-Wesley, 1997.

Bogdan Korel, Automated test data generation for
programs with procedures, ACM SIGSOFT Software
Engineering Notices 21 (1996), no. 3, 209-215.

Rupak Majumdar and Koushik Sen, Hybrid concolic
testing, ICSE’07, 2007, pp. 416-426.

Christoph C. Michael, Gary McGraw, and Michael A.
Schatz, Generating software test data by evolution,
IEEE Trans. Software Engineering 27 (2001), no. 12,
1085-1108.

Madanlal Musuvathi, David Park, Andy Chou,
Dawson R. Engler, and David L. Dill, CMC: A
Pragmatic Approach to Model Checking Real Code,
OSDI, Dec 2002, pp. 75-88.

Jeremy W. Nimmer and Michael D. Ernst, Static
verification of dynamically detected program
invariants: Integrating Daikon and ESC/Java., Electr.
Notes Theor. Comput. Sci. 55 (2001), no. 2.

Carlos Pacheco, Shuvendu K. Lahiri, Michael D.
Ernst, and Thomas Ball, Feedback-directed random
test generation, ICSE’07, 2007, To Appear.

Koushik Sen, Darko Marinov, and Gul Agha, Cute: A
concolic unit testing engine for ¢, ESEC/FSE’05,
ACM Press, 2005.

Serdar Tasiran, F. Fallah, D. G. Chinnery, S.J. Weber,
and K. Keutzer, A functional validation technique:
Biased random simulation guided by observability-based
coverage, Proc. IEEE Conf. on Computer Design
(ICCD’01), IEEE press, 2001, pp. 82—88.

Willem Visser, Klaus Havelund, G. Brat, S. Park, and
Flavio Lerda, Model checking programs, Automated
Software Engineering Journal 10 (2003), no. 2.
Willem Visser, Corina S. Pasareanu, and Sarfraz
Khurshid, Test input generation with java pathfinder.,
ISSTA, 2004, pp. 97-107.

Wei Wei, Jordan Erenrich, and Bart Selman, Towards
efficient sampling: Exploiting random walk strategies,
AAAT04, 2004.

Tao Xie, Darko Marinov, Wolfram Schulte, and David
Notkin, Symstra: A framework for generating
object-oriented unit tests using symbolic execution.,
TACAS, LNCS, vol. 3440, 2005, pp. 365-381.

Jinlin Yang, David Evans, Deepali Bhardwaj,
Thirumalesh Bhat, and Manuvir Das, Perracotta:
Mining temporal API rules from imperfect traces,
Proc. of ICSE, 2006.

