Software Model Checking the Precision of
Floating-Point Programs

Franjo Ivanci¢, Malay K. Ganai, Sriram Sankaranarayanan, and Aarti Gupta
NEC Laboratories America
4 Independence Way, Suite 200, Princeton, New Jersey 08540

Abstract—Software model checking has recently been suc-
cessful in discovering bugs in production software. Most tools
have targeted heap related programming mistakes and control-
heavy programs. However, real-time and embedded controllers
implemented in software are susceptible to computational nu-
meric instabilities. In this work, we target numerical programs
implemented using the IEEE 754 floating-point standard, and
the precision loss incurred in such programs. There have been
techniques that handle analysis of such numerical programs using
abstract interpretation based techniques. We use bounded model
checking (BMC) based on Satisfiability Modulo Theory (SMT)
solvers to analyze programs with floating point operations. We
generate a mixed integral-real model that is then analyzed by
two backend model checkers.

I. INTRODUCTION

With the growth of multi-core processing and concurrent
programming in many key computing segments (mobile,
server, gaming), there is a need for effective development
and verification technologies for concurrent multi-threaded
programs. At the same time, due to the ubiquitous availability
of real-time and cyber-systems that interact with physical
environments, there is a great need to develop technologies
that target the whole system. Analyzing software for its
correctness is a key step in guaranteeing safety of many
important real-time and embedded devices, such as medical
devices, automobiles or airplanes.

Recently, there has been extensive research on model check-
ing software programs, including [5], [10], [21], [22], [25] and
many others. All of these techniques try to cover as many
different language features as possible, but lately the focus
has been on memory correctness issues due to intricate use
of pointer indirections, for example. The only tools known
to us that handle floating-point operations are based on the
CPROVER infrastructure (CBMC [8] and SATABS [9]). The
tool generates a bit-blasted formula for floating-point com-
putations that is translated directly to a SAT solver in the
backend. The created formula is inherently very precise but at
the same time it does not provide a scalable solution to ana-
lyzing programs with floating-point operations. Additionally,
in an approach that models floating point operations exactly,
it is not possible to discern whether a particular operation
causes significant precision loss. However, the precision loss
due to such numerically unstable implementations are often
overlooked by control engineers. Finally, it should be noted
that there are no specific floating-point related checks that are
performed in the CPROVER infrastructure.

On the other hand, there are several tools based on abstract
interpretation that target the ever growing embedded software
domain. These tools focus mostly on floating-point semantics,
given their prevalence and importance for the safety of real-
time and embedded software such as used in medical devices,
cars, airplanes and so on. These tools include ASTREE [11],
FLUCTUAT [20], and PolySpace [28]. These tools provide
scalable analysis techniques based on abstract interpretation
by limiting precision in certain cases, for example due to
widening of loops. Finally, abstract interpretation based tools
lack the capability to generate concrete counterexamples which
is a crucial benefit of model checkers.

A. Motivating Example

We introduce a small instructive example, adapted
from [19], that shows a program with significant precision
loss. The function CTRLTEST first computes the expression
x= %, and returns TRUE if the answer is non-
negative. For the input a; = 37639840, ax = 29180479, b, =
—46099201,b, = —35738642,c; = 0, and co = 1 using
single-precision floating-point arithmetic, the program com-
putes the value x= 0.343466 on a PC running Linux using the
gcc compiler in default rounding mode. In [19], the author ob-
serves that the same computation results in x=1046769994 on
an UltraSparc architecture. However, mathematically speaking,
the computation of x should result in x=—46099201.

Motivating Example
Output: returns TRUE, if
otherwise.

1: procedure CTRLTEST(floats al, a2, bl, b2, cl, c2)
2 float x = (c1*b2-c2*bl)/(al*b2-a2*b1);

3 if x > 0.0f then return TRUE;

4: else return FALSE;
5
6:

c1ba—coby

@1bs—asb; 1S non-negative; FALSE

end if
end procedure

The problem observed in this example is known to be due to
cancelation effects. Since the sign determines the output of the
function CTRLTEST, which may lead to a downstream choice
of a different controller being activated, such an unstable
computation may result in compromised safety of embedded
and real-time devices. It should be noted that CBMC is
able to analyze this small example and produces a value
x= 0.343466. However, CBMC is not able to discover that



this computation is numerically unstable due to its inherent
bit-precise reasoning of the computation. Furthermore, the
provided answer relies on a particular rounding mode that
is only under control of the program under analysis. For
other instructive examples showcasing numerically stable and
unstable algorithms, the reader is referred to [19].

B. The F-SOFT Platform

The F-SOFT tool provides a combined infrastructure that
builds a single model that is utilized by both abstract inter-
pretation techniques [4], [30], and model checking techniques
(see [17] for a description of the synergies between the
two techniques). The tool analyzes source code written in C
or C++ for user-specified properties, user-provided interface
contracts, or standard properties such as buffer overflows,
pointer validity, string operations, etc. Extensions of F-SOFT
to concurrent programs are described elsewhere [26], and
will not be discussed further here. The central role abstract
interpretation plays in F-SOFT is to eliminate easy proofs and
allow model simplifications (such as program slicing [27] for
example) to generate small enough models that can be passed
on to the model checker in the backend. F-SOFT supports
both unbounded model checking as well as bounded model
checking (BMC) techniques, where BMC can utilize either a
SAT-solver [6] or an SMT-solver [3] for the analysis.

In this paper we describe the improvements to the F-
SOFT infrastructure to reason precisely about floating-point
operations using an SMT-solving backend. Earlier, floating-
point operations were treated as nondeterministic operations,
sometimes resulting in too many incorrect warnings. Given the
essential safety concerns related to embedded devices, a more
precise while scalable analysis is essential.

The verification model generated by F-SOFT is a control-
flow graph representation over integral type variables com-
bined with variables in the real domain.! Floating-point vari-
ables in the source code are modeled by a lowering mechanism
that utilizes additional monitoring variables. These monitoring
variables contain variables in the reals, as well as variables of
a small enumerated type denoting whether the floating-point
variable is NaN, some infinity denoted as Inf, or represents an
actual number. The monitoring variables that are of type real
represent a bounding interval in the model for the associated
variable, as long as the type of the variable is numeric, i.e., it
is not NaN or some Inf.

C. Paper Contributions and Outline

This paper presents a software verification approach to the
analysis for numerically unstable computations given IEEE
754 floating-point semantics that is based on creating a model
and utilizes model checking for the analysis of the model.
We present a model that incorporates modeling of all relevant
arithmetic operations and casting constructs between floating-
point types and other program types. We also model soundly
arbitrary rounding modes as well as sub-normal numbers as

IFor further details on F-SOFT that discuss translation from programs with
structures to integer-based programs only, see [25].

defined in the IEEE 754 standard. Finally, we implemented the
model generation in the F-SOFT tool and present experimental
results on a variety of benchmarks that can be scaled to create
different sizes. These experiments show that the performance
of the model checkers can be significantly improved by
providing a priori computed invariants to simplify the models
before analyzing them with a model checker.

The next section introduces the IEEE 754 floating-point
standard. Section III describes the modeling of C programs
with floating-point operations inside the F-SOFT tool. We
present experimental results using the proposed framework
with two backend model checkers in section IV. Finally,
section V concludes the paper with some final remarks and
an overview of potential further research directions.

II. THE IEEE 754 FLOATING-POINT STANDARD

We analyze source code with respect to the binary formats
of the new IEEE 754-2008 standard [24], which are largely
based on the IEEE 754-1985 norm. The general layout of a
floating-point number is in sign-magnitude form, where the
most significant bit is a sign bit, the exponent is stored as
a biased exponent, and the fraction is the significand stored
without the most significant bit (see Fig. 1). The exponent
is biased by (2°7!) — 1, where e is the number of bits used
for the exponent field. For example, to represent a number
which has exponent of 17 in an exponent field 8 bits wide,
we store 144 since 17 + (2871) — 1 = 144. In most cases,
as mentioned above, the most significant bit of the significand
is assumed to be 1 and is not stored. This case occurs when
the biased exponent 7 is in the range 0 < n < 27!, and
the numbers so represented are called normalized numbers.
If the biased exponent 7 is 0 and the fraction is not 0, the
most significant bit of the significand is implied to be 0, and
the number is said to be de-normalized or sub-normal. The
remaining special cases are:

o If the biased exponent is 0 and the fraction is 0, the
number is +0 (depending on the sign bit).?

o If the biased exponent equals 2~! and the fraction is 0,
the number is oo (depending on the sign bit), which is
denoted as Inf or —Inf here, and

o if the biased exponent equals 2°~! and the fraction is not
0, the number represents the special floating-point value
called not a number (NaN).

A. Floating-point formats

For ease of presentation of the IEEE standard in this section,
we focus on only two floating-point formats defined in the
standard: single-precision (specified using the keyword f1loat
in C/C++) and double-precision (specified using the keyword
double in C/C++). Single-precision defines that a floating-
point number is represented using 32 bits, of which e = 8 are
used for the exponent and 23 bits for the fraction. Figure 1
shows the single-precision layout of the standard. The smallest

2Note that the standard defines two zeros, namely 0 and —0. The two
numbers behave similarly with a few differences. For example, dividing a
positive number by O results in co, whereas dividing a positive number by
—0 results in —oo.



sign exponent

Fig. 1. General layout of a floating-point number

positive normalized number representable thus is 2726 which
is about 1.18-10738, while the largest number is (2—223).2127
which is about 3.4 - 10%®. For double-precision, on the other
hand, the standard prescribes the use of 64 bits to store
numbers, of which e = 11 represent the biased exponent,
and 52 bits are used for the fraction. The largest number
representable in double-precision is about 1.8 - 1038,

B. Rounding

The IEEE754-2008 standard defines five different rounding
modes for each floating-point operation. There are two modes
that round to nearest neighboring floating point number, where
a bias can be set to even numbers or away from zero when
the operation lands exactly midway between two representable
floating point numbers. The other three rounding modes are
rounding towards zero, rounding towards oo and rounding
towards —oo. The standard defines that every arithmetic op-
eration be calculated as precisely as possible before rounding
it using the current rounding mode. Computations are thus
performed using longer bit-lengths and are truncated when
storing the results after rounding only. While the absolute error
may be large for large absolute values, the maximum relative
error due to operations and rounding thus is constant for values
resulting in the normalized number range. The relative error
for normalized numbers is 2723 in single-precision and 2752
for double-precision.

C. Sub-normal numbers

To provide gradual underflow for very small numbers in
absolute terms, the standard introduced denormalized or sub-
normal numbers. These numbers lie between the smallest
positive normal number and zero, and their negative versions.
This feature is meant to provide a slowing of the precision loss
due to cancelation effects around zero. The main advantage
of defining sub-normal numbers in the standard is that it
guarantees that two nearby but different floating-point numbers
always have a non-zero distance. Hence, any subtraction of
two nearby but different floating-point numbers is guaranteed
to be non-zero, which cannot be guaranteed without sub-
normal numbers. However, it should be noted that operations
that result in numbers in the sub-normal number range can
have very large relative errors.

D. Operations

The standard defines many details about the precision,
expected results and exception handling for a variety of
operations such as arithmetic operations (add, subtract, mul-
tiply, divide, square root, ...), casting conversions (between
formats, to and from integral types, ...), comparisons and
total ordering, classification and testing for NaN, and many

fraction (mantissa)

more. In this work, we will focus on arithmetic operations and
casting operations in particular, using the rounding precision
for operations prescribed by the standard.

III. MODELING PROGRAMS WITH FLOATING-POINTS

In this section, we review the software modeling in F-
SOFT [25] relevant to the automatic construction of a symbolic
model for arbitrary C/C++ programs. F-SOFT is a tool for
analyzing safety properties in C/C++ programs. A large set
of programming bugs, such as array bound violations, use of
uninitialized variables, memory leaks, division by zero, etc.
can be formulated into reachability problems by automatically
adding suitable property monitors to the given program.

A. Software Modeling in F-SOFT

F-SOFT begins with a program in full-fledged C/C++
and applies a series of source-to-source transformations into
smaller subsets of C, until the program state is represented
as a collection of simple scalar variables and each program
step is represented as a set of parallel assignments to these
variables. We use a control-flow graph (CFG) representation
as an intermediate representation. Below are details relevant
to the construction of a symbolic model (for a comprehensive
description of the transformations, please refer to [25]), with
emphasis on issues intrinsic to C:

Pointer and Memory Modeling. One difficulty in modeling
C programs lies in modeling indirect memory accesses via
pointers, such as x=x (p+i) and g[j]=y. We replace all
indirect accesses with equivalent expressions involving only
direct variable accesses, by introducing appropriate conditional
expressions as described below.

« To facilitate the modeling of pointer arithmetic, we build
an internal memory representation of the program by
assigning to each variable a unique natural number rep-
resenting its memory address.

¢ We perform a points-to analysis [23] to determine, for
each indirect memory access, the set of variables that may
be accessed. If a pointer can point to a set of variables
at a given program location, we rewrite a pointer read as
a conditional assignment expression using the numeric
memory addresses assigned to the variables.

« For indirect reads via pointers, we adopt an approach
from hardware synthesis [31] and for each pointer vari-
able p create a new variable STAR_p representing the
current value of =p. Each read of xp is then rewritten as
simply a read of STAR_p. (Reads of the form  (p+1i)
continue to be handled as described earlier.) To keep
STAR_p up-to-date, after each assignment p=g we add
an inferred assignment STAR _p = STAR_g. Further-
more, we need to add aliasing assignments to the model
that keep STAR_p up-to-date, when the value may have



Fig. 2. Control flow graph

been changed by an assignment through * g or some other
variable in p’s points-to set.

Unbounded Data, Recursion and Function Calls. The C
language specification does not bound heap or stack size, but
our focus is on generating a finite state model. Therefore, we
model the heap as a finite array, adding a simple implemen-
tation of malloc () that returns pointers into this array. We
also add a bounded depth stack as another global array in order
to handle bounded recursion, only if required, along with code
to save and restore local state for recursive functions.

An example of our modeling is shown in Figure 2, which
shows the computed CFG for the following simple C code:

) A

int foo(int s) { void bar

(
int t=s+2; int x = 3, v = x - 3;
if (t>0) while ( x <= 4) {
t -—= 3 ; y++
else x = foo(x);
t——; }
return t; y = fool(y);

} }

Each basic block is identified by a unique number shown
inside the hexagon adjacent to the basic block. The source
node of the CFG is basic block 0, while the sink node is the
highlighted basic block 8. The example in Fig. 2 pictorially
shows how non-recursive function calls are included in the
control flow of the calling function. A preprocessing analysis
determines that function foo is not called in any recursive
manner. The two return points are recorded by an encoding
that passes a unique return location as a special parameter
using the variable rtr. As shown in Figure 2, F-SOFT builds
a model of the software that includes structural features such
as loops and function calls without a priori using a fixed-depth
unwinding of such language features as is done in CBMC.

B. Numerical Stability Analysis of Floating-Point Operations

As mentioned before, there have been a number of proposed
solutions to the numerical stability analysis of floating-point

programs using abstract interpretation. The mathematical un-
derpinnings derive from different arithmetic models of oper-
ations, most notably interval arithmetic and affine arithmetic.
In the following, we introduce the two arithmetics.

Interval arithmetic. In order to quantify rounding errors in
mathematical computations and to guarantee reliable results
in numerical methods, mathematicians have studied interval
arithmetic [29] (IA) for many decades. Instead of defining
arithmetic operations on individual numbers, A defines arith-
metic operations on intervals on reals extended with oo and
—oo instead. For a variable z we introduce an interval and
write it as [z, ], where z denotes the lower bound of the
interval and = the upper bound. Note that the bounds can be
a real or +o00. As sample arithmetic operations consider the
addition or multiplication of two intervals [z, 7], [y, 7] which
is defined as a

[z,7] + [y, 7] = [z +y,T + 7], and
[z,7] - [y, y] = [min(zy, 2y, Ty, TY), max(zy, 2y, Ty, TY)],

respectively. In a non-disjunctive analysis setting, division by
an interval that contains zero is defined to result in the interval
[—00, ).

Affine arithmetic. Affine arithmetic [1] (AA) has been
proposed as an improvement over IA by being able to track
dependencies between variables, thus often providing less
over-approximate results than IA. In AA, a quantity z is
represented as a first-degree (“affine”) polynomial

ZL'()+£L'1'61+$2'62+...+$k'6k,

where xq, x1, ...z, are known real numbers, and €1, €o, . . . €&
are error variables, whose value is only known to be in [—1, 1].
Each error variable ¢; represents some source of uncertainty
or error in the quantity x — which may come from input
data uncertainty, formula truncation, or arithmetic rounding.
An error variable that appears in two quantities x and y implies
that their values are partially correlated.

As an example, consider z = 3 + ¢; and y = 2 — €;. This
implies that x € [2,4] and y € [1,3], and in IA we would
find that « + y € [3,7]. However, using AA, we find that
the result of = + y is very close to 5; namely 5 + w - €9,
where w, €5 are introduced to model arithmetic rounding, for
example, and w would be a very small quantity representing
machine precision.

The abstract interpretation based tool FLUCTUAT [20] suc-
cessfully applied AA to reason about the precision of floating-
point operations. The tool generates an error term for each
floating-point operation and updates the corresponding weights
using widening techniques inside loops in the CFG. It has
successfully been used on small, but numerically important,
parts of embedded controllers and has been able to point out
numerically unstable computations.

C. Modeling for Model Checking

Although our technique is largely inspired by the approach
taken in FLUCTUAT, we have decided to implement an IA-
based approach instead of an AA-based approach for scal-
ability of model checking reasons. It is well known that



each AA operation is more expensive than each IA operation.
However, AA proponents mention that for many applications
the additional precision of AA allows earlier termination of
an algorithm than would have been the case with IA, so that
the runtime cost cannot be purely measured by comparing
individual operations. While we agree with this assessment, we
still believe that for model checking, the additional overhead
to model AA may be overly expensive.

As a first concern, consider the number of state variables
in a model which is often an important consideration for
model checking. In an IA-based model, we require at least
2|Vp| variables to build a model for intervals for a set of
floating point variables Vr. However, when building a model
using AA, we would require at least |F'| variables to model
the weight of each operation of the set of floating point
operations F'. This could be simplified by providing some
kind of heuristics deciding which weights and error terms
to join together dynamically. However, these heuristics are
very hard to generalize for arbitrary source code. Furthermore,
anecdotal experience suggests that AA has scaling issues
in symbolic execution based approaches, without a carefully
designed joining of error terms.

Based on this intuition, we have decided to initially pur-
sue the IA-based approach for generation of a model for
model checking purposes. We expect that the increased path-
sensitivity in our application will be able to provide precision
that is lost in an abstract interpretation based setting. Finally,
we expect savings by combining abstract interpretation with
model checking, as we have earlier seen for other properties
in F-SOFT. For the abstract interpretation part of the tool flow,
we expect to utilize AA based analysis.

Handling arithmetic operations. To model floating-point
operations, we introduce a number of monitoring variables
for each floating-point variable £. We use £ to represent the
lower interval bound variable for £, and f to represent the
upper interval bound variable. The modeling variables £ and
£ are semantically reals, and not floating-point variables.

To model special floating-point status flags such as NaN and
+Inf, we introduce two status variables f, f € F, where
F = {NaN,Inf,—Inf,Number} represents the set of
modeled floating-point status flags. The variable f represents
the floating-point status of the lower interval bound variable £,
and f represents the floating-point status of the upper interval
bound variable f. Note that F does not distinguish between
zero, normalized or sub-normal floating-point numbers, which
all carry the status Number.

The value of the variable £ € R is relevant only if the
corresponding type variable £ = Number. This produces the
constraint

f = Number — £ > f,

and a corresponding constraint for the upper bound:
f = Number — f < f.

For every arithmetic floating-point operation, such as z :=
x+py, we add additional statements to the model of the
program that update the related monitoring variables. In the
sequel, we use the following notation for modeling rounding in

the model: | (x) models rounding of = towards —oco, whereas
1 (z) models rounding towards co using a rounding precision
that is based on the compile-time floating-point type of the
expression. Furthermore, we use o, A\ € R to represent the
allowed bounds of a particular floating-point type; that is a
value less than o is treated as -Inf, whereas a value larger
than A is treated as Inf.

Note that the values o, A and the definition of |, T are
dependent on the actual compile-time type of the floating-point
used. We currently support the following floating-point types:
7T :={float, double, long double}. For the above
statement, we introduce the following additional statements
(written using the C ternary operator ?) in our model:

z = |(x+y),

1 E+7),

(x = NaNVy = NaN)?NaN :
(x=Inf Ay =—Inf)?NaN:
(x=—-Inf Ay =1Inf)?NaN:
(x=InfVy=1Inf)?Inf:
(
(

zZ =

zZ =

x=—-InfVy=—Inf)? —Inf:
z <0)?—1Inf:(z>A)?Inf:Number,

and similarly for z.

While the update to the floating-point status variables is
quite complex, it should be noted that these variables only
range over F. Often, these updates can be simplified by
a priori computed interval invariants for each floating-point
variable, thus allowing us to resolve many of the conditions
before generating this complex update function.

Finally, note that we change the type of the original floating-
point variables in the program to be of type real in the model.
Thus, all variables in the model are either of an integral type
or of type real.

Casting. In addition to handling arithmetic operations, we
also model casting operations between floating-point types and
between floating-point variables and integral type variables.
The following casting operations are supported:

o Casting from lower precision floating-point types to
higher precision ones, such as a cast from float to
double, does not lose precision.

o Casting from higher precision types to a lower type
requires rounding using | for £ and | for £, while it may
also cause a change in the floating-point status variables
from Number to +Inf.

o Casting from an integer variable to a floating-point vari-
able requires the use of the rounding modes.

« However, casting from floating-point to some integer vari-
able is only well defined if the variable is large enough
to represent the value of the floating-point; otherwise, the
result is undefined, specified as a nondeterministic value
in the range of the integral type variable.

D. Modeling Rounding

This section focuses on modeling the rounding of floating-
point operations, which has been denoted as T and | in the



previous sections. We first focus on the normalized number
range first, and later on the sub-normalized number range.

Rounding normalized numbers. As mentioned above, the
relative precision for normalized numbers is fixed given a
particular floating-point type ¢ € 7. For every floating-point
type t € 7, we introduce a constant J, that is larger than or
equal to the worst-case relative error for the floating-point type
t in a normalized number range. Note that we will simply write
0 when the floating-point type is known or inconsequential.

By keeping §; close to the maximal relative error we can
avoid too many false warnings, while it may make individual
computations during the analysis stage more expensive. By
increasing §; we keep the analysis model sound, but may
introduce false warnings due to an overestimation of the
relative rounding error.

For the normalized number range we thus define rounding
functions |,,T,: R — R as

[ z(1=9) x>0,
ln(x)'_{x(l—i—é) <0 , and
_{a140) ¢ 220,
Tn (2) '_{ z(1—94) x < 0.

For ease of presentation, we avoid the floating-point type
annotation to the rounding functions, although these rounding
functions in fact are floating-point type specific.

Rounding sub-normal numbers. A relative error model of
sub-normal numbers is ineffective, since the relative error can
be 1 inside the sub-normal number range. Consider the fact
that a number that is smaller than the smallest sub-normal
number may be rounded down to 0. It would be possible
to introduce various ranges of sub-normal numbers and treat
them separately. Instead, we have decided to use absolute error
modeling in the combined sub-normal number range for now.
We choose a number ¢; for ¢ € 7 that is larger than or equal to
the largest absolute error in a floating-point type specific sub-
normal number range and use the absolute error for operations
resulting in values in the sub-normal number range.

We define rounding functions T, |s: R — R for the sub-
normal number range as:

ls (z):=x—¢€, and 15 (z) =z +e

The main disadvantage of this rounding model is that most
operations that could result in a sub-normal number range
yield intervals that include 0. This may lead to a large
estimated error should this interval be used as a denominator in
a division in a non-disjunctive analysis setting. As mentioned
above, further splitting the sub-normal number range into
regions may provide better accuracy.

Combining rounding functions. A straightforward solution
to combining the rounding functions T,,Ts to yield a com-
bined rounding function T would be to compute the result of
an operation, and based on the result choose which rounding
function to use. This would introduce additional floating-
point type specific constants delineating the boundary between
normalized numbers and sub-normal numbers. In addition,
each expression would require one further ITE (if-then-else)
to denote this choice.

In order to simplify the expressions for analysis, we have
chosen to define T, |: R — R to be

l::ln + l87 and T::Tn + Ts .

Note that this is a sound modeling because we always enforce
both error types although only one is applicable at each point
in time. Furthermore, note that the absolute error ¢ introduces
in T4, |s is very small and is quite immaterial as long as
numbers are not within close distance to the sub-normal range.

IV. EXPERIMENTS

In the previous sections we have introduced a method to
transform an arbitrary C program with floating-point opera-
tions into a CFG representation that only contains variables of
integral type and real variables. Based on this representation,
we translate the CFG into a model for backend solvers that
can reason about models that incorporate mixed integer and
real constraints. This translation is based on adding a program
counter variable that is modeled as an integer ranging over the
(numbered) nodes of the CFG.

We generate analysis models for two backend solver infras-
tructures: HySAT [15] and FACE [18]. Both solvers perform
bounded and unbounded model checking using SMT-solvers
on mixed integer-real problems. Both solving architectures
are in principle sound modulo implementation defects. In the
following, we briefly introduce the two solvers.

A. Model Checkers

HySAT. HySAT is a satisfiability checker for Boolean
combinations of arithmetic constraints over real- and integer-
valued variables which can also be used as a bounded model
checker for hybrid (discrete-continuous) systems. A peculiarity
of HySAT, which sets it apart from many other solvers, is that
it is not limited to linear arithmetic, but can also deal with
non-linear constraints involving transcendental functions.

The algorithmic core of HySAT is the iSAT algorithm,
a tight integration of recent SAT solving techniques with
interval-based arithmetic constraint solving. Details about
HySAT and the iSAT algorithm can be found in [15].3

HySAT has been evaluated mainly on models related to the
verification of hybrid systems. Due to the inherent scalability
problems of hybrid systems verification and the model con-
straints generally imposed, the application of HySAT to the
domain of analyzing stability of floating-point computation
is challenging in a number of directions: First, we generate
models of programs with a relatively large number of CFG
nodes. In contrast, a typical hybrid automaton has a smaller
number of control nodes. Second, our models contain deeply
nested ITEs that are generally not of concern in hybrid systems
verification. In fact, the HySAT modeling language does not
support ITEs directly. We have modeled ITEs using one

3In the following sections on experimental results, we present data for two
different versions of HySAT. The currently publicly available official release
of HySAT is v0.8.4. We have been provided an early new release v0.8.50 that
fixed certain bugs uncovered in our experiments. Unfortunately, this version
is a preliminary release that is compiled without compiler optimizations and
is expected to perform about 3x slower than an optimized binary.



additional Boolean variable and one additional variable of a
numeric type per ITE. The additional numeric type variable
can be of type real or integer based on the subexpression
in question. However, this model increases the number of
variables considerably due to the depth of ITE nesting.

FACE. FACE is our in-house satisfiability checker for
Boolean combinations of arithmetic constraints over real- and
integer-valued variables. It utilizes CORDIC algorithms [32],
[33], [2] to linearize non-linear arithmetic constraints given
an user-specified precision requirement. It also uses a nor-
malization scheme, combined with interval bounds to obtain
a linearized formula with reduced constraints, without com-
promising the precision requirements. On such a linearized
formula, it employs a decision procedure that uses off-the-
shelf SMT(LRA) (Satisfiability Modulo Theory for Linear
Real Arithmetic) solvers such as Yices [14] to explore various
combination of interval bounds in a refinement-based search.
The decision procedure is similar to [16] which handles
non-linear integer arithmetic using an iterative lazy bounding
refinement algorithm build over a SMT(LIA) solver. However,
it cannot be applied to solve decision problems with non-linear
operations, involving transcendental and algebraic functions
over reals.

FACE utilizes CORDIC algorithms to translate non-linear
arithmetic into linear arithmetic given some precision require-
ment. These algorithms were introduced to compute transcen-
dental and algebraic functions using only adders and shifters
in a finite recursive formulation. The number of recursive
steps is determined by the accuracy requirements. On the
translated formula, a DPLL-style [13], [12] interval search
engine is utilized to explore all combinations of interval
bounds. The search engine uses a SMT(LRA) solver to check
the feasibility of a particular interval bound combination in
conjunction with the linearized formula in an incremental fash-
ion. To ensure soundness of the prototype, FACE uses infinite-
precision arithmetic which can cause significant slowdown
when computations require complex rational representation.

B. Experiments on Motivating Example

In this section, we present experimental results for the
motivating example presented in section I. We analyze the
precision of the program by splitting the statements into a
sequence of floating-point operations. We only present the
automatic analysis results for the floating-point operations that
are not trivial (such as multiplication of the precisely handled
constants 0 and 1). The computation is thus split into the
following sequence (after some trivial rewriting):

e float alb2 = alxb2;

o« float a2bl = a2+bl;

e float denom = a2bl-alb2;
e float x = bl / denom ;

We analyze the computation steps for stability in the sense of
having a small relative error. This is evaluated by computing
the maximum error for the range of the interval computed for
each computation step.

The computations of alb2 and a2bl are deemed to be
stable by our analysis. In this experiment we define stable to

mean that the result is accurate within 0.1%. The computation
time for each step is marginal using FACE, taking 0.9s and
1.0s, respectively. For the computation of denom, the analysis
finds that the result is potentially unstable due to cancelation
effects. FACE reports a potential witness at depth 18 in 6.0s.
It presents a witness to the user, where the lower bound of
denom is negative, while the upper bound is positive. The
witness produces by FACE interpreted as an interval may not
be maximal. In this case, FACE produced the answer that
denom may be within [—4.8 x 10%3,5.0 x 10~3%].

Since denom is then used as a denominator in a division,
the resulting status flags for x become £Inf, which is also
defined to be an unstable computation. FACE finds a witness
for this check at depth 23 after 22.4s. In the witness trace for
this property, the range found for denom is [—8.0x 1012, 2.2 x
10%°], causing the following values for the status flags of x:
x=-Inf, x=Inf.

C. Effect of Simplifying Floating-point Type Usage

In this section, we analyze the benefit of an a priori abstract
interpretation stage to simplify the model before it is passed on
to the model checker. In particular, to compare the benefit in
terms of simplified expressions, we only simplify statements
related to the floating-point status flags; i.e., a model where
f,f € F are simplified by setting them to Number.

The example that we are analyzing is computing the sum
of an array with unknown content of type int and unknown
array length. The property that we are analyzing is to generate
a sum that is a progressively larger floating-point number. By
increasing the target floating-point number we generate longer
witness traces. For each numeric target we create two models:
The first model consists of the model as it has been described
so far. The second model propagates the fact that all floating-
point variables are always of status Number in the model thus
eliminating variables and simplifying many assignments.

Note that these simplifications are valid in that this con-
straint is indeed an invariant of the system. However, the model
checker may have to discover this fact during its analysis.
Table I summarizes the results of the experiments which were
performed using FACE, as well as HySAT v0.8.4 and v0.8.5(.

As can be seen in table I, we have generated a set of
benchmarks with increasing size. Each benchmark is available
in its complete format (denoted full in the table), as well
as a simplified version (denoted simple) where the floating-
point status variables are removed. The two-digit number in
the name of the model describes the depth at which a witness
is reachable in the benchmark. The various experiments were
run with a one-hour time limit on Linux servers allowing 3GB
of memory usage per execution run. If the analysis is aborted
due to a time out or a memory out, we also provide information
on the analysis performance thus far. For example, the entry
Time-Out (37.3s @ 6) denotes that the model checker
found an unsatisfiable answer at depth 6 after 37.3 seconds,
while it did not finish analyzing the problem generated for
depth 7 given the overall 1 hour time out. Furthermore, we
write — to denote that we did not attempt an analysis for a
particular benchmark.



[[ Model name || FACE [ HySAT v0.8.4 [ HySAT v0.8.53 i
simple-12 0.3s Mem-Out (19.1s @ 11) Mem-Out (43.0s @ 11)
full-12 0.3s Time-Out (37.3s @ 6) Time-Out (84.5s @ 6)
simple-19 2.5s Mem-Out (258.6s @ 18) | Mem-Out (582.6s @ 18)
full-19 3.0s Time-Out (39.6s @ 6) Time-Out (88.8s @ 6)
simple-26 16.1s Mem-Out (259.7s @ 18) | Mem-Out (596.8s @ 18)
full-26 46.3s Time-Out (39.1s @ 6) Time-Out (89.1s @ 6)
simple-33 84.3s Mem-Out (259.8s @ 18) | Mem-Out (599.1s @ 18)
full-33 64.8s Time-Out (39.5s @ 6) Time-Out (86.6s @ 6)
simple-40 268.1s — —
full-40 494 .3s — —
simple-47 1689.6s — —
full-47 1639.2s — —
simple-54 Time-Out (527.4s @ 53) — —
full-54 Time-Out (1126.0s @ 53) — —

TABLE 1
EFFECT OF FLOATING-POINT TYPE MODEL SIMPLIFICATION ON MODEL CHECKER PERFORMANCE

It should be noted that the loop-program being analyzed
contains two rounding operations within each execution of
the loop body. First, we cast an integer to a floating-point
variable. Secondly, we add two floating-point numbers. While
the program does not contain any multiplication, our modeling
of the rounding modes using T and | introduces a number of
scalar multipliers per loop iteration.

Using FACE, we were able to analyze the generated models
up to depth 53 within the one hour time limit. We have
observed that an unsatisfiable solution was generally found
much faster in the simplified models (see for example, the
performance for depth 53 in simple—-54 and full-54).
However, there is no apparent performance trend when ana-
lyzing the final depth with a satisfiable answer. Surprisingly, in
certain cases, such as full-47 vs. simple—-47, the model
checker finds a witness trace faster for the full model.

The experimental results also show that, unfortunately,
HySAT was not able to scale very well for these generated
models. However, it is clear from the data that the HySAT
performance is significantly better when analyzing models
that are already simplified. As mentioned before, the main
application domain of HySAT was the analysis of hybrid
systems with generally tight bounds on variable ranges. In our
example, we generate models with large ranges which seems
to cause some performance issues.*

D. Effect of Simplifying Floating-point Assignments

In the previous section, we analyzed the benefit of an up-
front abstract interpretation stage to simplify the model in
terms of floating-point status flags before model checking. In
this section, we further analyze the benefits that an a priori
abstract interpretation can provide if we utilize it to simplify
assignments to other monitoring variables in the model also.
In particular, we analyze the effect of simplifying the ITEs
used in assignments to £, £ for some program variable £. We
are seeking the following simplifications:

4We have provided a sample model to the Hy SAT team for debugging and
hope to hear back soon with further bug fixes and improvements.

o We simplify the assignments by predicting the sign of the
result of a computation. This allows us to simplify |, T
by removing the condition used in |, T,.

o We simplify monitoring assignments due to multiplication
that contain min and max functions. Currently, min, max
are not handled by the backend model checkers and need
to be a priori simplified using nested ITEs.

o We further simplify the assignments due to modeling of
rounding by predicting whether the result of a compu-
tation is a sub-normal number or whether it lies in the
normal number range.

We use a slightly altered program to generate a multitude
of benchmarks. The program again computes the sum of an
input array. The input array contains unknown positive integer
values. To compute the sum of the array in terms of floating
point numbers, we model a cast from int to float, as well
as the rounding during each addition operation.

The property of interest in this benchmark is that the
computation is stable, i.e., that the maximal relative error of
the whole computation sequence is less than some threshold.
We fixed the threshold to be 10% regardless of the fixed
length of the input array. This implies that there are less
computations that require rounding for shorter arrays thus
making the property simpler to analyze for shorter arrays
besides the shorter depth of the analysis. Table II summarizes
the results of the experiments which were performed using
FACE only. Note, that we tried to utilize Hy SAT also but were
not able to find a satisfiable answer in any instance.

We analyzed the program for progressively larger arrays
with unknown integer contents. The length of the arrays is
given in column labeled length in table II. We formu-
lated the property indirectly as a reachability property, and
column depth provides the witness depth in the bounded
model checker. The column full denotes the run-time of
the complete model as discussed in this paper. The column
simplified F provides the run-times for models where
we provided the knowledge that each floating-point status
variable is equal to Number. These models are equivalent
to the simple models in table 1.



[ length [ depth ]| full [ simplified F [ simpler updates number range |

1 28 1.2s — — —

2 38 5.3s — — —

3 48 Time-Out (16.1s @ 47) 16.0s — —

4 58 — 90.9s — —

5 68 — 82.0s — —

6 78 — Time-Out (14.0s @ 77) 231.2s 106.5s

7 88 — — 277.8s 57.9s

8 98 — — 582.3s Time-Out (124.9s @ 97)
9 108 — — 1072.7s 151.8s

10 118 — — 2558.1s 755.4s

11 128 — — 2933.0s 2357.2s

12 138 — — 1639.5s 776.7s

13 148 — — Time-Out (2.6s @ 145) 2298.4s

14 158 — — Time-Out (2215.1s @ 157) 1636.5s

15 168 — — — Time-Out (4.6s @ 165)

TABLE I
EFFECT OF INVARIANT-BASED MODEL SIMPLIFICATIONS ON MODEL CHECKER PERFORMANCE

The column simpler updates utilizes further informa-
tion about pre-computed invariants by simplifying the nested
ITE structures. Finally, we give the results for a further
simplification step, where we use the pre-computed invariants
to choose the appropriate number range also. In this experi-
ment, all computations resulted in numbers in the normalized
number range, so we defined T:=T,, and |:=],,. All performed
experiments were run using a one hour time-out.

The experiments clearly show that a priori computed in-
variants such as those generated by abstract interpretation can
benefit model checker performance by allowing significant
model simplifications. In our experiments, we did not utilize
the user-provided invariants to analyze the property at hand,
in order to perform a fair comparison of the model checker
performance on the resulting models. In practice, the invari-
ants can sometimes validate certain properties, which can be
removed before using the model checker. Finally, there is one
outlier in the experiments for array length 8 that needs to be
further investigated.

E. Effect of Modeling Rounding Precision

In this section, we extend the example used in section [V-D,
and experiment with a number of different modeling settings
for the precision of the rounding § used in the definition of
Tn and |,,. We performed a number of additional experiments
with the same benchmark where the unknown array is of fixed
length n € [5,35]. We used a variety of different settings for
0, which all provide sound answers to the verification problem
at hand. The experiments are summarized in table III.

We only present data for FACE, since our experiments with
HySAT were not successful. HySAT v0.8.53 ended in an
allocation failure even for n = 1 and § = 272, On the same
example HySAT v0.8.4 ran for over 6 hours but did not report
a conclusive answer in that given time-frame. Furthermore,
in these experiments, we manually changed the constants in
the verification model for FACE. We used a rational number
representation for § which caused significant performance
improvements over table II. Hence, we used only a 10 minute
time-out setting. In addition to the length n of the array with
unknown positive integral content, we also provide the depth
d of the expected witness trace.

The chosen values for J range from 2722 to 272. Since
FACE uses infinite precision reasoning, one may expect certain
properties to be easier to solve for larger values of §. On
the other hand, a too large value for § can cause spurious
counterexamples, as is evidenced in table III in the case for
§ = 278 when n > 10. A spurious entry for a fixed J implies
that we should find spurious entries for larger n modulo
verification time-outs.

Moreover, note that in certain instances the depth of the
expected witness trace is not the main decisive factor to
predict whether a particular problem can be solved for a
fixed 6. Consider, for example, the case for 6 = 27° and
n € {20,25,30}. For n = 20, FACE provides the expected
result, whereas for n = 30 it provides a spurious witness. We
observe a time-out for n = 25, presumably due to the fact that
the correct answer requires very fine precision. Similarly, for
a fixed analysis depth, the analysis time is not predictable in
terms of a rounding precision, as can be seen for n = 25 and
§ e 2712276,

V. CONCLUSIONS AND FUTURE WORK

This paper presented a technique to analyze source code for
numerical stability properties. We target numerical programs
implemented using the IEEE 754 floating-point standard, and
the precision loss incurred in such programs. There have been
techniques that handle analysis of such numerical programs
using abstract interpretation based techniques. We use bounded
model checking (BMC) based on Satisfiability Modulo Theory
(SMT) solvers to analyze programs with floating-point oper-
ations. We generate a mixed integral-real model that is then
analyzed by a set of backend model checkers.

Based on our prior experience with bounded model check-
ing techniques using SMT solvers, we have encoded a number
of design choices into a static model. However, we believe
that many of these design choices can be relaxed and used
in an on-demand fashion. In the future, we envision the
models to be dynamically refined in a counterexample-guided
abstraction-refinement (CEGAR) fashion [7]. Furthermore, our
experiments on some benchmarks have indicated that further
improvements to the model checkers based on SMT solvers



H log, 0 H n=5(d=68) [ n=10(d=118) [ n=15(d=168) [ n=20(d=218) [ n=25(d=268) [ n=30(d=318) [ n=35(d=368) H
=22 2.2s 23.3s 440.8s time-out 60.5s 279.7s time-out
-20 10.1s 15.1s 36.8s time-out 93.5s 571.8s time-out
-18 2.3s 15.6s time-out 123.5s 185.3s 197.3s time-out
-16 2.7s 5.1s 8.2s 162.9s 32.9s 149.1s time-out
-14 2.5s 11.6s 35.0s 34.9s 577.2s time-out time-out
-12 1.1s 7.8s 58.0s 16.4s 91.3s 175.4s time-out
-10 1.2s 6.8s 34.3s 24.3s 162.8s 245.5s time-out
-9 1.3s 36.5s 34.5s 61.7s time-out spurious(273.4s) | spurious(457.8s)
-8 0.8s spurious(14.1s) | spurious(52.6s) | spurious(56.8s) | spurious(120.5s) | spurious(226.3s) time-out
-6 spurious(0.9s) spurious(2.8s) spurious(8.9s) spurious(43.6s) spurious(97.9s) spurious(231.7s) time-out
-4 spurious(0.8s) spurious(3.4s) spurious(32.2s) | spurious(73.5s) spurious(79.5s) spurious(229.6s) | spurious(496.5s)
-2 spurious(0.9s) spurious(2.4s) spurious(34.5s) | spurious(51.5s) spurious(78.0s) spurious(44.3s) spurious(435.4s)

TABLE III

EFFECT OF CHANGING ROUNDING PRECISION ON MODEL CHECKER PERFORMANCE

is required to scale to larger pieces of code. For numerical
stability problems, as mentioned before, the relevant size of
programs is often limited since numerically unstable compu-
tations can often be found in small portions of a program.
Finally, we believe that a tighter integration between an
abstract interpretation based tool such as FLUCTUAT with
the technique presented here would benefit the user tremen-
dously. In this paper we utilized user-provided invariants
only to simplify the model. However, the warnings produced
by FLUCTUAT or similar tools can now be concretized to
generate a) concrete traces and b) external input values that
show a particular numerical instability occur in practice.
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