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Abstract. We present a new method for generating algebraic invariants of hy-
brid systems. The method reduces the invariant generation problem to a constraint
solving problem using techniques from the theory of ideals over polynomial rings.
Starting with a template invariant — a polynomial equality over the system variables
with unknown coefficients — constraints are generated on the coefficients guaran-
teeing that the solutions are inductive invariants. To control the complexity of the
constraint solving, several stronger conditions that imply inductiveness are proposed,
thus allowing a trade-off between the complexity of the invariant generation process
and the strength of the resulting invariants.

1. Introduction

Hybrid systems are reactive systems that combine discrete mode changes
with the continuous evolution of the system variables, specified in the
form of differential equations. The analysis of hybrid systems is an im-
portant problem that has been studied extensively both by the control
theory, and the formal verification community for over a decade. Among
the most important analysis questions for hybrid systems are those of
safety, i.e, deciding whether a given property 1 holds in all the reach-
able states, and the dual problem of reachability, i.e, deciding if a state
satisfying the given property o is reachable. Both these problems are
computationally hard — intractable even for the simplest subclasses,
and undecidable for the general case.

In this paper, we provide techniques to generate invariants for hy-
brid systems. An invariant of a hybrid system is a property i that
holds in all the reachable states of the system. An inductive assertion
of a hybrid system is an assertion ? that holds at the initial states
of the system, and is preserved by all discrete and continuous state
changes. Therefore, any inductive assertion is also an invariant asser-
tion. Furthermore, the standard technique for proving a given assertion
( invariant is to generate an inductive assertion 1 that implies .
Therefore, the problem of invariant generation is also one of inductive
assertion generation. This problem has received wide attention in the
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program analysis community [18, 9, 10, 34, 28, 8, 4]. The generation of
linear inductive assertions for the special case of linear hybrid systems
has also been studied [14]. Many other approaches that compute the
exact or the approximate reach-set of a given hybrid system can also
be shown to compute inductive assertions [15, 32, 19].

In this paper, we extend our previous work on non-linear inductive
assertion generation [28] for discrete systems to generate invariants for
hybrid systems. We use the theory of ideals over polynomials along
with standard computational techniques in algebraic geometry involv-
ing Grobner bases to provide a technique for computing inductive
assertions for hybrid systems.

The key idea behind our technique is that given a template asser-
tion, i.e, a parametric polynomial with unknown coefficients and of
bounded degree in the system variables, we derive constraints on the
unknown coefficients so that any solution to these constraints is an
inductive assertion. To keep these constraints tractable, we consider
several useful restrictions on the nature of an invariant. In particular,
we consider stronger conditions for inductiveness than the traditional
requirements [20]. Also, we provide conceptually simpler techniques
to handle the continuous evolution; these techniques require neither a
closed form solution to the differential equations nor an approximation
thereof.

Our technique can construct inductive assertions using less time and
space than traditional techniques. Depending on the nature of the con-
secution condition chosen, our constraint generation technique is linear
in the number of modes and discrete transitions, and polynomial in the
number of system variables. Furthermore, the constraints generated can
range in complexity from the more intractable non-linear constraints
requiring quantifier elimination to simple constraints involving only
linear equalities. Of course, the more complex constraints potentially
yield stronger invariants than the simpler constraints. This trade-off is
useful in practice, and contributes to making the method scale.

RELATED WORK

The verification of safety (invariance and reachability) properties of
timed and hybrid automata has been the subject of numerous papers,
and has lead to popular verification systems such as KrRONOs [36],
UpPAAL [3], HYTECH [17], D/DT [1], and CHECKMATE [31]. Most of
this work deals with hybrid systems with piecewise-linear dynamics,
although some tools, notably CHECKMATE, can handle more general
dynamics. Non-linear systems have been traditionally dealt with by
using finite-state, or linear infinite-state abstractions [15]. Techniques
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using template properties with undetermined coefficients along with
constraint solving have appeared intermittently both in the computer
science, and the control theory literature. Techniques for automatic
generation of linear equality invariants for Petri-nets are a classic ex-
ample [23]. Our earlier work on discrete linear systems handles the
generation of linear inequality invariants using Farkas’ Lemma [8, 29].
The work of Forsman et al. [12] uses Grobner bases and parameterized
polynomials to construct Lyapunov functions to prove local stability
of continuous systems. Their approach works by fixing the form of
the desired Lyapunov function, and computing a maximal region over
which a function of the given form can establish local stability.

Invariant-generation methods for discrete programs based on al-
gebraic geometry have appeared recently. The work of Miiller-Olm
and Seidl, presents a backward propagation-based method for non-
linear programs without branch conditions [22]. In [7], Colén presents
a method that uses forward propagation in the lattice of pseudo ideals
of a given degree, to generate invariants of a bounded degree. In [27],
Rodriguez-Carbonell and Kapur present a method to generate poly-
nomial invariants for programs that contain only a special class of
assignments called solvable assignments. In [26], a forward-propagation-
based technique is presented, in which statements are represented as
transformations on ideals. A widening operator that limits invariants
to a given degree is used.

The work of Parillo et al. [24] presents a powerful framework based
on real-algebraic geometry and semi-definite programming. Conceptu-
ally, this framework can be made to play the same role as that of
Grobner bases in this work. This has already been applied to some
aspects of the safety-verification problem by the recent work of Prajna
and Jadbabaie using the idea of barrier certificates [25]. Ideas similar
to the ones contained in this work have appeared independently in the
work of Tiwari and Khanna [33].

The rest of the paper is organized as follows: Section 2 presents our
computational model and the basic theory behind ideals and Grébner
bases. Section 3 presents the constraint generation process. The na-
ture of these constraints and their solution techniques are discussed in
Section 4. In Section 5, we present some examples demonstrating the
application of our techniques. Section 6 concludes with a discussion of
the pros and cons.
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2. Preliminaries

2.1. COMPUTATIONAL MODEL: HYBRID AUTOMATA

To model hybrid systems we use hybrid automata [16].

Definition 1 (Hybrid System). A hybrid system : (V, L, 7,0,D,1,{)
consists of the following components:

— V, a set of real-valued system variables. The number of variables
(|V]) is called the dimension of the system. A state is an interpre-
tation of V, assigning to each v € V a real value. The set of all
states is denoted by X. An assertion is a first-order formula over
V. A state s satisfies an assertion ¢, written s = ¢, if ¢ holds on
s. We will also write ¢1 = ¢o for two assertions ¢1, g2 to denote
that @9 is true at least in all the states in which ¢y is true.

— L, a finite set of locations;

— T, aset of (discrete) transitions. Each transition 7 : (¢1, 42, p;) €
T consists of a prelocation ¢; € L, a postlocation ¢ € £, and an
assertion p, over VUV’ representing the next-state relation, where
V' denotes the values of V' in the next state;

— O, an assertion specifying the initial condition;

— D, a map that maps each location ¢ € L to a differential rule

(also known as a vector field or a flow field), D({), of the form
v; = fi(V) for each v; € V. The differential rule at a location
specifies how the system variables evolve in that location.

— I, a map that maps each location £ € L to a location condition
(location invariant), I(¢), an assertion over V;

— ly € L, the initial location; we assume that the initial condition
satisfies the location invariant at the initial location, that is, © =

1(4o).

Definition 2 (Computation). A computation of a hybrid system ¥
is an infinite sequence of states (I, Z) € £ x RIV! of the form

<107:§0> ) (ll7fl> ) <12752> 9.
where 7; are the values assigned to the variables in V', such that

Initiation: the initial state of the computation satisfies the initial
condition:

10250 and fo):@
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Figure 1. The hybrid automaton for a bouncing ball

Furthermore, for each consecutive state pair (l;, Z;), (liy+1, Ti+1), one of
the two consecution conditions below is satisfied.

Discrete Consecution: there exists a transition 7 : (¢1,02,p,) € T
such that l; = {1, liy1 = fl2, and (Z;,Z41) = pr, where the
unprimed variables refer to Z; and the primed variables to &; 11, or

Continuous Consecution: [; = [;;; = ¢, and there exists a time
interval 0 > 0, along with a smooth (continuous and differentiable
to all orders) function f : [0,0] — R", such that f evolves from
Z; to Zjy1 according to the differential rule at location ¢, while
satisfying the location condition I(¢). Formally,

L f(0) = @i, f(8) =5, and (V¢ €[0,0]), f(t) = 1(0),
2. (vt €[0,0)), (F(8), f()) = D(O).

A state (¢,Z) is called a reachable state of a hybrid system W if it
appears in some computation of W.

Example 1 (Bouncing Ball). Figure 1 shows a graphical represen-
tation of the following hybrid system, representing a ball bouncing on
a soft floor (y = 0):

Vv :{yvaé}
£ ={i},

B B 0>0ANy=0Ay=yA
T = {7}, where, 7‘—<l,l,[%:_%y A S =0 }>
© =({y=0Av,=16 Nd=0

D(l) = (§=vy A vy=-10 A 6=1)
I(l) = (y=0)
b =1
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6

The variable y represents the position of the ball, v, represents its
velocity, and d denotes the time elapsed since its last bounce. A bounce
is modeled by the transition 7, in which the velocity v, of the ball is
halved, and the ball reverses direction.

Definition 3 (Invariant). An invariant of a hybrid system ¥ at a
location ¢ is an assertion ¢ such that for any reachable state (¢, %) of
U, 7=

Definition 4 (Inductive Assertion Map). An inductive assertion
map V¥ is a map that associates with each location £ € £ an assertion
U(¢) that holds initially and is preserved by all discrete transitions and
continuous flows. More formally an inductive assertion map satisfies
the following requirements:

Initiation © = ¥ ({),

Discrete Consecution For each discrete transition 7 : ({1,429, p),
starting from a state satisfying W(¢1), and taking 7 leads to a
state satisfying W (¢2). Formally,

V() A pr = U(L)

where W(/y)" represents the assertion W(¢2) with the current state
variables & replaced by the next state variables 7.

Continuous Consecution For every location ¢ € £, and states (¢, Z1),
(¢, %) such that &y evolves from #; according to the differential
rule D(¢) at ¢, if 27 = V() then 25 = W(¢). If U({) is an assertion
of the form f;(Z) = 0, for a real-valued smooth function f;, we can
express consecution by the condition

LO(@) A (fe@=0) F fu(@) =0 .

Note that fg denotes the Lie-derivative of fy along the vector field
D(¢). The condition above is important, since we shall only be
interested in inductive assertions of the form p = 0 for a polynomial

p.

An assertion ¢ is inductive if the assertion map that maps each
location to ¢ is an inductive assertion map. It is easy to see that an
inductive assertion is an invariant. However, an invariant assertion is
not necessarily inductive.

Example 2. For the hybrid system in Example 1, the assertion y =
Vyd — 562 is an inductive and invariant assertion. It can be shown to
satisfy all the requisite conditions for being inductive. On the other
hand, the assertion v, < 16 is an invariant but not inductive. This is
because, it does not satisfy consecution for the discrete transition .
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2.2. ALGEBRAIC ASSERTIONS AND IDEALS

We begin by presenting some definitions and results from commutative
algebra. Informally, an ideal is a set of equations between polynomials
along with all their consequences. Ideals can be used to deduce facts
about the set of points that satisfy their underlying equations. Some of
the results in this section are stated in general terms without proofs.
Details can be found in most standard texts on algebra and algebraic
geometry [11, 21].

Let R be the set of reals and C be the set of complex numbers
obtained as the algebraic closure of the reals. Let V = {z1,...,2,} be
a set of variables. The set of polynomials on V', with coefficients from
R (C) is denoted by R[z1,...,zy] (Clx1,...,24s))-

Definition 5 (Algebraic Assertion). An algebraic assertion v is a
finite conjunction of polynomial equations denoted by

/\pi(xla cee 7xn) = 07
i
where each p; € R[z1,...,2,]. The degree of an assertion is the maxi-
mum among the degrees of the polynomials that make up the assertion.

Definition 6 (Algebraic Hybrid Systems). An algebraic hybrid
system is a hybrid system ¥ : (V,£,7,0,D,I, {y), where,

1. For each transition 7 : ({1,02,p;) € 7T, the relation p, is an
algebraic assertion,

2. The initial condition ©, and the location conditions I(¢) are also
algebraic assertions, and

3. Each rule D(¢) is of the form A; %; = pi(z1,...,%n).

Definition 7 (Variety). A wvariety is the set of points in the com-
plex plane that satisfy an algebraic assertion. Given an assertion 1 :
Ni(pi(Z) = 0), its corresponding variety is defined as

Variety () = {Z € C" | (Vi) pi(Z) = 0}.
Definition 8 (Ideal). A set I C Rzy,...,x,] is an ideal, if
1.0el,
2. If p1,po € I then p1 +py €1,

3. If py € I and py € Rx1,...,zy] then pips € I.
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An ideal generated by a set of polynomials P, denoted by ((P)), is
the smallest ideal containing P. Equivalently,

glv"'agmGR[xla"'vxn]v }

(( )) {g1p1+ +g b | pl)"'vpmep

An ideal [ is finitely generated if there is a finite set P such that
I = ((P)). A famous theorem due to Hilbert states that all ideals in
Rlz1,...,xy,) are finitely generated. As a result, algebraic assertions can
be seen as the generators of an ideal and vice-versa. Any ideal defines
a variety, which is the set of the common zeroes of all the polynomials
it contains. This correspondence between ideals and varieties is one of
the fundamental observations involving algebraic assertions called the
Hilbert’s Nullstellensatz. We state the relevant direction of this theorem
below:

Theorem 1 (Hilbert’s Nullstellensatz). Consider an algebraic
assertion . Let I = ((¢)) be the ideal generated by ¢ in Rlz1,. .., zp],
and f(z1,...,2y) € Rlx1,...,2p]. If f € I, then

(vZ e C”) %(2) = (f(2) = 0)

e, (@) F (f(@) =0).

Proof. Let v = f1 =0 A --- A f, = 0 and f € I. Hence, we can
express f as
f=ah+ " +gnfm

for some g1,...,9m € R[z1,...,2y]. Let Z € C™ be such that (2)
holds. Then, f(2) = >>i%(gi(?)fi(¥)) = 0, since each f;(¥) = 0, and
therefore

(VZ e C) ¢(2) = (f(2) = 0).
O

The theorem shows that membership of a polynomial p in an ideal
I leads to the semantic entailment of p = 0 by the variety induced by
I. Hence, an ideal is (informally) a Consequence-Closed set of polyno-
mials. While a similar statement can be made in the converse, it is not
relevant to the soundness of our technique, and therefore we omit it
from the discussion. Note that even though the ideals are defined in
Rlz1,...,xy), the varieties along with the entailments are defined over
the complex numbers, which subsume the reals. This is a technicality
that arises from the fact that the reals are not algebraically closed.

Remark. Figure 2 shows an instructive comparison between the de-
duction of consequences of linear equalities and that of polynomial
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Linear Equalities Polynomial Equalities
Hyperplanes Varieties
A1 jer =0 g1 |p1 =0

e=Mel+-+AInem | D=g1p1+ -+ 9mPm
€ € LINEAR(€1,...,€n) p € ((p1y---y0m))

Figure 2. Comparison between multivariate linear equations and multivariate
polynomial equations

equalities, ignoring some technical details. A given set of linear equal-
ities, e; = 0,...,e, = 0, entails a new linear equality e = 0 iff e can
be written as a linear combination of ey, ..., e,. The set of all linear
combinations of eq,..., ey, forms a linear subspace. Similarly, for the
polynomial equalities, the real multipliers Aq,..., A, are replaced by
arbitrary polynomials ¢1,...,gn. The set of all such combinations of
D1, .-, Dm, is the ideal generated by p1,...,pm.

Example 3. The assertion ¢ = (p; : 2> +2x+32—-1=0 A py:
2?2 —2x+1y? —1 = 0) represents the intersection of two circles each with
radius v/2, centered at (—1,0) and (1,0), respectively. They intersect
at two points (0,1) and (0,—1). Furthermore, = B52 and hence
x € ((p1,p2)). Geometrically, this states that py =0 Apy =0 | = =0,
or in other words all the points of intersection of the two circles lie on
the y-axis. Also, 22 4+ y?> — 1 = % € ((p1,p2)). Therefore, we can
deduce that the points satisfying 1) also lie on the circle with radius 1
centered at the origin.

In the remainder of this subsection, we use the concept of ideals to
derive a systematic algorithm for determining, given an assertion 1 and
a polynomial f, whether f € ((¢)). We assume that all the polynomials
are drawn from R[z1,...,x,], and all consequence relations of the form
1 = 19 are over the domain of complex numbers.

Let V = {z1,...,2,} be a set of variables. A monomial over V is of
the form z}'ay? - - - z]», with r; € N. The set of monomials is denoted
by M. A term is of the form ¢- p where ¢ € R and p € M. The set of

terms is denoted by Term.
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Definition 9 (Monomial Orderings). A monomial ordering < is a
total and strict ordering on M that satisfies the following properties:

1. (Vte M) 1<t,
2. If (t; < to) then (Vt € M) t1t < tot.

These orderings can be extended to a non-total ordering over terms by
ignoring the coefficients.

Monomial orderings are used to induce a reduction relation over
polynomials. Many monomial orderings appear in the literature, the
most common being the lexicographic and total-degree lexicographic
orderings. Assuming a linear ordering < on the variables in V| z1 <
T9 < - -+ < I, the lexicographic extension <., is defined as:

il Ry Tl G (3 i <q A (V<) rj=g;.

The ordering is lexicographic on the tuple (ry,...,r,) corresponding to
aterm 27" - - - 2. The total-degree lexicographic ordering is a variant of
this order: it first compares monomials by their total degree, defined as
the sum of the powers of all the variables, and then the lexicographic
ordering is used to resolve the tie for terms with the same total de-
gree. In general, the choice of ordering affects the complexity of the
algorithms, but such an effect is not addressed in this paper.

Definition 10 (Lead term). Given a polynomial g, its lead term (de-
noted LT(g)) is the largest term in g w.r.t. a given monomial ordering.

Definition 11 (Reduction). Let f, g be polynomials, and < be a
monomial ordering. The reduction relation over polynomials, 2, s

defined as: f 2 f’ iff there exists term ¢ in f s.t. LT(g) divides ¢, and

P t
== mg*

The effect of the reduction is the cancellation of the term ¢ that
was selected. The reduction relation can be viewed as a term rewriting
system over polynomials [2]. The reduction relation can be extended
to a finite set P of polynomials as f it fliff 3g € P) f < f'. The
reduction relation — is terminating for any finite set of polynomials
P, as a direct consequence of the definition of monomial orderings. A
normal form f of the reduction relation is a polynomial such that no
further reduction of f is possible. The reduction relation is confluent if

P
every polynomial reduces to a unique normal form. By —», we denote
. . . P
the reflexive transitive closure of the relation —.
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The reduction relation induced by P can be used to check member-
ship of a given polynomial in the ideal generated by P:

Theorem 2 (Ideal Membership). Let I = ((P)) be an ideal, and f
be a polynomial. If f L 0 then fel.

Proof. The proof proceeds by induction on the length of the derivation.

It is trivially true for zero length derivations, since 0 € I. Let f £,
P

/"= 0. It follows that f’ = f — tg, for some suitable term ¢, and some

g € P. Since f’ € I (the induction hypothesis), and g € P, it follows
that f'+tg € I. Thus, f € 1. d

Example 4. Assume a set of variables x, y, z with a precedence order-
ing x = y = z. Consider the ideal I = ((f : 22—y, g:y—2, h:x+2)),
and the polynomial p : x? —y2. Using the total lexicographic ordering,
we have 2 > g, and thus the lead term in f is x2, which divides the

term ¢ : 22 in p. Therefore, p 7, p’, where

[

X

p o= (@ —v) 2 (z* —y) = (—y* +9)
v N~ y '
p t f
LT(f)

The following sequence of reductions shows the membership of p in the
ideal

2 2 2

pL—zx—y2i>z —? Ly L 2 =0,

I
thus p — 0, and hence p € I. However, the reduction sequence
pL Py Ly L 2y L 24
reaches a normal-form without showing the ideal membership.

The reduction relation —-» may not be confluent, as illustrated by
the example above. Therefore, Theorem 2 cannot be used to decide
membership of a polynomial in the ideal generated by P. Fortunately,
for any ideal I = ((P)), there exists a special set of generators G

such that I = ((G)), and the reduction relation -, induced by G is
confluent. Such a basis for I is variously called the Grobner Basis, or
the Standard Basis of I.

Theorem 3 (Grobner Basis). Let I = ((P)) be an ideal, and f be
G
a polynomial. Let G be the Grobner basis of I. Then f — 0 iff f € I.
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Proof. A proof of this theorem can be found in any standard text or
survey on this topic [11, 21]. O

Since the reduction relation is terminating, Theorem 3 provides a
decision procedure for ideal membership. We shall use NFg(p) to de-

note the normal form of a polynomial p under f» The subscript G in
NFq(p) may be dropped if it is evident from the context. The standard
algorithm for computing the Grobner basis of an ideal is known as
the Buchberger algorithm. There are numerous implementations of this
algorithm available with standard computer-algebra packages and poly-
nomial computation libraries. As an example, the library GROEBNER
implements many improvements over the standard algorithm [35].

Example 5. Consider again the ideal from Example 4; I = ((f :
22—y, g:y—2, h:x+2)). The Grébner basis for I is G = {f :
22—z, g:y—z, h:x+z}. With this basis, every reduction of p : 22—y
will yield the normal form O.

2.3. TEMPLATES

Our technique for invariant generation aims to find polynomials that
satisfy certain properties. To represent these sets of polynomials we use
templates — polynomials with coefficients that are linear expressions
over some set of template variables. We show that the theory of ideals
can be naturally extended to templates. In particular, we show that
there exist confluent reduction relations on templates that allow the
generation of constraints on the template variables, such that the re-
sulting set of polynomials is precisely the set of polynomials that belong
to the desired ideal.

Definition 12 (Templates). Let A be a set of template variables and
L(A) be the domain of all linear expressions over variables in A of the
form cg+ cia1 + ...+ cpa,, where each ¢; is a real-valued coefficient. A
template over A,V is a polynomial over variables in V' with coefficients
from L(A).

Example 6. Let A = {a1,as,as}, and hence
ﬁ(A) = {CO + c1a1 + caa2 + c3a3 | co,...,C3 € R}
The set of templates is the ring £L(A)[z1,...,z,]. For example,

(2ap + 3)z123 + (3a3)ze + (4as + a1 +10) € L(A)[z1,...,x,).
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Definition 13 (Semantics of Templates). Given a set of template
variables A, an A-environment (if A is clear from the context, then
simply an environment) is a map « that assigns real values to each
variable in A. This map is naturally extended to map expressions in
L(A) to their corresponding values in R, and to map polynomials in
L(A)[x1,...,zy] to their corresponding polynomials in R[z1,. .., Ty)].

Example 7. The environment « = (a; = 0,a2 = 1,a3 = 2), maps the
template
(2a3 + 3)x122 + (3a3)x2 + (4as + a1 + 10)

from Example 6 to the polynomial
5x123 + 619 + 18.

The reduction relation — for polynomials can be extended to a
reduction relation for templates in a natural way.

Definition 14 (Reduction of Templates). Let p be a polynomial
in Rlxy,...,z,] and f, f’, be templates over A and {x1,...,z,}. The

reduction relation is defined as: f - f’ iff the lead term LT(p) divides
a term c-t in f with coefficient ¢(aq, ..., an) and

-t

oy C
I'=f LT(p)p-

Remark. The reduction relation is a natural extension of the cor-
responding reduction relation over polynomials. The definition above
defines reductions of templates by polynomials in R[zy,...,z,]. We
shall not attempt to define reductions of templates by other templates.

The reduction relation can, in turn, be extended to sets of polyno-

mials to define reduction relation - over templates for sets of poly-
nomials GG. Henceforth, we shall use the symbols f, g, with subscripts
to denote templates and the symbols h, p, to denote polynomials.

Example 8. Let p be the polynomial 22 —y, with LT(p) = 2. Consider
the template

f:oax® +by?+c2? +dz+e.

The lead term LT(p) divides the term az? in f. Therefore, f A
where

2
ax
f’:(ax2+by2+cz2—|—dz+e)—?(332—3/) =by® +c2t 4 dz+e+ay.
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Given a template f and an ideal I, the objective is to find those
environments « such that a(f) € I. This is achieved by obtaining
constraints on the environment variables A such that any solution «
satisfies a(f) € I.

The properties of the Grobner basis reduction relations over poly-
nomials can be extended smoothly to templates. Proofs of these results
can be found in the appendix. We first show that the extension of
reduction relation is consistent w.r.t. the semantics of templates under
any A-environment. The confluence of Grébner basis reduction relation
over templates guarantees that a unique normal form exists for any
template (Theorem 8). The template membership theorem (Theorem
10) proves that if f; = NFg(f) is the normal form of f, then for each
environment o, a(f) € ((Q)) iff a(f1) is identically zero.

Theorem 4 (Zero Polynomial Theorem). A polynomial p is zero
for all the possible values of x1,...,x, iff all its coefficients are identi-
cally zero.

Proof. The proof is available from any standard text on algebra.
O

Given a template f and an ideal I with Grobner basis G, we first
compute NFg(f), and then equate each coefficient of the normal form
to zero to obtain a set of equations over the template variables A. Any
solution to this set of equations yields an A-environment « such that
a(f) € I (and conversely).

Example 9. Let I be the ideal ((2%2 —y, y — 2, 2z + x)) of Example 4
with Grébner basis G = {x + 2z, y — 2,2%> — z}. We are interested in
polynomials represented by the template

frar® +by? +c2? +dz+e
that are members of the ideal. The normal form of this template is
NFG(f): (a+b+c+d)z+e .
Equating each coefficient in the normal form to zero, we obtain

a+b+c+d=0
e=0

From this, we can generate all instances of the template that belong to
I. Some examples are z2 —y?, y?> —z, 222 — 22> — 2. On the other hand,
22 +y? — 2 € I, as the coefficients do not satisfy the constraints.
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3. Constraint-Generation

Our invariant generation algorithm consists of the following steps:
1. fix a template map for the candidate invariant;

2. encode the conditions for invariance as an ideal-membership ques-
tion;

3. derive the constraints on the template variables that guarantee the
appropriate ideal-membership;

4. solve the constraints to obtain the invariants of the form specified
by the template map.

In this section we describe and illustrate the first three steps; the last
step is presented in section 4.

3.1. TEMPLATE MAP

The first step in our method is to fix the shape of the desired invariants.
Let A = {aj,asz,...} be a set of template variables, and let ¥ be
an algebraic hybrid system with location set £ = {¢,...,¢,} and
variables V' = {z1,...,2,}. A generic degree-k template over A and V'
is the sum of all monomials of degree k or less, written as

Z a(i1,i2,...,in>x7il T :L‘?Zmn
i14-+in <k
n+k

k
example, a degree-2 template for 5 variables has 21 terms.

A template map n associates each location ¢ with a template. For
maximum generality, the template variables in the templates should
be all different. However, templates for different locations may have
different degree.

with a total of < > terms, and as many template variables. For

Example 10. For the system introduced in Example 1 we fix the
template map 7 as follows:

n(l) = ary* + awi +azd® + a4yvy +asvyd +aeyd +ary + agvy +agd +aig

with the objective to identify the values of the coefficients a ... a1 for
which the assertion

a1y’ + 027)5 +asd® + a4yvy + asvy0 + agyd + ary + agvy + agd +aig = 0

is an invariant at location .
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3.2. ENCODING INVARIANCE CONDITIONS

The second step in our technique involves the encoding of the conditions
for invariance as an ideal membership statement. Given a template n(¢),
we recast the invariance conditions as an ideal membership problem of
the form

n() € ((p1,---,1x))

where p1,...,p, are polynomials over the reals. This is equivalent to
NFG(n(¢)) = 0, where G is the Grobner basis of ((p1,...,pk)).

Initiation

The initiation condition, © = (n(¢y) = 0), is encoded by n(¢y) € ((0)).
This is in turn encoded by computing the Grobner basis of ©, and
encoding NFg(n(4)) = 0.

Example 11. The initial condition for the bouncing ball example
(Example 1) is (y = 0, v, = 16, § = 0). Taking the template from Ex-
ample 10, the normal form w.r.t. © is NF(n(lp)) = a9 + 256a2 + 16as.
Hence the constraint corresponding to initiation is a1g+256a2 + 16ag =
0.

Discrete Consecution
The consecution condition states that the invariant map must be pre-
served by all transitions, i.e, for each transition ({1, ¢, p),

(n(t1) =0) Ap = (n(f2)" = 0)

must hold. Encoding this exactly would require the reduction of one
template (n(f2)) w.r.t. to another template (n(¢1)). As noted in our
previous work [28], this leads to complex constraints which are hard
to solve in general. As an alternative we propose to use stronger con-
ditions for consecution that imply the original consecution condition,
but avoid the template in the antecedent. However, in doing so we lose
the invariants that satisfy the general condition of consecution but not
the stronger conditions.

We describe four options for stronger consecution conditions, start-
ing with the strongest. A summary of these conditions, together with
their encodings, is shown in Figure 3.

Local Consecution (LC) The local consecution condition states that
the transition simply establishes the invariant at the postlocation,
without any assumptions on the precondition. Invariants that can
be established in this way are also known as local invariants or
reaffirmed invariants.
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Name H Condition ‘ Encoding
LC p = () =0) NF,(n(l2)') = 0
cv p = () = n(l2)") NFp(n(l1) —n(l2)') =0
os | BN pEMGLY =) | @A) N0 — (i) =
Ps || 3f)pE W) =f-nl) | 3f)NE(n(le) = f-n(l)) =

Figure 3. Consecution Conditions for Algebraic Templates

As an example, consider the following discrete transition from [y

to s,
=0,y =0
true zy =0

The assertion xy = 0 holds immediately after taking the transition
regardless of what held before the transition.

Constant Value (CV) The constant-value condition states that the
value of the polynomial at the prelocation (n(¢1)) and postloca-
tion (n(f2)) is not changed by the transition. Hence, if it is zero
before the transition, then it will be zero after the transition, thus
preserving the invariant map.

For example, in the transition

zy =20 ry =zy=20

the assertion xzy = 0 holds immediately after taking the transition
if it held before the transition, because the value of xy does not
change when the transition is taken.

Constant Scale (CS) The constant-scale condition states that the
transition may change the value of the polynomial only by a con-
stant factor, A\. As before, if the value of the polynomial is zero
before the transition is taken, it will be zero after the transition is
taken.

In the transition
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the assertion xzy = 0 holds immediately after taking the transition
if it held before the transition, because the value of xy is doubled
every time the transition is taken.

Polynomial Scale (PS) The polynomial scale condition states that
the transition may change the value of the polynomial by a poly-
nomial factor, exemplified by the transition

o=y Y =2t

xy =0 'y = (2 + 1)ay =0

The assertion xy = 0 holds immediately after taking the transition
if it held before the transition, because the value of xy is multiplied
by 22 + 1 every time the transition is taken.

In all these cases, if the value of the polynomial is zero before the
transition is taken, it will be zero afterwards. In the last two cases
new unknowns, namely A and f, are added to the constraint solving
problem, generally rendering the constraint problem non-linear.

The encodings for the consecution conditions involve the system
variables, and the primed system variables. To ensure that the primed
variables are eliminated as much as possible, a variable ordering must
be chosen such that V' = V. The notion of CS consecution includes
both LC and CV consecutions by substituting 0,1 for the parame-
ter A, while PS consecution includes CS consecution by requiring the
multiplier polynomial to be of degree 0.

Lemma 1 (Soundness). Let n be an inductive assertion map that
satisfies any of {LC,CV,CS,PS} consecutions for a transition T, then
n satisfies consecution for T.

Example 12. The transition relation for the discrete transition 7 in
Example 1 is

[(5>O ANy=0Ay =y AN v==3NJd=0

Omitting the conjunct § > 0 to make the transition relation algebraic
(note that it is sound to weaken the antecedent), the reduction of the
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template given in Example 10 according to local consecution yields a
normal form iy as
2
NF, (1 (0)) = T T g +aip -
Reduction of the same template according to the constant scale conse-
cution condition leads to the normal form

NE (1 (£) = An(l)) =
4a2)\ — as ’U2

_ 2(18)\ + Cl,gv
4 Y

9 y — ag)\52 - a9>\5 — alo()\ — 1) .

asAvy0 —

Continuous Consecution

The continuous consecution condition states that if the invariant holds
at some state (¢,21) then it must hold at any state (¢, 25) where 25
can be reached from #] according to the differential rule D(¢), while
satisfying I(¢). That is,

1(6) A n(0) =0 n(t) =0 .

As in the discrete case, encoding this exactly is not practical, and
therefore we impose stronger conditions, summarized in Figure 4.

Constant Value (CV) The constant value condition states that the
value of the polynomial is constant throughout the continuous
move, expressed by the condition that the derivative of the tem-
plate invariant with respect to time is zero:

() = 0 .

Clearly, this condition guarantees that the assertion is preserved.
Noting that the system variables are functions of time only, the
derivative of the template can be obtained by the chain rule as

follows:
i =% (%,2%)

Recall that in algebraic hybrid systems the differential rule is a con-
junction of the form A; #; = pi(z1,...,x,), yielding the following
template for 7(¢):

(0 =3 (%, o)

This is also known as the Lie-Derivative of n(f) w.r.t. the vector
field & = (p1,...,pn) associated with the location /.
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Name H Condition ‘ Encoding
ov 1(0) = i(€) =0 NF1((0)) = 0
cs || FAN L) En0ll) —An(l) =0 | (3 A) NFr)(n(€) — An(f)) =0
PS Fg) 1) Enl) —gn(t) =0 | (3g) NFyey((€) —gn(l)) =0

Figure 4. Continuous consecution conditions

Constant Scale (CS) The constant scale condition makes use of the
fact that the value of the polynomial is zero, resulting in the more
general condition that requires only that the difference between
the derivative and a constant factor times the invariant itself be
Zero:

(3N i(6) = M) =0 .

Polynomial Scale (PS) The polynomial scale condition relaxes the
condition further by requiring that there exists a polynomial factor
such that the difference between the derivative and this factor
times the invariant be zero:

(3 9) n€) —gn€) =0 .

The encodings are similar to those for the discrete case. In both cases
we compute the normal form with respect to the location invariant and
equate the result to zero to obtain the constraints.

Example 13. Returning to the bouncing-ball system from Example 1,
and the template from Example 10, the derivative of the template is

(2a1y + aqvy + agd + a7) Y+
7(l) = | (2a2vy + asy + as0 + ag) vy + ,
(2a36 + asvy + agy + ag) 6

which, with D(I): ¢ =v, A v, =-10 A § =1 gives

(1) = a4v§ + 2a1yvy + agbévy + (—20a2 + a5 + ar)vy+
M=\ (2a3 — 10a5)5 + (—10as + ag)y + (ag — 10as)

For this system the location condition I(l) does not have any alge-
braic conjuncts and therefore the CV encoding for continuous consecu-
tion for location [ is

NFr) (1(1)) = 0(1)
Similarly, the CS encoding is

(3 A) NEyy (1) — An(l) = (3 A) (1) = An(@D))
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which equals

Aa1y? + (ag — Xag)vy — Aazd*+
(2a1 — Aag)yvy + (ag — Aas)vyd — Aagyd+
(—10a4 + ag — )\CL?)Uy + (—20as2 + a5 + a7 — )\ag)vy—l-
(2a3«— 10a5<—‘ka9)5 + (ag-—-loag-— Aalo)

CRY

We shall establish the soundness of PS consecution for continuous
flows. The soundness of ¢S and CV consecutions follows as a corollary.

Lemma 2 (Soundness). Let Ay @; = pi(x1,...,z,) be a differential
rule in some location | . Let p be any polynomial in R[x1,...,zy], such
that the derivative of p according to the flow in I, satisfies p = gp
for some polynomial g. Then for any continuous flow u(t), such that
t €10,0], if p(u(0)) = 0 then p(u(d))=0.

Proof. Let f be a real-valued function of time, defined as f(t) = p(u(t))
such that f is smooth (i.e, continuous and differentiable to any order)
for t € [0, 6]. We first show that at ¢t = 0, all the orders of derivatives of
f vanish. If u; is the i** component of i, then by definition, ti; = p; ().

F(t) = pa(t) = g(@®)) - plat) = fi - f -

We prove by induction that f(™ = ’gf—n{[ = f- f,, for m > 0, where
fm is a smooth function of time. The base case for n = 0,1 have been

established above. Note that

dfrm  df,, . . .
gt = 2 AImd o f = (ot S = ff

dt dt
Since p(i(0)) = f(0) = 0, we have that £ (0) = 0 for all n > 0. Using
the Taylor series expansion for f in the interval ¢ € [0,6], we obtain
f(t) = 0. In particular, f(6) = p(u(d)) = 0. O

3.3. DERIVING THE CONSTRAINTS

The constraints on the template coefficients aq, ..., a,, are derived by
equating to zero the coefficients of the normal forms of the template
w.r.t. the initial condition, and the consecution conditions for all dis-
crete transitions and continuous moves. By Theorem 4, the solutions
to these constraints provide all combinations of values of the template
coefficients for which the corresponding assertion satisfies the imposed
conditions.
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Example 14. Consider again the system presented in Example 1 and
the template of Example 10. The encodings, derived in Section 3.2,
of the initial condition, discrete consecution (LC) of 7 and continuous
consecution (CV) at location [ are

NF(n(1)) = 256ag + 16ag + a1g
NF, (' (1) = %v2 — Bv, +aig

2
) _ ( aqvy + 2a1yvy + agdvy + (—20az + a5 + a7)vy+
NEx (1) = ( (2a3 — 10a5)d + (—10ay + ag)y + (ag — 10ag)

yielding the set of (linear) constraints

256a9 + 16ag + a1 = 0,
—20as + as + a7y = 0,
as — 5(15 = 0,
ag — 1Oa4 = 0,
ag — 1Oa8 =0
and
ag = ag = alp =as = a1 = ag = 0

Example 15. If we use the Constant Scale (CS) condition for both
discrete and continuous consecution, then, as presented in Examples 12
and 13, we obtain the following set of (parametric) constraints:

256as + 16ag + aig = 0
A

I\ CL2(4)\1—1) =0 A Aas=0 A a9(2)\1+1) =0A
1 A1a3:0/\)\1a9:0/\a10()\1—1)20

A

Aa1 =0 A ag —Xaas =0 A doaz =0A
2a1 — Xoag =0 A ag— doas =0 A dag =0 A
—10a4 +ag — Aay =0 AN —20as + a5 + a7 — Aoag = 0 A
2a3 — 10as5 — Agag = 0 A ag — 10ag — Agaig =0

=P

A solution to these sets of constraints is presented in the next section.

Complezity of Constraint Generation
An assessment of the complexity of the constraint generation process
requires the quantification of the time complexity of the Grébner basis
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and the normal form computations. We shall assume an upper bound
Ty, on these operations. The template size is assumed to be polynomial
in the dimensions, and exponential in the degree of the template. This
can be remedied to some extent by the template shrinking strategies
presented in the next section.

The number of Grobner basis conversions is one per location, and
per discrete transition. More often than not, the location invariants,
the initial conditions and the discrete transitions are simple in struc-
ture, containing only non-factorizable polynomials. This speeds up the
Groébner basis computation in practice. Computing the initiation and
discrete consecution constraints involves one normal form computation
per condition. Each normal form computation is assumed linear in the
template size. Furthermore, computing the Lie derivative involves n
polynomial multiplications, and is at most quadratic in the template
size (algorithms using fast fourier transforms (FFT) multiply two poly-
nomials of length m is O(m log(m)) time). Therefore, modulo the cost
of computing Grobner bases and normal forms, the constraint genera-
tion process is polynomial in the program size (number of dimensions
+ number of locations + number of transitions), and exponential in the
desired degree if generic templates are used. The number of Grébner
basis computations is linear in the system description. The number of
normal form conversions is also linear in the system description, with
each normal form conversion operating on a template polynomial.

4. Solving Constraints

The encodings presented in the previous section generate several types
of constraints. Initiation always produces linear equalities. The type
of constraints generated by the consecution condition vary from lin-
ear equalities for the most restricted, Local Consecution condition, to
general non-linear equalities for the Polynomial Scale condition. Fig-
ure 5 shows the different types obtained for the various conditions and
encodings.

Solution techniques exist for all of these types of constraints, but
they differ greatly in their complexity. Solution techniques for linear
equalities are well understood and tend to be computationally inex-
pensive. For example, Gaussian elimination can be done efficiently in
polynomial time (assuming constant time arithmetic operations). On
the other hand, techniques for solving non-linear equalities are complex,
either requiring specialized techniques as in the case of eigenproblems,
or generic elimination techniques such as quantifier elimination over
complex or real numbers [5].
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Condition ‘ Restriction H Constraint types
Initiation ‘ H linear equalities
Local (LC) linear equalities

Consecution | Constant Value (CV) linear equalities

Constant Scale (CS) | eigenvalue problems
Polynomial Scale (PS) || non-linear algebraic

Figure 5. Constraints obtained from different conditions for inductive assertions

Two types of non-linear constraints can be distinguished. For the
case of Constant Scale consecution, non-linearities are introduced in
the constraints by the scale parameter A\. For this case, the resulting
constraints are generalized eigenproblems of the form AZ = ABZ. Both
numerical and symbolic solutions exist for these problems. Numerical
solution techniques are faster and more easily implemented, but may
be sensitive to round-off errors. Using inaccurate values for A results in
finding only the trivial solution. Symbolic solution techniques, on the
other hand, can only be used for special cases, because they depend on
polynomial root solving. From our experience, numerical techniques are
adequate, provided the values obtained for A\ are rational or algebraic
of low degree.

The general non-linear constraints generated by the Polynomial Scale
consecution condition are much harder to solve. For small to medium
size systems, these constraints can be handled using a combination of
simplification and quantifier elimination. For higher-degree polynomi-
als, generic quantifier elimination techniques over the reals are required,
which work well for small sized problems [6], but do not scale.

4.1. LINEAR EQUALITIES

Linear equalities arise from the encodings of the initial condition, LC
and CV consecution for the discrete case, and the CV consecution for
the continuous case.

The theory of linear equalities over the reals is relatively simple
with fast solution techniques. Representing the system of constraints
in matrix form

AZ+b=0

with A an m x n matrix and b an m x 1 column vector, we are interested
in all solutions Z. In general, the system is under-determined, and
hence, the set of solutions forms a linear subspace of dimension greater
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than zero. Assume that the solution is given as ¥y = CZ;, where Z; are
the independent variables and Z; are dependent. The generators are
computed by expanding the orthonormal basis for #; with ¥y = CZ;.
Each generator yields an independent invariant when substituted in
place of the unknown coefficients of the template.

The system of constraints may not always lead to a (useful) invari-
ant. If the system is infeasible, which is the case iff the row reduced
echelon form contains the equation 1 = 0, then there are no solutions,
signifying that no invariant of the form of the template could be found
by our technique. In case the system is homogeneous, that is b = 0,
it always has the trivial solution £ = 0, which produces the trivial
invariant true. In this case non-trivial invariants are obtained if the
constraint system exhibits non-trivial solutions.

Example 16. Recall the constraints from Example 14. After simplifi-
cation, this system can be written as

Il
o

as + ary
a3—5a5:0

or in matrix notation,

0 11\ (™) /o
1 -50 %= \o
ar

which can be converted to the equivalent row reduced echelon form

105\ () /o
( 011 ) @ | = ( 0 )
ar
with dependent variables ag and as and independent variable a;. Ex-
panding the basis vector for a7 to include ag and as yields the single
generator
-5
-1
1

for the solution subspace. Assigning these values to the template of
Example 10 produces the non-trivial, inductive invariant

~56% —v,5+y = 0.

Template Shrinking
Linear equalities are useful even when some constraints are non-linear.
In the example above, we considered the case where all constraints
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were linear equalities, and therefore linear constraint solving techniques

were able to produce the invariant. More commonly, only some of the

constraints are linear equalities and non-linear constraint solving tech-

niques must be used to obtain the invariant. In this case the linear

equalities may be used to reduce the size of the template, thereby sim-

plifying the constraint generation and the constraint solving processes.
Let f be a template:

- =

f:epr+cops+...+cupy, or C-PD

where ¢ are the coefficients (or template variables) and p’ are the mono-
mials. Let A¢ = 0 be a system of constraints generated on the template
variables, where the column rank of A is m. Then the number of inde-
pendent variables is n—m. If A is full column rank (m = n) all template
variables are determined, and hence it just remains to check whether
the resulting invariant satisfies the remaining (non-linear) constraints.
If the system of constraints is empty (m = 0), all template variables are
independent and no simplification can be made to the template. For any
intermediate value m of the rank, rewriting A¢ = 0 in row echelon form
produces the m dependent variables as linear combinations of the m—n
independent variables. Hence the dependent variables can be removed
from the template, resulting in a template with fewer unknowns.

Example 17. Recall the template from example 10:
n(l) = aly2 + 027{5 +azd*+ a4yvy +asvyd +acyd + ary + agvy +agd +aig

and the constraints for initiation and CV (continuous) consecution from
example 14:

{146} =

aig + 256a9 + 16ag =

as + a7 — 20ay =

asz — 5(15 =

ag — 10(18 =

o O OO O

This system of constraints can be rewritten in row echelon form (leaving
out ay, a4, and ag) as follows:

as
10005 0 0 ar
0100 1-20 0 a9
0010 0 0 —10 ao [ =0
0001 0 256 16 a5

az

as
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producing as dependent variables as, a7, ag, and a9, and the relation-
ships

af1a6) = 0

as = bas

ay = 20as — as

ag = 10a8

aio = —256&2 — 16&8

Substituting the linear combinations for the dependent variables yields
the template:

ns(l) = az(v; + 20y — 256) + as(vy6 + 56° — y) + as(vy + 105 — 16)

with only the dependent variables as, as, and ag as unknowns. This
makes the encoding and the solving of the remaining consecution con-
dition easier.

In practice, if the CV condition is used for continuous consecution at
a particular location, the generated linear equalities can automatically
be used to reduce the template for that location. This makes the gener-
ation of the discrete consecution constraints and their solution faster,
providing a dramatic reduction in the complexity of the constraints to
be solved.

4.2. PARAMETRIC-LINEAR EQUALITIES

Parametric linear equalities arise from the encoding of the constant
scale (CS) consecution constraints. They encompass both the CV and
LC conditions for the discrete case, and the CV condition for the
continuous case.

Definition 15 (Parametric Linear Constraint). A parametric lin-
ear constraint is an equality of the form

k
(3)\1, ciy )\k) (60 + Z )\iei = 0)
i=1
where eg, ..., e, are homogeneous linear expressions over the template

variables.

Assuming that a CS encoding is used for all consecution conditions,
the constraint system generated is a conjunction of linear equalities and
parametric linear equalities with one parameter \; for each consecution
condition. That is, the system of constraints is of the following form:

(3)\1, ceey >\k) (Af =0 A 7\((141 + )\ZBZ)f = 0))

=1
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where 7 are the template variables and A, A;, B; are constant matrices.
We first show that checking whether such a system has a non-trivial
solution is NP-hard in general, and then provide a strategy that solves
these systems efficiently in most cases we have encountered so far.

Lemma 3. Consider a constraint system of the form given above.
Checking whether there exist values for Ai,..., A such that the in-

stantiated system has a non-trivial solution for & is NP-hard.

Proof. The reduction is from the SUBSET-SUM problem, which is shown
to be NP -complete (see [13], page 223 for further details).

SUBSET SUM: Given an n element set S, with elements having real-

valued weights wq,...,w,, is there a subset whose elements’ weights
add up to W # 07
We introduce n+ 1 variables x1, ..., x,, €. The system of constraints

is shown below:

Y wir; —We=0 — weights must add up
/\?:1{?;\%_:1)0(%_6):0 — z;=0o0rax;=€eorx;=€e=0

The equations have been set up so that each x; is either 0 or €. A solu-
tion is non-trivial iff € # 0. Let T, € be a non-trivial solution. Therefore
%wa = W. Given that each z; is either 0 or ¢, Z is either 0 or 1.
Therefore, a non-trivial solution to the feasibility problem yields one
for the subset-sum problem. Similarly, a (necessarily non-trivial) solu-
tion for the subset-sum problem along with ¢ = 1 yields a non-trivial
solution to the feasibility problem, completing the reduction. O

We do not attempt a proof of NP-completeness since membership in
NP requires proving that the solution size is polynomial in the problem
size. This seems non-trivial, and outside the scope of our discussion.
In practice, such a system of constraints can often be solved much
more efficiently by means of factorization followed by case splitting. In
a previous paper we showed that this strategy handles all parametric
linear constraints generated in the invariant generation of Petri Nets
by exploiting the structure of the transitions in Petri Nets [30]. In the
present case we use the strategy as a heuristic that has proven successful
for most constraints we have encountered so far.

A parametric constraint is factorisable if it can be written in the
form

eA—a) =0

differential.tex; 18/02/2005; 9:15; p.28



29

for some a € R. A system of constraints ax © that contains such a
factorisable constraint can be split into two cases as follows:

AN (e AA=a) V(¢ AN A#a))

which can then be solved separately. In the first disjunct all occurrences
of A can be substituted with «, effectively eliminating A. The presence
of A # « in the second disjunct entails the equality e = 0.
Our strategy is as follows. To solve a system of linear parametric
constraints
m
GA1,- ) (AZ =0 A N\ (A + AiBy)E = 0))
i=1

repeatedly apply the following two steps:

1. use A¥ = 0 to rewrite the dependent variables in & in terms of the
independent variables in A%, ((A; +\;B;)Z = 0) (as was illustrated
in Example 17 for template reduction);

2. select a factorisable equality a; + A;b; = 0 and split the system in
two cases as shown above and solve each case separately;

until neither step is applicable. The unsolved cases may be discarded
(without loss of soundness), or we may revert to the simpler conditions
by instantiating the remaining parameters to 0 (for LC encoding in
the discrete case or CV encoding in the continuous case), or 1 (for CV
encoding in the discrete case). Note that each disjunct, in particular
each instantiation of the parameters, potentially leads to an invariant.
At any stage we may discard disjuncts, or instantiate parameters. By
doing so we may fail to find some invariants but we do not compromise
soundness. In practice further expansion of a disjunct can often be
avoided if the linear equalities in it entail an another disjunct that has
already been resolved. Testing this subsumption can be done efficiently,
and saves a lot of effort in practice.

Example 18. Reconsider the constraints derived in Example 15 for
the Initiation condition and the CS consecution conditions. Let this
system of constraints be denoted by

I\ A

We will eliminate the quantified variables by the factorization strategy
outlined above. Noticing that Ay is a factor in several equations, we
first split the system on Ay = 0, yielding

3)\1)\2(90 A )\2:0) V (QD A )\2750) .
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Simplification of the second disjunct produces the trivial solution
a1:a2:...:a10:0

which corresponds to the trivial invariant true.
Substituting 0 for s in ¢ and simplifying the result leads to

256a9 + 16ag + a9 =0 A
a2(4)\1—1):O A Aas =0 A a9(2)\1+1):0A
EDN Aaz =0 A Aag=0 A alo()\l—l):()/\
CL4:O AN CL1=O VAN CLGZO/\
—20as + a5 +a7 =0 A 2a3 — 10a5 =0 A ag — 10ag =0

We denote the system above as JAjpp. Splitting this system with
respect to the eigenvalues for A; results in

(p1 A Ay =0)V
(p1 A Ay =1)V
3)\1 (Q01 A )\1:%)\/
(p1 A A1 =-2)V

(901 A )\1 7é {07%7_%71})

The first disjunct, in which Ay = 0, results in the same linear system
solved in Example 16, and thus produces the same invariant

—56% —v,6+y = 0.
All other disjuncts produce the trivial solution
ar=ay=...=ajp=0

and thus do not lead to other invariants. More accurate conditions
for consecution did not result in stronger invariants for this example.
Only the choice A\ = Ay = 0, which coincides with the CV encoding
for the continuous consecution and the LC encoding for the discrete
consecution, produced a non-trivial invariant.

5. Applications

We demonstrate the results of our technique on some application ex-
amples. All the examples were run on our prototype implementation
in Mathematica linked with a C+4 implementation of the constraint-
solving strategies discussed in the previous section, and elsewhere [30].
The example descriptions and the code will be available from our
webpages.
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Figure 6. Hybrid Automaton for the Train System

TRAIN SYSTEM:

Figure 6 shows a hybrid automaton modeling a train accelerating (lo-
cation ly), traversing at constant speed (l1), and decelerating (I3). The
system has three continuous variables: x, the position of the train, v,
the train’s velocity, and ¢, a master clock. The system has one discrete
variable s, representing the number of stops made so far. The initial
condition is given by x = s = t = v = 0. There are three discrete
transitions, 71, T, and 73, with transition relations

pr, s v=>5 A id(s,z,v,t)
pr, : id(s,z,v,t)
pra t0=0 A s=s+1 AN t'=t+2 A id(z,v)

wherein id(X) denotes A,cx (2’ = z). Application of our technique
resulted in the following assertion map:

n(lp) : v? —4x —10v 4 1155 — 20t = 0
n(ly) : 5v% + 4xv + 11505 — 200t = 0
n(lz) : 2v% +4x —20v + 1158 — 20t + 75 =0

With v = 5 at I} the assertion 7(l;) can be simplified to 4z + 115s —
20t +25 = 0.

An analytic argument for the assertion 7(lp) is as follows. Consider
the system at the state (lo, (s,v,z,t)). Each stop s consists of acceler-
ating from 0 to 5 in [y and decelerating from 5 to 0 in l5. The distance

covered in these two modes is %5 and 275 respectively. Furthermore,

accelerating from 0 to v in Iy advances the position another %. Hence

the total distance traveled is given by x = 3(%75 + 2—25) + % + 9ty
where ¢;,, the time spent in location [y is given by t — t;, — t;, =
t — (v/2 4 s(3)) — (2s + 2s). Substituting, we obtain the inductive
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assertion 4z = v? — 1155420t — 10v. Similar arguments can be provided
for the other locations.

LooPrPING THE LOOP:

Consider a heavy particle on a circular path of radius 2 with an initial
angular velocity w = wqg starting at x = 2,y = 0. The differential
equation for its motion is given by

T = r(cc:)s 0) = —r(sin6)f = —yw

¥ = r(sinf) = aw
o — _gsinf _ _ 5
w = ==

Using CV consecution, the quadratic invariants obtained were z2+y? =
4 and w? + 5y = w?. The former invariant is a result of our modeling
(though not explicitly posed as a location invariant) and the latter is
the energy conservation equation. This invariant also establishes that
unless wy > \/E, the particle will be unable to complete a full circle.

PARTICLE IN A MAGNETIC FIELD

Figure 7 shows a charged particle on a 2D-plane with a reflecting barrier
at x = 0, and a magnetic field at £ > d > 0. The eight system variables
are the particle’s position and velocity, z,y,v., vy, a bounce counter b
that is incremented every time the particle collides against the barrier
at x = 0, along with the parameters a,d, and time ¢. The dynamics of
the 'particle at 0 <z < d are those of constant velocity motion given
by & = ¢ and ¥ = 0. In the magnetic field region, a force perpendicular
to the particle’s velocity vector causes it to move in a circular orbit,
with dynamics given by & = ¥, v, = —av, and v, = av,. The particle’s
behavior is modeled by the three mode hybrid automaton shown in Fig-
ure 7. Initially, v, = 2, vy = —2, and z = y = t = b = 0. The parameter
d was set to 2, and a left unspecified. This makes the simulation and
the propagation-based exploration of the system hard. Transition 7|
models the transition from the right moving particle into the magnetic
field. It is guarded by = = 2, and leaves the variables unchanged. The
transition 7 models the transition back from magnetic into the left
region. It is guarded by x = 2, and leaves the variables unchanged. The
bounce on the barrier at * = 0 is modeled by 73, which negates v,
and increments b by 1. The mode invariants v, > 0 for left, and v, <0
for right were ignored. This however leads to unwanted behaviors like
the particle in mode right making a transition into magnetic only to
make another transition into left with no time elapse. The following
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Magnetic Field

7] N 0 0 0 U g o 0

right magnetic left

Figure 7. Particle in a magnetic field and its non-linear hybrid model. The dynamics
of a,t,b are not shown.

invariants were obtained:

‘ Location ‘ Invariant
left vy +2=0 A 0v2-4=0
magnetic | vy =a(zx —2) —2 A v2+v. =8
right vy +2=0 A 0v2—-4=0

However, at location right, the invariant v, > 0 and v2 — 4 = 0 lets us
conclude v, = 2. This is easily mechanized by computing the roots of
the univariate polynomials, and discarding extraneous roots disallowed
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by the inequalities in the invariants. Similarly, at location left, we con-
clude v, + 2 = 0. With the newly computed invariants added to the
modes, another run of the procedure yields the following invariants

‘ Location ‘ Invariant
left Uy +2=0 A v;—2=0 A a(z+y) =4b—4ab
vy +2=ua(zr—2)
magnetic v2 + vg =38
Uy —2=—a(y+2)+4b(1 —a)
right Uy+2=0Av,+2=0 A alz—y)=—-40+1)(1-a)

These invariants let us deduce many properties about the system.

For instance, when a = 0, the invariant b = 0, v, = 2,v, = —2
can be deduced at right. The invariant at magnetic is the same as that
in right. The invariant at left is b = —1, v, = v, = —2. Also for

a = 0, these invariants suffice to show the unreachability of left. For
the case a # 0, the invariants let us conclude that the collision point
at the barrier for the bounce number b is y = 4b1%““, where a # 0. For
a = 1, the particle returns to the origin for every bounce. For a > 1,
the particle’s path crosses itself as shown in Figure 7. The radius of
the arc described by the particle tends to infinity as a approaches 0.
If the sign of a is reversed, the particle’s circular motion changes from
clockwise to anticlockwise.

6. Conclusion

We have presented a constraint-based technique for generating induc-
tive assertions of hybrid systems. One of the main features of this
technique is that it generates constraints without solving the differential
equations. These differential equations may be hard to solve symboli-
cally in practice, and may also involve exponentials lying outside the
chosen assertion domain. We also avoid the use of over-approximations
to these equations, relying instead on the conceptually simpler constant
value and constant scale consecutions.

The technique is not guaranteed to generate the exact solution to
the reachability problem, because of the relaxations made to maintain
tractability. It also requires a degree bound to be specified a priori,
the choice of which may be arbitrary. We are investigating strategies
for guessing optimal degree bounds. A more serious shortcoming is
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that, at present, the technique does not handle inequalities. Inequalities
frequently occur in the guards and location conditions, and not being
able to use them in the constraint generation process may weaken the
resulting invariants considerably. We are investigating strategies for
extending the results in this paper to generate inequality invariants of
hybrid systems.
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Appendix

In this appendix, we shall prove a few useful theorems mentioned in
other results along with the confluence of the Grébner basis reduction
on templates. The key idea is to reduce any failure of confluence on
templates to a failure of confluence on the instantiation of the template
under an appropriate environment.

Claim 1. Let f, f' be templates and o be any environment.
1. a(f +g) = a(f) + alg),
2. c-a(f)=alc- f), for any c € R.

Theorem 5 (Consistency). Let f -~ f' for templates f, f', over
template variables in A. Then, for an arbitrary A-environment o, a( f) 2,
alf") ora(f) = a(f'). Conversely, if for some o, o f) == h then there

is a f' such that h = o(f') and f 2> f'.
Proof. We have that f' = f — #(tmp for some term ¢ -t in f wherein
c(agp,...,an) is a linear expression. If a(c) = 0 then a(f) = «a(f’), or
else, if a(c) # 0 then we have that a(f’) = a(f) — E‘%C(';))p. In this case,
a(f) = a(f").

On the other hand, let a(f) L, h, for some template f and poly-

nomial p. Let a(c) - t be the term in a(f) that LT(p) divides. Hence,
the result of the reduction is,

a(c)t ct
u? =V )

Therefore, setting f/ = f— %p, we have a(f') = hand f == f/. O

h=a(f) - )
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Theorem 6 (Template Identity). Two templates fi, fo over tem-
plate variables A are not identical iff there is an environment o such

that a(f1) # a(f2).

Proof. Since fi1 # fo, we have that f; — fo is a non-zero template. Let
t be a term in f; — fo, with a non-zero coefficient expression c. Let «
be an environment s.t. a(c) # 0. Hence a(f; — f2) # 0. Thus we have

that a(f1) #Z a(f2).
The other direction is immediate from the definition of identical
templates. O

Theorem 7 (Normal Form Theorem). A template f is a normal
form under <, iff for each environment «, «o(f) is a normal form

G
under —.

Proof. To prove the forward implication, assume that f is a normal
form under ~<-. However assume that a(f) 5, h for some a. By the
reverse direction of the consistency theorem (Theorem 5), we have that

there exists f’ such that f <, f" and a(f") = h. This contradicts our
assumption that f is in normal form.
To prove the reverse implication, let us assume that f is not in

normal form. Then there is a reduction f <, f'. Let t be the term in
f that is replaced by the reduction and c¢ be its non-zero coefficient.

By Theorem 5, we have that for each environment o, a(f) = a(f’) or
a(f) <, a(f"). We find an environment « such that a(c) # 0. For
such an environment o(f) ER a(f"), since a(c) # 0. Thus «(f) is not

. G
in normal form w.r.t. —. O

Theorem 8 (Confluence of Templates). Let G be a Grobner basis

G G
and f be a template. Let f — f1 and f — fo, where f1, fo are normal
forms. We have that f1 = fo and hence G s confluent for templates.
Proof. Assuming otherwise, i.e., fi Z f2, we have by Theorem 6 that

a(f1) # a(fz2) for some a. Furthermore, Theorem 7 implies that o(f1)
and a(f2) are in normal forms. By the forward direction of Theorem 5,

G
we have that a(f) - «a(f;), ¢ = 1,2. Hence, by the confluence of the
Grobner basis reduction relation over real polynomials, we have that
a(f1) = a(f2), thus leading to a contradiction. O

Theorem 9 (Normal Forms for Templates). Let f be a template
over variables A. Let G be the Grobner basis of I = (G). Then, for any
A-environment «,

a(NFg(f)) = NFa(a(f))
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Proof. The proof is by induction over the length of the minimal se-
quence of reductions from f to f' = NF(f). For zero length derivations,
f = NF(f), we have that a(f) is a normal form. Hence, a(NF(f)) =

a(f) = NF(a(f)).
Assuming that the theorem holds for templates which have a length
G
n or less derivation to their normal forms, let f R f1 —n NE(f).

Hence, by Theorem 5, we have that a(f) = a(f1) or a(f) S, a(fi).
In either case NF(a(f1)) = NF(a(f)). Applying the induction to f1, we
have that a(NF(f1)) = NF(a(f1)). Hence

a(NF(f)) = a(NF(f1)) = NF(a(f1)) = NF(a(f))
O

Theorem 10 (Template Membership). Let f be a template and
G be a Grobner basis, such that I = ((Q)). Let f' = NFq(f). For each
environment o, of) € I iff a(f’) is identically zero.

Proof. Given f,G such that f' = NFg(f), for any environment «, we
have that a(f’) = a(NF(f)) = NF(a(f)). Hence, if a(f’) is identically
zero, then NF(a(f)) is identically zero, and therefore, a(f) € (G).

Let a(f) € (G), hence NFg(«(f)) is identically zero. However, o(f’) =
a(NF(f)) = NF(a(f)) = 0, and hence, a(NF(f)) = a(f’) is identically
ZETO0. O
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