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Abstract—We present a technique for learning control Lya-
punov (potential) functions, which are used in turn to synthesize
controllers for nonlinear dynamical systems. The learning frame-
work uses a demonstrator that implements a black-box, untrusted
strategy presumed to solve the problem of interest, a learner
that poses finitely many queries to the demonstrator to infer a
candidate function and a verifier that checks whether the current
candidate is a valid control Lyapunov function. The overall
learning framework is iterative, eliminating a set of candidates
on each iteration using the counterexamples discovered by the
verifier and the demonstrations over these counterexamples. We
prove its convergence using ellipsoidal approximation techniques
from convex optimization. We also implement this scheme using
nonlinear MPC controllers to serve as demonstrators for a
set of state and trajectory stabilization problems for nonlinear
dynamical systems. Our approach is able to synthesize relatively
simple polynomial control Lyapunov functions, and in that
process replace the MPC using a guaranteed and computationally
less expensive controller.

I. INTRODUCTION

We propose a novel learning from demonstration scheme for
inferring control Lyapunov functions (potential functions) for
stabilizing nonlinear dynamical systems to reference states/
trajectories. Control Lyapunov functions (CLFs) have wide
applications to motion planning problems in robotics. They
extend the classic notion of Lyapunov functions to systems
involving control inputs [3]. Finding a CLF also leads us to an
associated feedback control law that can be used to solve the
stabilization problem. Additionally, they can be extended for
feedback motion planning using extensions to time-varying or
sequential CLFs [5, 53]. Likewise, they have been investigated
in the robotics community in many forms including artificial
potential functions to solve path planning problems involving
obstacles [30].

However, synthesizing CLFs for nonlinear systems remains
a challenge [41, 42]. Standard approaches to finding CLFs
include the use of dynamic programming, wherein the value
function satisfies the conditions of a CLF [4], or using non-
convex bilinear matrix inequalities (BMI) [13]. BMIs can be
solved using alternating minimization methods [8, 51, 31].
However, these approaches often get stuck in local minima
and exhibit poor convergence guarantees [12].

In this article, we investigate the problem of learning a
CLF using a black-box demonstrator that can be queried with
a given system state, and responds by demonstrating control
inputs to stabilize the system starting from that state. However,
our framework uses just the control input at the query state.

Such a demonstrator can be realized using an expensive
nonlinear model predictive controller (MPC) that uses a local
optimization scheme, or even a human operator under certain
assumptions 1. The framework has a LEARNER which selects
a candidate CLF and a VERIFIER that tests whether this CLF
is valid. If the CLF is invalid, the VERIFIER returns a state at
which the current candidate fails. The LEARNER queries the
demonstrator to obtain a control input corresponding to this
state. It subsequently eliminates the current candidate along
with a set of related functions from further consideration. The
framework continues to exhaust the space of candidate CLFs
until no CLFs remain or a valid CLF is found in this process.

We prove the process can converge in finitely many steps
provided the LEARNER chooses the candidate function ap-
propriately at each step. We also provide efficient SDP-based
approximations to the verification problem that can be used to
drive the framework. Finally, we test this approach on a variety
of examples, by solving stabilization problems for nonlinear
dynamical systems. We show that our approach can success-
fully find simple CLFs using finite horizon nonlinear MPC
schemes with appropriately chosen cost functions to serve as
demonstrators. In these instances, the CLFs yield control laws
that are computationally inexpensive, and guaranteed against
the original dynamical model.

A. Illustrative Example: TORA System

Figure 1(a) shows a mechanical system consisting of a cart
attached to a wall using a spring. The position of the cart
x is controlled by an arm with a weight that can be moved
back and forth by applying a force u, as shown. The goal is to
stabilize the cart to x = 0, with its velocity, angle, and angular
velocity .

x = θ =
.
θ = 0. We refer the reader to the Jankovic

et al. [17] for a derivation of the dynamics shown below in
terms of state variables (x1, . . . , x4) and control input u1, after
a suitable change of basis transformation:

.
x1 = x2,

.
x2 = −x1 + ε sin(x3),

.
x3 = x4,

.
x4 = u1 . (1)

We approximate sin(x3) using a degree 3 approximation
which is quite accurate over the range x3 ∈ [−2, 2]. The
equilibrium x =

.
x = θ =

.
θ = 0 now corresponds to

x1 = x2 = x3 = x4 = 0. The state space is taken to be
S : [−1, 1] × [−1, 1] × [−2, 2] × [−1, 1], the control input
u1 ∈ [−1.5, 1.5].

1We do not handle noisy or erroneous demonstrations in this paper
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Fig. 1. Tora System. (a) A schematic diagram of the TORA system. (b) Execution traces of the system using MPC control (blue traces) and Lyapunov based
control (red traces) starting from same initial point.
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Fig. 2. Overview of the learning framework for learning a Lyapunov function.

MPC Scheme: A first approach to doing so uses a non-
linear model-predictive control (MPC) scheme using the time
horizon H = 30, time step τ = 1 and a simple cost function∑

t=[0,τ,...,H]

(
||x(t)||22 + ||u(t)||22

)
+H ||x(H)||22 .

Given the model in (1), such a control is implemented using a
first order numerical gradient descent method to minimize the
cost function over a finite time horizon. The convergence was
informally confirmed by observing hundreds of such simula-
tions from different initial conditions for the system. However,
the MPC scheme is expensive, requiring repeated solutions
to (constrained) nonlinear optimization problems in real-time.
Furthermore, the closed loop lacks formal guarantees despite
the high confidence gained from numerous simulations.
Learning a Control Lyapunov Function: The approach
in this paper uses the MPC scheme as a “DEMONSTRATOR”,
and attempts to learn a simpler control law through a control
Lyapunov function. The key idea depicted in Fig. 2 is to
pose queries to the MPC at finitely many witness states W =
{x1, . . . ,xj} and use the corresponding instantaneous control
inputs u1, . . . ,uj , respectively. The LEARNER attempts to find
a candidate function V (x) that is positive definite and which
decreases at each witness state xj through the control input uj .
This function is fed to the VERIFIER, which checks whether
V (x) is indeed a CLF, or discover a state xj+1 at which the
condition fails. This new state is added to the witness set and
the process is iterated.

The procedure described in this paper synthesizes the con-
trol Lyapunov function after 60 iterations of the learning loop
and synthesizes the CLF V (x) below:(

1.22 x22 + 0.31 x2x3 + 0.44 x23 − 0.28 x4x2 + 0.8 x4x3
+1.69 x24 + 0.069 x1x2 − 0.68 x1x3 − 1.85 x4x1 + 1.60 x21

)
This function yields a simple associated control law that

can be implemented and guarantees the stabilization of the
model (1). Figure 1(b) shows a closed loop trajectory of this
control law vs control law extracted by MPC. The advantage
of this law is that its calculation is much simpler, and fur-
thermore, the control is formally guaranteed, at least for the
model of the system.

Contributions: In this paper, we instantiate the learning
scheme sketched above, and show that under suitable assump-
tions terminates in finitely many iterations to either yield a
control Lyapunov function V (x) that is guaranteed to be valid,
or show that Lyapunov function of a specific form does not
exist. We demonstrate this scheme and its scalability on several
interesting vehicle dynamics taken from the literature to solve
stabilization to state and trajectory stabilization problems.

II. BACKGROUND

In this section, we briefly describe control Lyapunov (poten-
tial) functions. A state feedback control system Ψ(X,U,P, C)
consists of a plant P and a controller C over state space
X ⊆ Rn and input space U ⊆ Rm. The plant P has a state
x ∈ X and input u ∈ U . The vector field for the plant is
defined by a smooth function f : X × U → Rn. Throughout
the paper, we consider control affine systems that are possibly
nonlinear in x, but affine in u, of the form

.
x = f(x,u) = f0(x) +

m∑
i=1

fi(x)ui , (2)

where fi : X → Rn. The controller C measures the state of the
plant (x ∈ X) and provides feedback u ∈ U . The controller
is defined by a continuous feedback function K : X → U .



ẋ = f(x,u)

xu

K

For a given feedback function K, the execution trace of the
system Ψ is defined as x(.) : R+ → X , which maps time to
state. Formally, given x(0) = x0, x(.) is defined according
to .

x(t) = f0(x(t)) +
∑m
i=1 fi(x(t))(K(x(t)))i, where .

x(.) is
the right derivative of x(.).

In this article, we study stabilization of nonlinear systems
using Lyapunov functions (or potential function) inside a
compact set S. More precisely, we consider a compact and
connected set S ⊂ X . Without loss of generality, the origin 0
is the state we seek to stabilize to. Furthermore, 0 ∈ int(S).
We restrict the set S to be a basic semi-algebraic set defined by
a conjunction of polynomial inequalities. Likewise, the control
inputs U are restricted to a polytope.

Our approach relies on control Lyapunov functions. A
control Lyapunov function (CLF) [3] V , is a continuous
function that respects the following conditions:

V (0) = 0
(∀x ∈ S \ {0}) V (x) > 0

(∀x ∈ S \ {0}) (∃u ∈ U) ∇V · f(x,u) < 0 .
(3)

The last condition ensures that the value of V can be decreased
everywhere by choosing a proper feedback u. Let

V onβ = {x|V (x) on β},where on∈ {=,≤, <,≥, >} .
Let β∗ be maximum β s.t. V ≤β ⊆ S. Once a CLF is obtained,
it guarantees that the system initialized to any state belonging
to V <β

∗
, can be stabilized to the origin (Fig. 3). A control

Lyapunov function guarantees that there is a control strategy,
which stabilizes the system.

Theorem 1: Given a control affine system Ψ, where U :
Rm and a polynomial control Lyapunov function V satisfying
Eq. (3), there is a feedback function K for which if x0 ∈
V <β

∗
, then:

1) (∀t ≥ 0) x(t) ∈ S
2) (∀ε > 0) (∃T ≥ 0) ‖x(T )− 0‖ < ε .
Given, a control Lyapunov function, it is possible to then

obtain a feedback law in a closed form that stabilizes the sys-
tem. Sontag [49] provides a method for extracting a continuous
feedback function K for control affine systems from a control
Lyapunov function. This can be extended to systems with
constraints on the control inputs [33]. Also, feedback synthesis
for periodic time/event triggered switching is possible [43, 7].

We have thus far considered the problem of stabilizing to a
fixed equilibrium state. However, given this primitive, we can
extend the CLF approach to related problems of (a) Reach-
while-stay: reaching a given target set of states T starting
from an initial set I , while staying inside a safe set S using
Lyapunov-barrier functions [39, 44]; (b) Trajectory stabiliza-
tion: stabilizing to a trajectory x(t) rather than to a fixed
state using time-varying Lyapunov functions; or similarly, (c)
Feedback motion planning which addresses the robustness of

S

Fig. 3. Local Control Lyapunov Function (CLF): Level-sets of a CLF V are
shown using the red lines. For each state (blue dot), the vector field f(x,u)
for u = K(x) is the blue arrow, and it points to a direction which decreases
V . The β∗-level set of V (V =β∗

) is shown as a solid red line.

a plan using funnels [5, 53] ; (d) Obstacles: problems that
involve reaching while avoiding an obstacle region in the state-
space using artificial potential functions [30]. We will focus
our exposition on the basic formulation for stability (Eq. (3))
while demonstrating extensions to some of other applications
mentioned above through numerical examples.

III. ALGORITHMIC LEARNING FRAMEWORK

Finding CLFs is known to be a hard problem, requiring the
solution to BMIs [51] or hard polynomial constraints[43]. A
standard approach to discovering such functions is to choose
a set of basis functions g1, . . . , gr and search of a function of
the form

Vc(x) =

r∑
j=1

cjgj(x) , (4)

where c ∈ Rr is vector of unknowns. One possible choice
of basis functions involves monomials gj(x) : xαj wherein
|αj |1 ≤ DL for some degree bound DL for the learning
concept (CLF). Then, the problem is reduced to finding c s.t.
Vc satisfies Eq. (3).

We now present the algorithmic learning framework. Let
us fix a control affine system P over a state-space X , control
inputs U given by (2). Let x∗ = 0 be the equilibrium we wish
to stabilize the system to, while remaining inside S ⊂ X .

Next, we assume a DEMONSTRATOR as a function D :
S 7→ U that given a state x ∈ S, provides us an appropriate
feedback D(x) ∈ U for the state x, such that D is presumed
to be a valid function that stabilizes the system.

Remark 1: Our definition of a demonstrator is general
enough to allow offline MPC, sample based methods [27, 23],
human operator demonstrations [21], or even demonstrations
that rely on opaque models such as neural networks.

Also, we assume that the demonstrator is presumed correct.
However, the approach can work even if the demonstrator may
fail on some input states. Finally, a faulty demonstrator may,
at the worst, lead our technique to fail without finding a CLF.
In particular, such a demonstrator will not cause our technique
to synthesize an incorrect CLF.

Definition 1 (Problem Statement): The CLF learning prob-
lem has the following inputs:

1) A dynamical system P in the form (2),



L : findCandidate(Wj)

V : verify(Vj)

D : D(xj+1)

No Candidate

Correct

Vj

xj+1

uj+1
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Fig. 4. Flowchart for the algorithmic learning framework. L: Learner, V:
Verifier and D: Demonstrator.

2) A safe set S,
3) A “black-box” demonstrator function D : S 7→ U that

presumably stabilizes the system, and
4) A candidate space for CLFs of the form

∑r
j=1 cjgj(x)

given by basis functions g(x) : 〈g1(x), . . . , gr(x)〉
and a compact set C 3 (c1, . . . , cr). We represent the
coefficients (c1, . . . , cr) collectively as c.

The output can be SUCCESS: a function Vc(x) : ct · g(x)
that is a CLF; or FAILURE: no function could be discovered
by our procedure.

A. Algorithmic Learning Framework

The algorithmic learning framework is shown in Fig. 4, and
implements two modules (a) LEARNER and (b) VERIFIER that
interact with each other and the demonstrator. The framework
works iteratively until termination. At the jth iteration, the
learner maintains a (witness) set

Wj : {(x1,u1), . . . , (xj ,uj)} ⊆ S × U .

Wj is a finite set of pairs of states xi and corresponding
demonstrated feedback ui. Corresponding to Wj , Cj ⊆ C is
defined as set of candidate coefficients for functions Vc(x) :
ctg(x) with c ∈ Cj . Formally, Cj is a set of all candidates c
s.t. Vc satisfies the CLF condition (3) for every point in the
finite set Wj :

Cj :

c ∈ C

∣∣∣∣∣∣
∧

(xi,ui)∈Wj

Vc(xi) > 0 ∧
∇Vc · f(xi,ui) < 0

 . (5)

The flowchart for the overall procedure is shown in Fig. 4.
To begin with, W0 : ∅ and C0 : C. Each iteration works as

follows:
1) The learner samples a value cj ∈ Cj and outputs the

corresponding function Vj(x) : ctj · g(x). If Cj = ∅ then
no sample is found and the algorithm fails.

2) The verifier checks if Vj is a CLF by checking the
conditions in (3). If Vj satisfies the conditions, then the
algorithm stops to declare success. Otherwise the verifier
selects a (counterexample) state xj+1 ∈ S for which the

CLF condition fails. Assume without loss of generality
that xj+1 6= 0.

3) Failing verification, the demonstrator is called to choose
a suitable control uj+1 corresponding to xj+1.

4) The new set Wj+1 := Wj∪{(xj+1,uj+1)}. Furthermore,

Cj+1 : Cj ∩
{
c | Vc(xj+1) > 0 ∧
∇Vc · f(xj+1,uj+1) < 0

}
. (6)

We now prove some core properties that guarantee the
correctness of the proposed scheme. We assume that the
learner and the verifier are implemented without any approx-
imations/relaxations (as will be subsequently presented).

Theorem 2: The algorithmic learning framework as de-
scribed above has the following property:

1) cj 6∈ Cj+1. I.e, the candidate found at the jth step is
eliminated from further consideration.

2) If the algorithm succeeds at iteration j, then the output
function Vj(x) is a valid CLF for stabilization.

3) The algorithm declares failure at iteration j if and only
if no linear combination of the basis functions is a CLF
compatible with the demonstrator.

Proofs are available in [45].
Inverse results [38] suggest polynomial basis for Lyapunov

functions are expressive enough for verification of exponen-
tially stable, smooth nonlinear systems. This, justifies using
polynomial basis for CLF.

Lemma 3.1: Assuming (i) the demonstrator function D is
smooth, (ii) the closed loop system with controller D is
exponentially stable, then there exists a polynomial CLF,
compatible with D.
Lemma 3.1 guarantees success of the learning procedure if
the set of basis functions is rich enough. We now present
implementations of each of the modules involved, starting with
the learner.

B. Learner: Finding a Candidate

The FINDCANDIDATE function simply samples a point from
the set Cj defined in Eq. (5). Note that Vc(xj) : ct · g(xj) is
linear in c and therefore ∇Vc.f(xj ,uj) is linear in c as well.
The initial space of all candidates C is assumed to be a hyper-
rectangular open box. At each iteration, the candidate cj ∈ Cj
is chosen. Suppose the algorithm does not terminate at this
iteration. According to Eq. (6), the new set Cj+1 is obtained
as Cj+1 : Cj ∩ Hj , wherein Hj is defined by two linear
inequalities Hj1 ∧Hj2 (Hj1 : atj1c < bj1, Hj2 : atj2c < bj2).
Let Cj represent the topological closure of the set Cj .

Lemma 3.2: For each j ≥ 0, Cj is a convex polyhedron.
Thus the problem of implementing findCandidate is that of

checking emptiness of a polyhedron with some strict inequality
constraints. This is readily solved using a slight modification
of standard linear programming algorithms using infinitesimals
for strict inequalities.

Lemma 3.3: There exists a halfspace Hjk : atjkcj ≥ bjk
that passes through cj , and Cj+1 ⊆ Cj ∩Hjk.
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Fig. 5. Original candidate region Cj (green) at the start of the jth iteration,
the candidate cj , and the new region Cj+1 (hatched region with blue lines).
Also, aj2cj > bj2 (Hj2 passes through cj )

Choosing a Candidate cj: The choice of cj ∈ Cj
governs the overall convergence of the algorithm. Figure 5
demonstrates the importance of this choice by showing the
candidate cj , the hyperplane Hjk and the new region Cj+1.

We wish to choose cj s.t. VOL (Cj+1) ≤ αVOL (Cj), for a
fixed α, independent of Hjk.

Theorem 3 (Tarasov et al.[52]): Let cj be chosen as the
center of the maximum volume ellipsoid (MVE) of Cj . Then,

VOL (Cj+1) ≤
(

1− 1

r

)
VOL (Cj) .

This leads us to a scheme that guarantees termination of
the overall iterative scheme in finitely many steps under a
robustness assumption.

Definition 2 (Robust Candidate): A candidate c ∈ C is δ-
robust (δ > 0), iff for each ĉ ∈ Bδ(c), Vĉ : ĉt ·g(x) is a CLF,
where Bδ(c) is a ball of radius δ around c.

Let VOL(C) < γ∆r for γ > 0 the volume of the unit r-ball,
and ∆ > 0. Furthermore, the procedure terminates whenever
VOL(Cj) < γδr following the robustness assumption above.

Theorem 4: If at each step cj is chosen as the center of the
maximum volume ellipsoid in Cj , the learning loop terminates
in at most

r(log(∆)− log(δ))

− log
(
1− 1

r

) = O(r2) iterations .

The maximum volume ellipsoid itself can be computed by
solving a convex optimization problem[55].

C. Implementing the Verifier

The verifier given a candidate Vj(x) : ctj · g(x) checks the
CLF conditions in Eq. (3), split into two separate checks:
(A) Check if Vj(x) is a positive definite polynomial over x ∈
S. Assuming that g(0) = 0 for the basis, this reduces to:

(∃ x ∈ S \ {0}) Vj(x) ≤ 0 . (7)

(B) Check if the Lie derivative of Vj can be made negative
for each x ∈ S by a choice u ∈ U :

(∃x ∈ S \ {0}) (∀u ∈ U) (∇Vj) · f(x,u) ≥ 0 . (8)

This problem seems harder due to the presence of a quantifier
alternation. Let U be a polyhedral set defined by U : {u ∈
Rm | Au ≥ b}. Recall that f(x,u) is control affine function
f0(x) +

∑m
i=1 fi(x)ui.

Lemma 3.4: Eq. (8) holds for some x ∈ S iff

(∃ x ∈ S \ {0}, λ) λ ≥ 0, λtb ≥ −∇Vj .f0(x)
Atiλ = ∇Vj .fi(x)(i ∈ {1 . . .m}). (9)

In other words, assuming that the dynamics and chosen
bases are polynomials, the verification problem reduces to
checking if a given semi-algebraic set defined by polynomial
inequalities has a solution.

Failing the polynomial assumption, the problem of verifi-
cation is in general undecidable. However, it can be approxi-
mated by techniques such as δ-decision procedures proposed
by Gao et al [10]. Solvers like dReal can thus be directly
used for the verification problem. While dReal does a good
job in adaptive space decomposition, in our experience, they
do not scale reliably. Nevertheless, these solvers allow us to
conveniently implement a verifier for small but hard problems
involving rational and trigonometric functions.

The verification problem for polynomial systems and poly-
nomial CLFs through a polynomial basis function g(x) is
NP-hard, in general. Exact approaches using semi-algebraic
geometry and the branch-and-bound solvers (including the
dReal approach cited above) can tackle this problem precisely.
However, scalability is still an issue.

We sketch a relaxation using SDP solvers [35]. Let us
fix a basis of monomial terms of degree up to DV , mt :
[1 x1 . . . xDV ], wherein DV is chosen as at least half of the
maximum degree in x among all monomials in gj(x) and∇gj ·
f(x): DV ≥ 1

2 max
(⋃

j ({deg(gj)} ∪ {deg(∇gj · f)})
)
. Let

Z(x) : mmt. Thus, each polynomial of degree up to
2DV may now be written as a trace inner product p(x) =
〈P,Z(x)〉 = trace(PZ(x)), wherein the matrix P is constant.

Let S be the semi-algebraic set defined as

S : {x ∈ Rn | r1(x) ≤ 0, . . . , rk(x) ≤ 0} ,
for polynomials r1, . . . , rk. The constraint in (7) is equivalent
to solving the following optimization problem over x

maxx 〈I, Z(x)〉
s.t. 〈Ri, Z(x)〉 ≤ 0, i ∈ {1, . . . , k}

〈Vj , Z(x)〉 ≤ 0 ,
(10)

where Vj(x) (ri(x)) is written as 〈Vj , Z(x)〉 (〈Ri, Z(x)〉). and
those in (9) are written as

maxx,λ 〈I, Z(x)〉
s.t. 〈Ri, Z(x)〉 ≤ 0, i ∈ {1, . . . , k}

〈Fji, Z(x)〉 = Atiλ, i ∈ {1, . . . ,m}
〈−Fj0, Z(x)〉 ≤ btλ, λ ≥ 0 ,

(11)

wherein the components ∇Vj · fi(x) defining the Lie deriva-
tives of Vj are now written in terms of Z(x) as 〈Fji, Z(x)〉.

The SDP relaxation is used to solve these problems and
provide an upper bound of the solution [14]. The result of the
relaxation treats Z(x) as a matrix variable Z that will satisfy
Z � 0. Notice that each optimization problem is feasible
simply by setting Z and λ to be zero. However, if the optimal
solution of both problems is Z = 0 in the SDP relaxation,
then we will conclude that the given candidate is a CLF.



Lemma 3.5: If the relaxed optimization problems in
Eqs. (10) and (11) yield a zero solution, then the given
candidate Vj(x) is in fact a CLF.

However, the converse is not true. It is possible for Z � 0
to be optimal for either relaxed condition, but no x ∈ Rn
corresponds to the solution. This happens because the relax-
ation drops two key constraints to convexify the conditions:
(1) Z has to be a rank one matrix written as Z : mmt and
(2) there is a x ∈ Rn such that m is the matrix of monomials
corresponding to x.

To deal with this, we adapt our learning framework to work
with witnesses Wj : {(Zi,ui)}ji=1 replacing states xi by
matrices Zi.

1) Each basis function gj(x) in g is now written instead as
〈Gj , Z〉. The candidates are therefore,

∑r
j=1 cj 〈Gj , Z〉.

Likewise, we write the components of its Lie derivative
∇gj · fi in terms of Z.

2) The learner maintains the set W as {(Zj ,uj)}, wherein
Zj is the feasible solution returned by the SDP solver
while solving Eqs. (11) and (10). In other words, the CLF
conditions are, in fact, taken to be the relaxed conditions.

3) We use a suitable projection operator π mapping each Z
to a state x : π(Z), such that the demonstrator receives
x. In practice, since the vector of monomials used to
define Z from x includes the terms 1, x1, . . . , xn, the
projection operator simply selects a few entries from Z
corresponding to the variables. Other more sophisticated
projections are also possible.

The relaxed framework thus lifts counterexamples to work
over matrices Zj . However, the candidate space begins with
C and is refined each step as before. I.e, the relaxed frame-
work continues to satisfy Lemmas 3.2, 3.3, Theorem 4 and
Theorem 2 with the definition of (control) Lyapunov function
changed to relaxed conditions.

IV. EXPERIMENTS

In this section, we describe numerical results on some
example benchmark systems. The algorithmic framework is
implemented using quadratic template forms for the CLFs
with the tool Globoptipoly used to implement the verifier [13].
The demonstrator is implemented using a nonlinear MPC
implemented using a gradient descent algorithm. For each
benchmark, we tuned the time horizon, discretization step and
the cost function until the control objectives were satisfied by
the MPC over hundreds of simulations starting from randomly
selected initial states.

Most of the benchmarks consider a reach-while-stay prob-
lem, wherein the goal is to reach target set T , starting initial
set I , while remaining in the safe set S. We also illustrate
an example involving a trajectory stabilization problem. All
the computations are performed on a Mac Book Pro with 2.9
GHz Intel Core i7 processor and 16GB of RAM. The reported
CLFs are rounded to 2 decimal points. The summary of results
is provided in Table. I.
Bicycle Model: This system is two-wheeled mobile robot
modeled with five states [x, y, v, θ, γ] and two control in-

TABLE I
RESULTS ON THE NUMERICAL EXAMPLES. n: # VARIABLES, m: #
CONTROL INPUTS, τ : MPC TIME STEP, H: MPC TIME HORIZON,
DV : SDP RELAXATION DEGREE BOUND FOR THE VERIFIER, #ITR:
# OF ITERATIONS, TIME: TOTAL COMPUTATION TIME (MINUTES).

System Name n m τ H DV # Itr Time
Tora 4 1 1 30 4 53 30
Bicycle 4 2 0.4 8 3 51 9
Bicycle × 2 8 4 0.4 8 3 536 303
Inverted Pendulum 4 1 0.04 2 5 85 31
Forward Flight 4 2 0.4 16 5 32 26
Hover Mode 6 2 0.4 16 4 213 163
Unicycle (Seg.1) 3+1* 2 0.1 2 4 41 15
Unicycle (Seg.2) 3+1* 2 0.1 3 4 31 7

* +1 refers to the time variable.

v
�

y

✓

Fig. 6. A Schematic View of the Bicycle Model for Stabilizing to the Road.

puts [9]. The goal is to stabilize the car to a target velocity
v∗ = 5, as shown in Fig. 6. We drop the variable x (since it
is immaterial to our stabilization problem) and obtain a model
with four state variables:

.
y.
v.
θ.
σ

 =


v sin(θ)
u1
vσ
u2

 ,
U : [−10, 10]× [−10, 10]
S : [−2, 2]× [3, 7]× [−1, 1]2

I : B0.4(0)
T : B0.1(0) ,

where σ = tan(γ) (see Fig. 6). sin function is approximated
with a polynomial of degree 1. The method finds the following
CLF:

V = + 0.42y2 + 0.59yθ + 2.57θ2 + 0.79yσ + 4.64σθ

+ 4.06σ2 − 0.38vy + 1.46vθ + 1.18vσ + 2.39v2 .

Inverted Pendulum on a Cart: This example has appli-
cations in balancing two-wheeled robots [6] (cf. [1] for list
of such robots). The system has four state variables [x,

.
x, θ,

.
θ]

and one input u. The dynamics, after partial linearization, have
the following form [24]:

[ ..
x..
θ

]
=

[
4u+ 4(M+m)g tan(θ)−3mg sin(θ) cos(θ)

4(M+m)−3m cos2(θ)
−3u cos(θ)

l

]
,

where m = 0.21, M = 0.815, g = 9.8 and l = 0.305.
The trigonometric and rational functions are approximated
with polynomials of degree 3. The sets are S : [−1, 1]4, U :
[−20, 20], I : B0.2(x), T : B0.1(x). We obtain the following



CLF:

V = + 11.64
.
θ2 + 45.93

.
θθ + 85.47θ2 + 12.15x

.
θ + 36.57xθ

+ 6.44x2 + 15.07
.
θ

.
x+ 33.06

.
xθ + 8.98

.
xx+ 6.09x2 .

Forward Flight for Caltech Ducted Fan: The Caltech
ducted fan models the aerodynamics of a single wing of a
thrust vectored, fixed wing aircraft [16]. This problem is to
design forward flight control in which the angle of attack needs
to be changed. The model of the system is carefully calibrated
through wind tunnel experiments. The system has 4 states
[v, γ, θ, q] and two control inputs: u and δu. The dynamics
are:

m
.
v

mv
.
γ.

θ
J

.
q

 =


−D(v, α)−W sin(γ) + u cos(α+ δu)
L(v, α)−W cos(γ) + u sin(α+ δu)
q
M(v, α)− ulT sin(δu)

 ,
where α = θ − γ, and D, L, and M are polynomials in v
and α. For full list of parameters, see [16]. The goal is to
reach x∗ : [6, 0, 0.1771, 0] as the steady state. We perform a
translation so that the x∗ is the origin in the new coordinate
system.

U : [0, 13.5]× [−0.45, 0.45]

S : [3, 9]× [−0.75, 0.75]× [−0.75, 0.75]× [−2, 2]]

I : {[v, γ, θ, q]|(4v)2 + (10γ)2 + (10θ)2 + (10q)2 < 42}
T : {[v, γ, θ, q]|(4v)2 + (10γ)2 + (10θ)2 + (10q)2 < 0.52} .

First, we approximate v−1, sin and cos with polynomials
of degree 1, 3 and 3 respectively, to get polynomial dynamics.
However, the system is not affine in control. We replace u and
δu input variables with u1 = u sin(δu) and u2 = u cos(δu)
and U is under-approximated with a polytope. These changes
yield a polynomial control affine dynamics, which fits the
description of our model. The procedure finds the following
CLF:

V = + 3.21q2 + 2.18qθ + 3.90θ2 + 0.40qv − 0.15vθ

+ 0.56v2 + 1.78qγ − 1.42γθ − 0.11vγ + 3.90γ2 .

Hover Mode for Caltech Ducted Fan: This problem is
again taken from [16]. The goal is to keep the ducted fan in a
hover mode. The system has 6 variables x, y, θ, .

x, .
y,

.
θ and

two control inputs u1, u2. The dynamics are m
..
x

m
..
y

J
..
θ

 =

 −dc .
x+ u1 cos(θ)− u2 sin(θ)

−dc .
y + u2 cos(θ) + u1 sin(θ)−mg

ru1

 ,
where m = 11.2, g = 0.28, J = 0.0462, r = 0.156 and
dc = 0.1. The sets are:

S : [−1, 1]× [−1, 1]× [−0.7, 0.7]× [−1, 1]3

U : [−10, 10]× [0, 10], I : B0.25(0), T : B0.05(0) .

x

y
S

T
segment 2segment 1

Fig. 7. Trajectory Tracking using Time-varying CLF - Projected on x-y
plane. The reference trajectory is shown with the red line, consists of two
segments. Starting from S, the state remains in the funnel (blue region) until
it reaches T . Boundary of each smaller blue region shows a level-set of V
for a specific time.

The sin and cos are approximated with polynomials of
degree 2 and the procedure finds a quadratic CLF:

V =1.63
.
θ2 − 1.09

.
θ

.
y + 15.00

.
y2 − 0.02

.
θy + 1.54y

.
y + 1.25y2

+ 1.74θ
.
θ + 0.79

.
yθ + 0.08yθ + 4.86θ2 − 4.93

.
θ

.
x

+ 0.57
.
x

.
y + 0.05y

.
x− 8.26

.
xθ + 12.58

.
x2 − 0.44

.
θx

− 0.38
.
yx− 0.20yx− 4.27xθ + 3.86x

.
x+ 2.14x2 .

Unicycle: Now, we consider a simpler system, namely
the unicycle model [28], which is known not to have a
polynomial CLF. However, for trajectory tracking problem,
one can provide a time varying CLF [53] for a finite time
horizon control (using funnels). The unicycle model has the
dynamics: .

x1 = u1,
.
x2 = u2,

.
x3 = x1u2 − x2u1.

We consider a planning problem: starting near [π2 ,−1,−1],
the goal is to reach near [0, 2, 0], and by near we mean
within distance 1. In the first step, a feasible trajectory x(t) is
generated as shown in Fig. 7. Then x(t) is approximated with
piecewise polynomials. More precisely, trajectory consists of
two segments. The first segment brings the car to the origin
and the second segment moves the car to the destination. Each
segment is approximated using polynomials in t with degree
up to 3. The time varying CLF V is a function of both the
state x and time t. Choosing a template for V , our method is
applied to this problem and we are able to find a strategy to
implement the plan with guarantees. A level-set of the funnel
(CLF) is shown in Fig. 7.

V. RELATED WORK

Synthesis of Lyapunov Functions from Data: The problem
of synthesizing Lyapunov functions for a control system by
observing the states of the system in simulation has been
investigated in the past by Topcu et al to learn Lyapunov
functions along with the resulting basin of attraction [54].
Whereas the original problem is bilinear, the use of simulation
data makes it easier to postulate states that belong to the region
of attraction and therefore find Lyapunov functions that belong
to this region by solving LMIs in each case. The application
of this idea to larger black box systems is demonstrated
by Kapinski et al [20]. Our approach focuses on controller
synthesis through learning a control Lyapunov function in a



bid to replace an existing controller. In doing so, we do not
attempt to prove that the original demonstrator is necessarily
correct but find a control Lyapunov function by assuming that
the demonstrator is able to stabilize the system for the initial
conditions we query on. Another important contribution lies in
our analysis of the convergence of the learning with a bound
on the maximum number of queries needed. In fact, these
results can also be applied to the Lyapunov function synthesis
approaches mentioned earlier.

Counter-Example Guided Inductive Synthesis (CEGIS):
Our approach of alternating between a learning module that
proposes a candidate and a verification module that checks
the proposed candidate is identical to the CEGIS framework
originally proposed by Solar-Lezama et al. [48, 47]. As such,
the CEGIS approach does not include a demonstrator that
can be queried. The extension of this approach Oracle-guided
inductive synthesis [18], generalizes CEGIS using an oracle
that serves a similar role as a demonstrator in this paper. Jha et
al. prove bounds on the number of queries for discrete concept
classes using results on exact concept learning in discrete
spaces [11].

The CEGIS procedure has been used for the synthesis
of CLFs recently by authors [43, 44], combining it with
SDP solvers for verifying CLFs and a robust version for
switched systems. The key difference here lies in the use of
the demonstrator module that simplifies the learning module.
In the absence of a demonstrator module, the problem of
finding a candidate reduces to solving linear constraints with
disjunctions, an NP-hard problem [44]. Likewise, the conver-
gence results are quite weak [43]. In the setting of this paper,
however, the use of a MPC scheme as a demonstrator allows us
to use faster LP solvers and provide convergence guarantees.

Learning from Demonstration: The idea of learning from
demonstration has had a long history in robotics [2]. The
overall framework uses a demonstrator that can in fact be
a human operator [21] or a complex MPC-based control
law [19, 57, 58, 34]. The approaches differ on the nature of
the interaction between the learner and the demonstrator; as
well as how the policy is inferred. Our approach stands out in
many ways: (a) We represent our policies by CLFs which are
polynomial. On one hand, these are much less powerful than
approaches that use neural networks [57, 19], for instance.
However, the advantage lies in our ability to solve verification
problems to ensure that the resulting policy learned through
the CLF is correct with respect to the underlying dynamical
model. (b) Our framework is adversarial. The choice of the
counterexample to query the demonstrator comes from a failed
attempt to validate the current candidate. (c) Finally, we use
simple yet powerful ideas from convex optimization to place
bounds on the number of queries, paralleling some results on
concept learning in discrete spaces [11].

Control Lyapunov functions were originally introduced by
Artstein and the construction of a feedback law given a CLF
was first given by Sontag [3, 49]. As such, the problem of
learning CLFs is well known to be hard, involving bilinear

matrix inequalities (BMIs) [51]. An equivalent approach in-
volves solving bilinear problems simultaneously for a control
law and a Lyapunov function certifying it [8, 31]. BMIs
are well known to be NP-hard, and hard to solve for a
feasible solution [13]. The common approach is to perform an
alternating minimization by fixing one set of bilinear variables
while minimizing in the other. Such an approach has poor
guarantees in practice, often “getting stuck” on a saddle point
that does not allow the technique to make progress in finding
a feasible solution. To combat this, Majumdar et al. (ibid)
use LQR controllers and their associated Lyapunov functions
for the linearization of the dynamics as good initial seed
solutions [31]. In contrast, our approach simply assumes a
demonstrator in the form of a MPC controller that can be used
to resolve the bilinearity. Furthermore, our approach does not
encounter the local saddle point problem.

The use of the learning framework with a demonstrator dis-
tinguishes the approach in this paper from recently developed
ideas based on formal synthesis [56, 29, 46, 36, 37, 22, 50,
43, 44, 15]. These techniques focus on a given dynamical
system and a specification of the correctness in temporal logic
to solve the problem of controller design to ensure that the
resulting trajectories of the closed loop satisfy the temporal
specifications. Majority of the approaches are based on dis-
cretization of the state-space into cells to compute a discrete
abstraction of the overall system [56, 29, 46, 36, 37, 22]. A
smaller set of approaches synthesize Lyapunov-like functions
by solving nonlinear constraints either through branch-and-
bound techniques or by sum-of-square (SOS) relaxation tech-
niques [50, 43, 44].

In this paper, we use the Lyapunov function approach to
synthesizing controllers. An alternative is to use occupation
measures [42, 40, 26, 32]. These methods formulate an infinite
dimensional problem to maximize the region of attraction
and obtain a corresponding control law. This is relaxed to
a sequence of finite dimensional SDPs [25]. Note however
that the approach computes an over approximation of the
finite time backward reachable set from the target and a
corresponding control. Our framework here instead seeks an
under approximation that yields a guaranteed controller.

VI. CONCLUSION AND FUTURE WORK

We have proposed an algorithmic learning framework for
synthesizing CLFs using a demonstrator and demonstrated our
approach on challenging numerical examples with 4-8 state
variables. As future work, we are considering many directions
including the extensions to noisy/erroneous demonstrations,
using output feedback (rather than full state feedback) synthe-
sis and allowing disturbances in our framework. We are also
working on integrating our control framework with RRT-based
path planning and implementing it on board robotic vehicles.
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monte-carlo planning. In European conference on ma-
chine learning, pages 282–293. Springer, 2006.

[24] Maria Landry, Sue Ann Campbell, Kirsten Morris, and
Cesar O Aguilar. Dynamics of an inverted pendulum
with delayed feedback control. SIAM Journal on Applied
Dynamical Systems, 4(2):333–351, 2005.

[25] Jean B Lasserre. Global optimization with polynomials
and the problem of moments. SIAM Journal on Opti-
mization, 11(3):796–817, 2001.

[26] Jean B Lasserre, Didier Henrion, Christophe Prieur,
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