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ABSTRACT
Randomized testing is a popular approach for checking properties
of large embedded system designs. It is well known that a uni-
form random choice of test inputs is often sub-optimal. Ideally, the
choice of inputs has to be guided by choosing the right input dis-
tributions in order to expose corner-case violations. However, this
is also known to be a hard problem, in practice. In this paper, we
present an application of the cross-entropy method for adaptively
choosing input distributions for falsifying temporal logic proper-
ties of hybrid systems. We present various choices for representing
input distribution families for the cross-entropy method, ranging
from a complete partitioning of the input space into cells to a fac-
tored distribution of the input using graphical models.

Finally, we experimentally compare the falsification approach
using the cross-entropy method to other stochastic and heuristic
optimization techniques implemented inside the tool S-Taliro over
a set of benchmark systems. The performance of the cross entropy
method is quite promising. We find that sampling inputs using the
cross-entropy method guided by trace robustness can discover vio-
lations faster, and more consistently than the other competing meth-
ods considered.

Categories and Subject Descriptors
G.3 [Mathematics of Computing]: Probability and Statistics—
Probabilistic algorithms (including Monte Carlo)

General Terms
Verification

Keywords
Hybrid Systems, Testing, Robustness, Metric Temporal Logic, Monte-
Carlo Simulation, Cross-Entropy Method.

1. INTRODUCTION
In this paper, we propose the use of the cross-entropy method

[33, 32] for falsifying Metric Temporal Logic (MTL) properties
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complex hybrid systems. Testing through the random sampling of
input vectors is a simple, yet popular approach for checking hybrid
system models that are too complex to be verified using more rig-
orous formal verification techniques. However, the algorithm used
for choosing input vectors is crucial for the success of randomized
testing. Often, the choice of inputs needs to incorporate detailed
knowledge about the system in the form of appropriate input distri-
butions that are easy to sample from, while also providing a bias
towards input choices exhibiting property violations. Such user
guidance is often impractical, since it requires a detailed knowl-
edge of the system’s internals along with insights as to how this
knowledge may be incorporated into an appropriate input distribu-
tion. Secondly, distributions that are ideal for exposing property
violations tend to be quite hard to sample from, in practice.

In this paper, we employ a versatile approach to sampling known
as the Cross-Entropy Method [6, 32, 33], guided by the notion of
robustness of execution traces of continuous and hybrid systems
w.r.t MTL properties [17, 18, 28], in order to solve the problem of
generating test inputs that falsify a given set of MTL properties.

The robustness semantics of MTL associates a real value with
each trajectory. Formally, this value denotes the radius of a cylin-
der around the trajectory (defined using an appropriate metric over
states), such that all trajectories inside this cylinder have an identi-
cal outcome for the given property as the given reference trajectory
(Cf. Figure 2). As a result, the robustness value of a trajectory pro-
vides a mathematically sound notion of distance that can be used to
express how “far away” a given trace is from violating a property.
The notion of robustness of MTL formulae can, in turn, be used to
associate an ideal probability distribution that samples each input
according to the robustness of the resulting trajectory. However,
this distribution is often complex and not known in a closed form.

In this work, the cross-entropy (CE) method is used sample from
this complex distribution. The CE method is, fundamentally, a
technique for sampling from a complex probability distribution that
is not necessarily known in a closed form. The applications of this
method include rare-event simulation, variance reduction for esti-
mation problems and stochastic optimization [33]. The CE method
seeks to approximate the target distribution by choosing amongst
a family of distributions such as piecewise uniform distributions
or Gaussian distributions, that are “easy” to sample from [32, 6].
The technique iteratively searches for a specific distribution from
this family that is “as close as possible” to the intended distribu-
tion. Here closeness of distributions is measured using the stan-
dard Kullback-Liebler (KL) divergence (also known as the cross-
entropy distance) between the distributions. At each step, cross-
entropy method generates samples according to a current candidate
distribution from the family. Next, it uses these samples to tilt the
current candidate distribution towards a new candidate that mini-



mizes the empirically estimated KL divergence over the current set
of samples between the new candidate and the target distribution.
As a result of this iteration, the candidate distribution is seen to get
closer in the sense of KL divergence to the target distribution.

Applying the cross-entropy method requires choosing a family
of distributions that is easy to sample from, while at the same time
able to approximate the complex distribution induced by the trajec-
tory robustness values. We find that a natural approach is to use
piecewise uniform distributions, whenever the space of inputs is
bounded. Such distributions are defined by subdividing the space of
input vectors into finitely many cells and associating a fixed proba-
bility of choosing an input from a given cell. However, the number
of cells grows exponentially in the number of components in the in-
put vector. Therefore, we consider the application of cross-entropy
method on factored input representations, wherein the distribution
is factored into various marginal probability distributions that relate
a small set of input variables. In this paper, we derive the necessary
rules for tilting the cross entropy method for factorings based on
graphical models.

Finally, we present a prototype implementation of our approach
on the S-Taliro tool for testing Simulink/Stateflow models [3] 1.
Our experimental evaluation compares the performance of the Cross-
Entropy method against various other techniques for stochastic and
heuristic global optimization including Monte-Carlo methods [28,
33], genetic algorithms and simple uniform random sampling.

Summary of Contributions: (a) We present the use of the CE
method for falsifying MTL properties using the robustness metrics
over hybrid trajectories. (b) We consider the problem of specify-
ing a family of input distributions that can approximate complex
distributions with small KL divergences, while at the same time,
be parameterized by a small number of parameters. We explore
the use of factored input distributions using graphical models. (c)
We present an experimental evaluation of our approach over a set of
benchmarks, using a prototype implementation in our tool S-Taliro,
along with a comparison with other optimization approaches sup-
ported inside S-Taliro that are also guided by MTL robustness.

2. PRELIMINARIES
In this section, we present some background on system models,

metric temporal logics (MTL) and roubstness of traces. More de-
tails on our approach are available from our previous work on using
stochastic optimization techniques for temporal falsification [28].

2.1 Systems and Inputs
We assume a black-box model of deterministic systems includ-

ing continuous, discrete, and hybrid systems that combine continuous-
time dynamics with instantaneous discrete switches [1].

A system S maps the initial conditions ~x0 ∈ Rn, and input sig-
nals ~u : [0, T ] 7→ Rk to output values ~y : [0, T ] 7→ Y , wherein
T > 0 is assumed to be a large, but finite time limit2. We as-
sume that the initial state ~x0 ∈ X0 for some set X0 ⊆ Rn and
~u(t) ∈ U ⊆ Rk for all time t ∈ [0, T ]. Furthermore, the sets X0

and U are assumed to be boxes, which are Cartesian products of
intervals of the form [a1, b1] × [a2, b2] × · · · × [an, bn], wherein
ai, bi ∈ R∪±∞. Since the system is assumed to be deterministic,
its output ~y = S(~x0, ~u) can be written as a function of its initial
state ~x0 and inputs ~u.

1S-Taliro is available as a open source tool on-line at http://
sites.google.com/a/asu.edu/s-taliro
2Since the goal in this paper is that of testing hybrid systems, it is
not strictly necessary to define input and output maps that extend
for all time.
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Figure 1: Block diagram of the system after parameterizing
input signals.

Parameterizing Input Signals: Let U denote the space of all
measurable functions ~u : [0, T ] 7→ Rk. The overall goal of ran-
domized testing is to explore many points in the space the space
X0 × U of inputs. However, arbitrary (measurable) input signals
from a function space U are often hard to represent. Therefore, we
restrict our attention to a class of signals from U that can be suc-
cinctly described in a finite dimensional space by a finite set of real
valued parameters. Common examples of such families include:

• Piecewise constant (or linear) signals that are described by
the values ~u0, ~u1, . . . , ~uk at a fixed set of time points:

0 = T0 < T1 < T2 < · · · < Tk < Tk+1 = T ,

wherein ~u(t) = ~uj for all t ∈ [Tj , Tj+1) and j = 0, . . . , k.

• Polynomial signals defined by parameters~a1, . . . ,~al, wherein,
~u(t) = ~a0 + ~a1t+ ~a2t

2 + · · ·+ ~alt
l.

• Splines [15] can be specified piecewise by specifying a finite
set of time points along with signal values and derivatives at
these time points.

In practice, the family is chosen so that any signal of interest
from U can be represented approximately with some small error.
Thus, the chosen representationR for the signals ensures a finite set
of parameters ~v ∈ V such that each ~v can be mapped onto a unique
input U(~v) : [0, T ] → U . The process of sampling described in
this paper can therefore focus on sampling real numbers.

2.2 Metric Temporal Logic
Functional specifications for real-time embedded systems usu-

ally involve a number of critical properties such as timing require-
ments, stability and bounded response. Metric Temporal Logic
(MTL) introduced by Koymans [24] is a popular formalism for
expressing such properties. The problem of verifying MTL spec-
ifications is undecidable for hybrid systems. Consequently, the
bounded-time verification or falsification of such properties has been
studied [30, 31, 17].

Table 1 summarizes the syntax of MTL formulae. Let ϕ be an
MTL formula, t0 ≥ 0 be a time instant and ~y : [0, T ] 7→ Y be an
output trajectory. To define the semantics, we first define observa-
tion maps that provide meaning to the atomic propositions.

DEFINITION 2.1 (OBSERVATION MAP). An observation map
O : AP → P(Y ) maps each proposition p ∈ AP to a set
O(p) ⊆ Y . For simplicity, we assume that O(p) ⊆ Y is closed
and compact for each p ∈ AP .

We denote the satisfaction of the formula ϕ by the trajectory ~y
starting from time t = t0 by (~y, t0,O) |= ϕ. The semantics of
MTL in terms of the |= relation is also provided in Table 1.



Table 1: Metric Temporal Logic (MTL) Operators and their formal semantics at time t = t0.
> true Tautology
p ∈ AP ~y(t0) ∈ O(p) Atomic Proposition holds.
ϕ1 ∧ ϕ2 (~y, t0,O) |= ϕ1 ∧ (~y, t0,O) |= ϕ2 Conjunction
ϕ1 ∨ ϕ2 (~y, t0,O) |= ϕ1 ∨ (~y, t0,O) |= ϕ2 Disjunction
¬ ϕ (~y, t0,O) 6|= ϕ Negation
2Iϕ (∀t ∈ I)((t0 + t < T ) ⇒ (~y, t0 + t,O) |= ϕ) ϕ is Invariant in I
3Iϕ (∃t ∈ I)((t0 + t < T ) ∧ (~y, t0 + t,O) |= ϕ) ϕ eventually holds in I
ϕ1 UIϕ2 (∃t ∈ I)((t0 + t < T ) ∧ (~y, t0 + t,O) |= ϕ2 ∧ (∀t′ ∈ [0, t)) (~y, t0 + t′,O) |= ϕ1) ϕ1 until ϕ2

PROBLEM 2.1 (MTL FALSIFICATION). For an MTL specifi-
cation ϕ, the MTL falsification problem consists of finding valid
initial state ~x0 and input signals ~u : [0, T ] → U , such that the re-
sulting output trajectory ~y : [0, T ] → Y falsifies the specification
ϕ, i.e., (~y, 0,O) 6|= ϕ.

Robustness of Trajectories Our proposed solution for Problem
2.1 quantifies the robustness of satisfaction of an MTL formula over
a system trajectory to guide the search for a falsifications [18].

We briefly present the robust interpretation (semantics) of MTL
formulas. Details are available from our previous work [18, 28].

We provide semantics that maps an MTL formula ϕ and a tra-
jectory ~y(t) to a value drawn from the linearly ordered set R. The
semantics for the atomic propositions evaluated for ~y(t) consists
of the distance between ~y(t) and the set O(p) labeling the atomic
proposition p. Intuitively, this distance represents how robustly the
point ~y(t) lies within (or outside) the set O(p).

First, let d be a distance metric on Y . For each point ~y ∈ Y , we
define the open ball Bd(~y, ε) = {~z | d(~y, ~z) < ε}.

DEFINITION 2.2 (SIGNED DISTANCE). Let y ∈ Y be a point,
S ⊆ Y be a set and d be a distance metric on Y . We define the
signed distance from y to S to be

Distd(y, S) :=

{
− inf{d(y, y′) | y′ ∈ S} if y 6∈ S
inf{d(y, y′) | y′ ∈ Y \S} if y ∈ S

If this distance is zero, then the smallest perturbation of the point
y can affect the outcome of y ∈ O(p). We denote the robust valu-
ation of the formula ϕ over the signal ~y at time t by [[ϕ,O]]d(~y, t).
Formally, [[·, ·]]d : (MTL×P(Y )AP )→ (Y [0,T ] × [0, T ]→ R).

DEFINITION 2.3 (ROBUST SEMANTICS). Let ~y ∈ Y [0,T ], c ∈
R and O ∈ P(Y )AP , then the robust semantics of any formula
ϕ ∈ MTL with respect to ~y is recursively defined as follows for
t ∈ [0, T ]:

[[>,O]]d(~y, t) := +∞
[[p,O]]d(~y, t) := Distd(~y(t),O(p))
[[¬ϕ1,O]]d(~y, t) := −[[ϕ1,O]]d(~y, t)
[[ϕ1 ∨ ϕ2,O]]d(~y, t) := max([[ϕ1,O]]d(~y, t), [[ϕ2,O]]d(~y, t))
[[ϕ1 UIϕ2,O]]d(~y, t) :=

sup
t′∈(t+[0,T ]I)

min

(
[[ϕ2,O]]d(~y, t

′), inf
t≥t′′<t′

[[ϕ1,O]]d(~y, t
′′)

)
where t+[0,T ] I = {τ | ∃τ ′ ∈ I . τ = t+ τ ′} ∩ [0, T ].

It is easy to show that if the trajectory satisfies the property, then
its robustness is non-negative and, similarly, it the trajectory does
not satisfy the property, then its robustness is non-positive. The
following result holds [18].

S

ε

Figure 2: Illustration of robustness of trajectory shown in solid
line. The property asserts the “unreachability” of the set S.
The robustness value ε defines a cylinder around the trajec-
tory, so that all trajectories that lie inside a cylinder of radius ε
(dashed lines) also satisfy the property.

THEOREM 2.1. Given a formula ϕ ∈ MTL, an observation
map O ∈ P(Y )AP and a trajectory ~y ∈ Y [0,T ], the following
hold:

(1) If (~y, t,O) |= ϕ, then [[ϕ,O]]d(~y, t) ≥ 0.

(2) Conversely, if [[ϕ,O]]d(~y, t) > 0, then (~y, t,O) |= ϕ.

(3) If for some t ∈ R+, ε = [[ϕ,O]]d(~y, t) 6= 0, then for all ~y′ ∈
Bd(~y, |ε|), we have (~y, t,O) |= ϕ if and only if (~y′, t,O) |=
ϕ. I.e, ε defines a cylinder around the trajectory such that tra-
jectories lying entirely inside this cylinder also satisfy ϕ.

In other words, if a trajectory ~y satisfies the formula ϕ at time in-
stant t ≥ 0 then its robustness value is non-negative.

Theorem 2.1 establishes the robust semantics of MTL as a nat-
ural measure of trajectory robustness. Namely, a trajectory is ε
robust with respect to an MTL specification ϕ, if it can tolerate per-
turbations up to size ε and still maintain its current Boolean truth
value. Alternatively, a trajectory with the opposite outcome for ϕ,
if it exists, has a distance of at least ε away.

The efficient computation of MTL robustness over continuous
and hybrid system trajectories has been investigated in [18, 17]. Im-
plementations are available as part of the tool Taliro, which forms
the core of our approach to temporal logic falsification [3].

2.3 Temporal Falsification as Optimization
Given a system S : X0 × V 7→ Y (Cf. Figure 1), along with

a MTL specification ϕ, we are interested in finding input signals ~u
and initial conditions ~x0 such that the resulting output falsifies ϕ.
More generally, we can search for inputs such that the robustness
value of the resulting output trajectory w.r.t specification ϕ is the



least possible. Let R(~x0, ~v;ϕ,S) denote the robustness value w.r.t
ϕ for the trajectory ~y resulting from inputs ~x0, ~u to system S

R(~x0, ~v;ϕ,S) = [[ϕ,O]]d(~y, 0), wherein ~y = S(~x0, ~v) .

Consider the optimization problem of finding inputs that yield the
minimal robustness value possible:

(~x0, ~v) = argmin
~x0∈X0,~v∈V

R(~x0, ~v;S, ϕ) .

If the minimal robustness value is negative then the corresponding
inputs yield a falsifying test case. Solving for ~x0, ~v is hard, even
for the simplest of systems. Our goal is therefore to search for tra-
jectories ~y that have small robustness values by sampling from the
space of initial conditionsX0 and input signals V . If we discover a
violation in the process, we can report such a violation to the user.
Failing this, our search simply presents the least robust trajectory
discovered thus far.

The strategy used for finding a trajectory with as small a robust-
ness value of sampling is to draw samples according to a probabil-
ity distribution. Let p be a probability density function over a set
of support X . A sampling scheme produces a sequence of samples
x1, . . . , xN ∈ X , such that for any (measurable) subset I ⊆ X ,

lim
N→∞

N∑
i=1

1(xi ∈ I)

N
=

∫
I

p(x)dx , where 1(ϕ) =

{
1 if ϕ
0 otherwise .

In other words, as we draw a large number of samples, the empirical
sample distribution converges in the limit to the distribution p.

Suppose we were able to draw numerous samples according to
the probability distribution Ω over X0 × V , defined as

Ω(~x0, ~v) =
1

W
e−K·R(~x0,~v;S,ϕ) ,

wherein K > 0 is some chosen weighting factor and W is used to
normalize the total mass of the distribution over X0 × V . Given
the nature of the distribution, the probability of encountering in-
puts ~x0, ~v that yield negative robustness values (if such inputs exist)
is exponentially larger than that of obtaining a positive robustness
value. The precise ratio of these probabilities is controlled by K.
Drawing samples according to Ω promises to be an effective way
of searching for falsifications. However, there are two main prob-
lems: (a) Ω is not known in a closed form. To compute Ω(~x0, ~v),
we obtain R(~x0, ~v;S, ϕ) by simulating the system S over the in-
puts (~x0, ~v). However, the normalizing factor W is also unknown.
(b) Techniques that attempt to sample inputs according to Ω often
require a large number of simulations to converge [28].

An alternative approach is to start from a family of distribu-
tionsF (eg., normal distributions) and attempt to find a distribution
which is as close to Ω as possible. The tradeoff involved here is that
we are sampling from a distribution family F , which may not con-
tain the distribution Ω. On the other hand, the distributions inF are
chosen from known families such as normal or piecewise uniform
families that are relatively easier to sample from. The cross-entropy
method due to Rubinstein and Kroese attempts to solve this prob-
lem in a systematic manner [33, 32].

3. CROSS-ENTROPY METHOD
In this section, we present a brief overview of the cross en-

tropy method which is a widely used rare-event simulation tech-
nique. Further details including a theoretical analysis of cross-
entropy method are available elsewhere [32, 33, 6].

Our presentation will focus mostly on how cross-entropy method
can be used to sample from a distribution Ω over the space of in-

puts X0 × V . As a first step, we fix a family of distributions pθ ,
parameterized by a set of parameters θ ∈ P .

• Piecewise-Uniform Family: The piecewise uniform family
is useful when the input space X0 × V is bounded. We par-
tition the input space into a set of mutually disjoint measur-
able cells C1, . . . , Ck, wherein each Ci is bounded and has
a finite volume. The family is parameterized by the individ-
ual cell sampling probabilities θ : (p1, . . . , pk) ∈ [0, 1]k,
such that,

∑k
i=1 pi = 1. Here pk denotes the probability

that an input from the cell Ci is chosen. In order to sam-
ple from a given distribution pθ in the family, we choose a
cell according Ci with probability pi. Next we choose input
(~x0, u) ∈ Ci, uniformly at random.

The piecewise uniform family can be made to approximate
any distribution with arbitrary precision by (a) increasing the
number of partitions and (b) by choosing the probabilities of
each partition appropriately.

• Gaussian Distribution: A multivariate Gaussian distribu-
tionN~µ,C is parameterized by its mean ~µ and its co-variance
matrix C (a positive semi-definite matrix). These distribu-
tions (and other exponential distributions) are suitable when
X0 × V is unbounded. A simple extension to this model
considers a mixture of Gaussian distributions, by averaging
a fixed number of Gaussian distributions.

3.1 Overview of Cross-Entropy Method
Let Ω be a (complex) distribution over I : X0×V that we wish to

sample from. We assume that Ω(~x,~v) 6= 0 for all (~x,~v) ∈ X0×V .
In general, we may not know Ω as a closed form formula. However,
for any two points (~x0, ~v0) and (~x1, ~v1) in the input space I , it is
possible to compute the ratio Ω(~x0,~v0)

Ω(~x1,~v1)
. Consequently, it is possible

to compare the values of Ω at two or more points and rank these
points according to the value of Ω.

Let pθ be a family of distributions parameterized by θ ∈ P .
We assume that each pθ has a set of support that contains X0 ×
V . In other words, pθ(~x,~v) 6= 0 for all (~x,~v) ∈ X0 × V . Our
goal is to find a distribution pθ from the family that is “as close”
to Ω as possible. However, the notion of the “closeness” of two
distributions needs to be formalized. We use the standard Kullback-
Liebler (KL) divergence from information theory.

DEFINITION 3.1 (KULLBACK-LIEBLER DIVERGENCE). Let
us assume two distributions p(·) and q(·) over some set of support
S, such that ∀~x ∈ S, p(~x) 6= 0, q(~x) 6= 0. The Kullback-Liebler
(KL) divergence is defined as

D(p, q) =

∫
S

log

(
p(x)

q(x)

)
p(x)dx = Ep

[
log

(
p(x)

q(x)

)]
,

wherein Ep denotes the expectation over the distribution p.

Note that the KL divergence is not a metric. In general,D(p, q) 6=
D(q, p). However, it can be shown that for all distributions p, q,
D(p, q) ≥ 0. Furthermore, D(p, q) = 0 iff p = q.

Our goal here is to choose a distribution pθ from the chosen fam-
ily that minimizes the KL divergence D(Ω, pθ)

3. Since Ω is not
known in a closed form, it is not possible to evaluateD(Ω, pθ) for a
given θ. The idea is to adaptively search for suitable parameter val-
ues θ by performing the optimization over finitely many data points
3Note that this is not the same as minimizingD(pθ,Ω). The choice
of Ω as the first argument makes the minimization over samples
possible without knowing Ω in a closed form.



obtained through sampling. Therefore, the cross-entropy method
proceeds by approximatingD(Ω, pθ) empirically from samples and
adaptively choosing values of θ. We start with some initial θ(0) ∈
P and iterate until some termination criterion.

(a) Draw a fixed number Ns according to pθ using the current set
of parameters θ = θ(h).

(b) Let ~x(0), . . . , ~x(Ns) be the samples sorted in descending order
according to their Ω values.

(c) Choose the top m samples for some m� Ns.

(d) Obtain a new set of parameters θ(h + 1) by tilting. The new
parameter set θ(h+1) minimizes the empirically estimated KL
divergenceD(Ω, pθ) over the sample points ~x(0), . . . , ~x(m−1),
for all θ ∈ P .

θ(h+ 1) = argmin
θ∈P

(
− 1

m

m−1∑
i=0

(
log(pθ(~x

(i)))Ω(~x(i))

pθ(h)(~x(i))

))
.

The derivation of the formula above is shown elsewhere [32].

Termination is based upon some fixed convergence criterion. Af-
ter termination, we sample extensively from the final distribution
θ(h+ 1) to search for a possible violation.
Tilting: Given the distribution θ(h) ∈ P for the current iteration
and the sample points ~x(0), . . . , ~x(m−1), we seek to minimize the
empirical KL divergence over the sample points

θ(h+ 1) = argmin
θ∈P

(
− 1

m

m−1∑
i=0

(
log(pθ(~x

(i)))Ω(~x(i))

pθ(h)(~x(i))

))
,

to obtain the parameters for the subsequent iteration. Writing γi =
Ω(~x(i))

pθ(h)(~x
(i))

, we note that γi can be evaluated for each sample up to

some fixed but unknown positive scaling factor W . However, this
suffices to carry out the optimization for tilting. Simplifying, we
obtain

θ(h+ 1) = argmax
θ∈P

(
m−1∑
i=0

γi log(pθ(~x
(i)))

)
. (1)

The result depends, in general, on the distribution family chosen. It
is relatively straightforward to solve for the optima above by com-
puting partial derivatives w.r.t θ to obtain a closed form for stan-
dard families such as piecewise uniform and exponential distribu-
tions [32]. This yields an updating rule Θp for family p:

θ(h+ 1) = Θp(θ(h), ~x(0), γ0, . . . , ~x
(m−1), γm−1) . (2)

Updating Rules for Piecewise Uniform Distributions: Let us
assume that the input space X0 × V is partitioned into disjoint
cells C1, . . . , Ck. Let ~x(1), . . . , ~x(m) be the samples chosen for
tilting. Our goal is to update the current values of the cell sampling
probabilities ~θ(h) : (θh,1, . . . , θh,k) to yield new set of parameters
~θ(h+1) according to Eq. (2). This can be performed by setting the
partial derivatives with respect to each unknown parameter θh+1,j

to zero. The resulting update formula is given by

θh+1,j =

∑m−1
i=0 1(~x(i) ∈ Cj)γi∑m−1

i=0 γi
,

wherein 1(a ∈ S) =

{
1 if a ∈ S
0 otherwise In practice, the tilting is

always performed gradually using a discount factor λ, by updating

θ(h+ 1) = λθ(h) + (1− λ)θ′(h) .

Updating rules for other families such as the Gaussian distribu-
tions and “natural exponential families” (NEF) are considered by
Rubinstein and Kroese [32].

3.2 Illustrative Example
We now illustrate the operation of the cross-entropy method for

finding an appropriate insulin infusion schedule for controlling the
blood glucose level of a type II diabetic patient following the in-
gestion of a meal. The model and the parameters chosen have been
inspired by the work of Fisher [19]. The dynamics of insulin and
glucose in the patient are modeled by the ODE

dG
dt

= −p1G−X(G+Gb) + P (t)
dX
dt

= −p2X + p3I
dI
dt

= −n(I + Ib) + u(t)/VI

wherein state variable G refers to the level of glucose in the blood
plasma above a fixed basal value Gb, I refers to the level of insulin
above a fixed basal value Ib andX is a quantity that is proportional
to the level of insulin that is effective in controlling blood glucose
level. The function P (t) refers to the addition of glucose in the
blood after digestion. Following Fisher, we set P (t) = ke−Bt

to model the characteristic peak and decay of the level of glucose
added to the blood during the digestion process. The input u(t)
refers to the insulin infused directly by means of a direct infusion
into the blood, wherein 0 ≤ u(t) ≤ 3 for all t ≥ 0.

For initial conditions are chosen from the intervalsG(0) ∈ [6, 10],
X(0) ∈ [0.05, 0.1] and I(0) ∈ [−.1, .1]. We wish to find an initial
condition and a value of u(t) that falsifies the MTL property

ϕ : ¬(2[0,20.0](G ∈ [−2, 10]) ∧ 2[20,200.0](G ∈ [−1, 1])) .

Informally, ϕ specifies that the value of glucose should not be in
the range [−2, 10] during the first 20 minutes, or fail to remain the
range [−1, 1] over the next 180 minutes.

We ran a cross-entropy sampling guided by trace robustness to
search for a suitable input. Each signal u(t) is represented by a
spline with 4 control points. This yields 7 input parameters. The
range of permissible values for each input parameter is subdivided
into 10 equally spaced subintervals. Figure 3 shows the final re-
sults of applying the cross-entropy method for 25 iterations lasting
roughly 570 seconds. The technique does not find a falsifying in-
put, it finds an input schedule that comes quite close yielding a
low robustness value of 0.3. Figure 3 plots the minimal robustness
trace. The run of cross-entropy method is illustrated by showing the
tilted probability distributions at iteration numbers 1, 5, . . . , 25.

4. FACTORED INPUT DISTRIBUTIONS
In this section, we present some basic ideas on how families of

input distributions may be formed and represented for applying the
cross-entropy method for falsifying temporal properties. In gen-
eral, there are two conflicting concerns that affect the choice of a
family of distributions: (a) the ability to represent arbitrary input
distributions to a good degree of approximation and (b) keeping
the number of parameters that describe the family small.

We focus on piecewise uniform distributions obtained by subdi-
viding the input space into many disjoint cells C1, . . . , CK . Let us
represent the vector of inputs in X0 × V ⊆ Rk by (z1, . . . , zk) ∈
Rk. We have assumed that the set of legal input values form a
bounded box [a1, b1]× [a2, b2]×· · ·× [ak, bk]. We partition the set
of possible values for each input variable zi ∈ [ai, bi] into a fixed
number n > 0 different disjoint sub-intervals Ui,1, . . . , Ui,n 4.
4For simplicity, we assume that the number of subdivisions along
each dimension is the same.
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Figure 3: Results of cross-entropy method for the insulin glucose model. (Left) plot showing the least robust simulation result.
(Right) Probability distributions over the various input subintervals at rounds 1, 5, . . . , 25.

This represents a partitioning of input space into nk rectangular
cells, wherein each cell Cj1,...,jk is a product of intervals U1,j1 ×
U2,j2×· · ·×Uk,jk . As a result, representing the piecewise uniform
distribution requires nk parameters, which is exponential in the di-
mensionality of the input vector. Therefore, we consider tradeoffs
in representing the family by means of factored distributions.

Fully Factored Distribution: A simple scheme for represent-
ing probability distributions over the cells is to associate a uniform
probability value Pi,j for each cell Ui,j for input zi and interval
Ui,j , such that

∀ i ∈ [1, k]

n∑
j=1

Pi,j = 1 .

The family of fully factored distributions are parameterized by
the values Pi,j for i ∈ [1, k] and j ∈ [1, n]. The probability of
choosing a cell Cj1,...,jk is assumed to be given by the product

Pr(Cj1,...,jk ) = Πk
i=1Pi,ji .

Once a cell is chosen using the discrete distribution defined above,
a point in the cell is chosen uniformly at random. In other words,
the choice of a cell is obtained by independently choosing intervals
for each input zi.

We will now derive the update rule for tilting using families of
fully factored piecewise uniform distributions by solving the opti-
mization involved in Equation (1). Let ~x(1), . . . , ~x(m) be the m
samples used to compute the tilting. Furthermore, for each sam-
ple, we obtain the value γl = WΩ(~x(l))

pθ(h)(~x
(l))

. Our goal is to compute

optimal parameters θ∗ = (P1,1, . . . , Pk,n) such that

θ∗ = argmax

(
m−1∑
l=0

γl log(pθ(~x
(l)))

)
(3)

Figure 4: A distribution that cannot be factored.

We may write log(pθ(~x
(l))) as

log(pθ(~x
(l))) =

k∑
i=1

n∑
j=1

log(Pi,j)1(~x
(l)
i ∈ Ui,j) .

Lemma 4.1. The optimal value of parameters Pi,j that maxi-
mizes the objective in Equation (3) are given by

Pi,j =

∑m−1
l=0 γl1(~x

(l)
i ∈ Ui,j)∑m

l=1 γl
.

PROOF. This lemma is a special case of the more general Lemma 4.2
for graphical models that will be presented subsequently.

One of the key advantages of a fully factored form of the input
distribution is that the number of parameters representing the fam-
ily is simply k × n as opposed to nk. However, the assumption of
independent choice of intervals along each dimension diminishes
the ability to represent arbitrary probability distributions.



z1 z4

z2 z3

Node Cond. Table Type
z1 P (z1 ∈ U1,i)
z2 P (z2 ∈ U2,i|z1 ∈ U1,i1)

z3 P

(
z3 ∈ U3,i

∣∣∣∣ z1 ∈ U1,i1 ,
z2 ∈ U2,i2

)
z4 P (z4 ∈ U4,i)

Figure 5: Example graphical model over 4 variables z1, . . . , z4

along with the types of tables associated with each node.

Example 4.1. Figure 4 shows a distribution over two inputs
z1, z2 wherein there is a significant degree of correlation between
the choices of particular intervals for z1 and for z2. A fully factored
representation loses this information to produce a poor approxima-
tion of this distribution. This situation presents interesting parallels
to the general problem of abstracting sets of states that is consid-
ered in techniques such as symbolic model checking and abstract
interpretation of systems.

Graphical Model Factoring: An alternative to a fully factored
representation consists of maintaining correlations between some
of the input variables. In the setting of this paper, two inputs are
correlated if, for the purposes of finding a falsifying input, the value
chosen of one variable will affect the choice of a value for the other.
Often, it is natural to consider correlations between certain classes
of inputs during falsification. For instance, the value of a control
input u at two adjacent time intervals can often be regarded as cor-
related. Depending on how input signals are parameterized, the
choice of an input for the next time step may need to take the cur-
rent choice of input into consideration.

In this section, we consider generic graphical models that can
represent a factored probability distribution. Once again, we as-
sume that the input space for input variable zi has been partitioned
into pairwise disjoint sub-intervals Ui,1, . . . , Ui,n for i ∈ [1, k].

A graphical model G is a directed acyclic graph (DAG) with
nodes N = {z1, . . . , zk}, one node for each variable and a set of
directed edges E ⊆ N × N . A graphical model represents a fac-
tored distribution. For each node zj , let {e1 : zj1 → zj , . . . , zjl →
zj} represent the set of all incoming edges into zj . We associate a
conditional probability table Tj that has entries of the form

P (zj ∈ Uj,i | zj1 ∈ Uj1,i1 ∧ · · · zjl ∈ Ujl,il),
for i, i1, . . . , il ∈ [1, n]

(4)

Thus, each variable is associated with a table of conditional prob-
abilities for the variable belonging to a sub-interval in its domain,
given a combination of choices of sub-intervals for the predeces-
sors of the variable in the graph. The overall distribution is written
as a product of its factors:

Pr

 z1 ∈ U1,l1

. . .
zk ∈ Uk,lk

 =
k

Π
i=1

P

zi ∈ Ui,li
∣∣∣∣∣∣

∧
zj→zi∈E

zj ∈ Uj,lj

 .

A fully factored distribution is simply a graphical model G with
the empty set of edges.

Example 4.2. Figure 5 shows an example of a graphical model
along with the type of conditional probability table for each node.
The overall probability of drawing a sample from a cell in the input
space is written out as a product of individual probabilities from
each of the tables in the model according to Equation (4).

As a result, each graphical modelG represents a family of piece-
wise uniform distributions parameterized by the entries in the ta-
bles associated with each node in the graph. The number of such
parameters is bounded by O(kn∆+1) wherein ∆ is the maximum
in-degree of any node in the graph. Consider an entry in a table of
the form shown in Eq. (4). The event associated with the entry is
denoted by the predicate:

zj ∈ Uj,i ∧ zj1 ∈ Uj1,i1 ∧ · · · ∧ zjl ∈ Ujl,il .

Once again, we consider update rules for factored distributions
for solving the optimization involved in Equation 1. Let ~x(1), . . . , ~x(m)

be them samples used to compute the tilting with associated weights
γ1, . . . , γm. Our goal is to compute optimal parameters θ∗ =
(P1, . . . , PN ) where each entry Pi stands for some unknown ta-
ble entry representing some conditional property in the graphical
model. Our goal once again is to optimize

θ∗ = argmax

(
m−1∑
l=0

γl log(pθ(~x
(l)))

)
(5)

The update rule for graphical models considers entries in a given
table Ti associated with a node zi, for i ∈ [1, k]. For param-
eter Pi,j , let ϕi,j denote the associated event. Furthermore, let
1(~x(l) |= ϕi,j) denote the condition that the lth sample satisfies
the event associated with table entry Pi,j .

Lemma 4.2. The optimal parameter value for parameter Pi,j
in table Ti that maximizes the objective in Equation (5) is given by

Pi,j =

∑m−1
l=0 γl1(~x(l) |= ϕi,j)∑m−1

l=0

∑
r∈Entries(Ti) γl1(~x(l) |= ϕi,r)

.

PROOF. A proof of this theorem is given in the appendix.

The lemma above shows that the updating rule for factored dis-
tributions is quite simple given the samples ~x(l) and weights γl.

We now briefly comment on the choice of an appropriate graph-
ical model for factoring the input. Often, the fully factored rep-
resentation is the easiest to implement. As mentioned earlier, this
representation can be improved by tracking the joint distribution
between the value of parameters that pertain to an input signal at
the current time step to the input at the next time step. However,
decisions on other inputs may need to be considered jointly for suc-
cessful falsification, in practice.

Currently, it is unclear as to how such inputs may be identified.
If, for instance, the function of the inputs to the system are well
understood, it may sometimes be possible to classify sets as inputs
as tightly coupled or otherwise. However, this requires detailed
knowledge of the system’s inner workings. In this regard, the prob-
lem of automatically identifying an ideal factoring of the input dis-
tribution for testing remains an open challenge.

5. IMPLEMENTATION & EXPERIMENTAL
EVALUATION

We have implemented a prototype version of the techniques de-
scribed thus far inside the S-Taliro framework for falsification of
MTL properties. S-Taliro is implemented as a Matlab toolbox and
supports the specification of a variety of system models including
Simulink/Stateflow diagrams, Matlab functions and C programs in-
terfaced with Matlab. The latest version of the tool supports various
core primitives such as the specification of MTL formulas through
a simple, user-friendly interface, various utilities to simulate mod-
els and visualize trajectories, support for input parameterization,



ranging from piecewise constant inputs to splines obtained by spec-
ifying control points, and support for robustness metrics over both
continuous and hybrid traces. S-Taliro includes implementations of
various search heuristics for optimization including UR: uniform
random sampling and MC: Monte-Carlo sampling with simulated
annealing. A detailed description of the framework is available
elsewhere [3]. Furthermore, the latest version of the tool (along
with the benchmarks used here) are available on-line as a open-
source tool 5

The implementation of the cross entropy method inside S-Taliro
directly uses the key primitives implemented inside S-Taliro. Cur-
rently, our implementation supports piecewise uniform probability
distributions in a fully factored form. Support for graphical models
is currently being implemented.
Experimental Evaluation: Table 2 briefly describes the bench-
marks used in our evaluation along with the properties checked for
these benchmarks. These benchmarks along with a detailed expla-
nation of the properties are available as part of the S-Taliro distri-
bution. Furthermore, more detailed and up-to-date data compar-
ing the various solvers on a larger set of benchmarks will be made
available on our tool website.
Experimental Results: Table 3 shows the experimental compar-
isons over the set of benchmarks described in Table 2. We ran a
fixed number of repetitions for each benchmark and property. Each
run had a limit on the total number of simulations permitted (1000).
The cross entropy method was applied for a maximum of 10 iter-
ations with at most 100 simulations per iteration. Each technique
terminates upon encountering a falsification. Due to the sheer size
and number of these experiments, we ran them on a cluster with
many different machines of roughly similar specifications — 64 bit
Intel machines running Ubuntu 11.04 Linux with 6− 12 cores and
6 − 32 GB of RAM. To facilitate comparison, we attempted all
instances of a benchmark on the same machine (different cores).

Table 3 reports for each benchmark instance, the number of rep-
etitions that resulted in a falsification. the average, minimum and
maximum times. We notice from this comparison that the cross
entropy method performed quite well on the IG and Mod bench-
marks, resulting in the most amount of falsifications and was com-
petitive on the remaining AT and PT benchmarks, wherein there
were no clear winners between the three techniques compared. The
cross entropy seems to outperform Monte Carlo simulations both in
terms of time and number of falsifications on all but a few of the
benchmarks, and is often competitive or better than uniform ran-
dom testing which has negligible overhead.

6. RELATED WORK
It is well known that falsification of temporal logic properties for

hybrid systems is a hard problem [1]. As a result, testing is a natural
approach to the verification of continuous and hybrid systems [23].
The question of how to guide the choice of test cases better is an
active area of research.

In this regard, Monte-Carlo techniques have been explored quite
extensively. The use of Monte Carlo techniques for model check-
ing was considered previously by Grosu and Smolka [21] in the
form random walks over the state space of the system and by our
previous work in the form of input sampling using Markov-Chain
Monte-Carlo (MCMC) techniques [34, 28]. The techniques pre-
sented in the latter work were implemented as part of the S-Taliro
framework [3]. The two approaches are quite distinct from each
other. In practice, the rate convergence of random walks on the
5Cf. https://sites.google.com/a/asu.edu/
s-taliro.

state space depends critically on the topology of the state transition
graph. On the other hand, techniques that walk the state space can
be extended readily to the case of systems with control inputs with-
out requiring a finite parameterization of the control. The problem
of integrating the two approaches remains a challenge.

In practice, the use of MCMC techniques has proven problem-
atic for certain benchmarks due to the slow rate of convergence of
MCMC techniques and their susceptibility to local minima in the
search space. This has been instrumental in our quest for efficient
stochastic search techniques that can exhibit faster convergence to
the desired underlying distribution. We have also explored the use
of other optimization techniques including ant-colony optimization
(ACO) and genetic algorithms (GA) in conjunction with robustness
metrics in the S-Taliro framework [2].

Other approaches to testing hybrid systems have focused on the
use of state-space exploration techniques such as Rapidly explor-
ing Random Trees (RRTs) [16, 4, 5, 27, 29] as well as notions of
robustness over simulation trajectories [14, 20, 22, 25]. The work
of Dang et al. attempts to bridge these approaches [13].

On the research front of falsification/verification of temporal logic
properties through testing, the results are limited [30, 31, 17]. The
work that is the closest to ours appears in [31]. The authors of
that work develop a different notion of robustness for temporal
logic specifications, which is also used as a fitness function for
optimization problems. Besides the differences in the application
domain, i.e., [31] focuses on parameter estimation for biological
systems, whereas our paper deals with the falsification of hybrid
systems. Furthermore, we have extended robustness metrics from
purely continuous to hybrid trajectories, wherein we define robust-
ness of trajectories using quasi-metrics instead of metrics [28].

Younes and Simmons, and more recently, Clarke et al. have pro-
posed the technique of Statistical Model Checking (SMC) [36, 10],
which generates uniform random inputs to a system subject to some
constraints, thus converting a given system into a stochastic system.
A probabilistic model checker can be used to prove assertions on
the probability that the system satisfies a given temporal property
ϕ within some given confidence interval. Statistical model check-
ing, like our technique, requires a simulator to be available for the
system but not a transition relation representation. In contrast to
SMC, our approach is guided by a robustness metric towards less
robust trajectories. On the other hand, the complex nature of the
system and the robustness metrics imply that we cannot yet pro-
vide guarantees on the probability of satisfaction of the formula.
Recent observations by Clarke and Zuliani have noted the need for
importance sampling and rare-event simulation techniques for Sta-
tistical model checking [11]. Some of the ideas from this work
on the use of factored input distributions and graphical models can
also benefit statistical model checkers.

The work of Chockler et al. explores the use of the cross-entropy
method for finding bugs in concurrent programs [7] and more re-
cently for reconstructing concurrent executions for program replay [8].
Additionally, the use of cross-entropy method as a general combi-
natorial state-space search technique has been well-studied 6.

7. CONCLUSION
In conclusion, we have presented a framework for falsification of

temporal logic properties using the Cross-Entropy method guided
by a notion of robustness of trajectories w.r.t MTL formulae. We
have also presented some ideas behind using factored probability
distributions in the cross-entropy method and extended our notions

6Cf. Rubinstein et al. [32] and the web site http://www.
cemethod.org for a description.



Table 2: Benchmark systems and properties used in our evaluation.
Name Description Model Type Property Type
Mod1-3 Third order Delta-Sigma Modulator [12] S/S diagram 2a

with varying initial conditions
IG1-3 Insulin Glucose control (Cf. Section 3.2) ODE (matlab function) 2[0,20.0]p ∧ 2[20,200.0]q

with varying initial conditions
AT1 Auto Transmission Simulink demo [37] S/S diagram ¬(3p1 ∧ 3[0,10]p3)
AT2 ¬(3(p1 ∧ 3[0,7.5]p3))
AT3-5 different predicates qi,j ¬(3q1,i ∧ 3q2,i ∧ 3q3,i)
PT1 Power train model [9] Checkmate model [35] ¬3(g2 ∧ 3(g1 ∧3g2))
PT2 2((¬g1 ∧Xg1)⇒ 2[0,2.5]¬g2)
AIR1 Aircraft model [26] ODE (matlab function) ¬(2[.5,1.5]a ∧3[3,4]b)
AIR2 ¬(2[0,4]a ∧3[3.5,4]d)
AIR3 ¬3[1,3]e
AIR4 ¬(3[.5,1]a ∧ 2[3,4]g)
AIR5 ¬2[0,.5]h
AIR6 ¬2[2,2.5]i

to handle distributions factored using graphical models. Experi-
mental results seem quite promising. In the future, we wish to run
further experiments to quantify the effect of factoring on the overall
performance. Furthermore, the problem of automatically identify-
ing correlated input variables that can jointly influence the falsifi-
cation remains to be investigated. Finally, we also wish to consider
the application of our ideas to more general classes of distributions.
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APPENDIX
A. DERIVATION OF THE TILTING RULE

FOR GRAPHICAL MODELS
Let V be a k−dimensional input space with variables z1, . . . , zk

that form the input vector. Furthermore, the range of posible values
for each zi is subdivided into n > 0 subintervals Ui,1, . . . , Ui,n.
As a result, the overall input space has been partitioned into nk

cells C1, . . . , CK wherein each cell is of the form

Cj : z1 ∈ U1,i1 ,× · · · × zk ∈ Uk,ik .

Let G be a graphical model with nodes NG = {z1, . . . , zk} and
edge set E ⊆ NG × NG. We assume that G is a directed acyclic
graph. With each node in zj ∈ NG, let Preds(zj) = {zl | zl →
zj ∈ E} be the possibly empty set of nodes that are the predeces-
sors of zj in the DAG G. We associate a table Tj with node zj of
size n1+|Preds(zj)| where each entry is of the form

Pr

zj ∈ Uj,l | ∧
zl∈Preds(zj)

zl ∈ Ul,p

 .

Note that the event predicate corresponding to this entry is defined
as:

zj ∈ Uj,l ∧
∧

zl∈Preds(zj)

zl ∈ Ul,p .

The family of factored probability distribution is defined by pa-
rameters (P1, . . . , PM ) ∈ [0, 1]M wherein each table entry for the
tables T1, . . . ,Tk has a parameter Pj ∈ [0, 1]. We denote the set
of parameters associated with each table Tj by Entries(Tj). Fur-
thermore, for each table Tj , the sum of its entries equal 1.∑

Pi∈Entries(Tj)

Pi = 1 .

We let Event(Pi) for each entry Pi be the event predicate associ-
ated with the entry.

We now consider the problem of updating entries to the table by
tilting. Let Pθ(h) be the current distribution defined by parameters
θ(h). Let ~x(0), . . . , ~x(m−1) be m > 0 samples that we use to tilt.

We associate with each sample ~x(i) a weight γi = Ω(~x(i))

Pθ(h)(~x
(i))

. Our

goal is to compute an optimal set of parameters θ(h+1) ∈ P based
on the current samples ~x(l) and current candidate θ(h).

θ(h+ 1) = argmax
θ∈P

(
m−1∑
l=0

γl log(pθ(~x
(l)))

)
. (6)

We will now derive a closed form expression for each parameter
in θ(h+ 1) for given samples with weights.

We first note that for each sample ~x(l), we may write

pθ(~x
(l)) = Πk

j=1 ΠPi∈Entries(Tj) Pi1(~x(l) |= Event(Pi)) .

As a result, we may rewrite the objective function of the opti-
mization in Eq. (6) as

m−1∑
l=0

γl

 k∑
j=1

 ∑
Pi∈Entries(Tj)

log(Pi)1(~x(l) |= Event(Pi))


We may rearrange this summation as

k∑
j=1

∑
Pi∈Entries(Tj)

log(Pi)

(
m−1∑
l=0

γl1(~x(l) |= Event(Pi))

)
.

Writing ci =
(∑m−1

l=0 γl1(~x(l) |= Event(Pi))
)

, the overall opti-
mization simplifies to

max
∑M
i=1 ci log(Pl)

s.t
∑
Pi∈Entries(Tj) Pi = 1 j = 1, . . . , k

We solve this optimization by the Lagrange method of multipliers.
We first form the Lagrangian:

L :

M∑
l=1

ci log(Pi)−
k∑
j=1

λj

 ∑
Pi∈Entries(Tj)

Pi

 .

Next, we equate the partial derivative w.r.t each of the decision vari-
ables Pi to zero.

∂ L

∂ Pi
=
ci
Pi
− λj = 0 .

where j ∈ [1, k] is the unique index such that Pi ∈ Entries(Tj).
Therefore, for each table Tj we obtain the following constraints

λj =
ci1
Pi1

= · · · = ciJ
PiJ

, where Entries(Tj) = {Pi1, . . . , PiJ} .

This yields the optimal solution for each Pi ∈ Entries(Tj) as

Pi = ci∑
Pq∈Entries(Tj)

cq

=
∑m−1
l=0

γl1(~x(l)|=Event(Pi))∑
PiJ∈Entries(Tj)

∑m−1
l=0

γl1(~x(l)|=Event(PiJ ))


