
Relational Abstractions for Continuous and

Hybrid Systems⋆

Sriram Sankaranarayanan1 and Ashish Tiwari2

1 University of Colorado, Boulder, CO. srirams@colorado.edu
2 SRI International, Menlo Park, CA. ashish.tiwari@sri.com

Abstract. In this paper, we define relational abstractions of hybrid sys-
tems. A relational abstraction is obtained by replacing the continuous
dynamics in each mode by a binary transition relation that relates a
state of the system to any state that can potentially be reached at some
future time instant using the continuous dynamics. We construct rela-
tional abstractions by reusing template-based invariant generation tech-
niques for continuous systems described by Ordinary Differential Equa-
tions (ODE). As a result, we abstract a given hybrid system as a purely
discrete, infinite-state system. We apply k-induction to this abstraction
to prove safety properties, and use bounded model-checking to find po-
tential falsifications. We present the basic underpinnings of our approach
and demonstrate its use on many benchmark systems to derive simple
and usable abstractions.

1 Introduction

In this paper, we present relational abstractions of hybrid systems. A relational
abstraction transforms a given hybrid system into a purely discrete transition
system by summarizing the effect of the continuous evolution of states over time
using relations. The abstract discrete system is an infinite-state system that can
be analyzed using standard techniques for verifying systems such as k-induction
and bounded model checking.

Relational abstractions preserve the discrete behavior of the hybrid system
and abstract only its continuous behavior. They work by replacing the continuous
dynamics in each mode by means of a relation R(x0,x). The relation R relates a
continuous state x0 with a state x that can be potentially reached at some future
time instant, through some time trajectory of the system starting from x0. Such
a relation R can be interpreted in two ways: (a) as a positive invariant set for an
associated dynamical system over x0,x, and (b) as a discrete transition relation
that abstracts the evolution of the continuous states over time.

The two views above provide two key advantages of the relational abstraction
approach. As a consequence of the first view, we can use techniques for gener-
ating invariants for continuous systems to generate a relational abstraction. We

⋆ Sankaranarayanan’s work has been supported by NSF Career grant CNS-0953941.
Tiwari’s work supported in part by DARPA under Contract No. FA8650-10-C-7078,
NSF grants CSR-0917398 and SHF:CSR-1017483.

propose simple extensions of template-based invariant generation techniques,
which can abstract systems with linear as well as nonlinear dynamics, to con-
struct relational abstractions. Template-based techniques allow us to specify the
form of the relational abstraction [9, 19]. Therefore, our technique can be used
to obtain linear arithmetic relations for systems with nonlinear dynamics.

As a consequence of the second view, we obtain discrete infinite-state abstrac-
tions of hybrid systems. This enables us to use techniques such as k-induction
using decision procedures [37], abstract interpretation [11, 21], or virtually any
technique for discrete systems, to analyze hybrid systems.

It is well-known that the problem of verifying hybrid systems is quite hard,
both in theory and in practice. Recently, many advances have yielded remarkably
efficient tools for integrating affine ODEs over sets and that work over large state
spaces [24, 5, 39, 16, 35, 17]. However, we have observed that a significant gap in
performance remains when these techniques are used to perform symbolic model
checking, along the lines of tools such as HyTech and PHAVer [23, 15]. In our
experience, this gap stems from the need to handle the dynamics repeatedly for
the same mode, often with small variations between subproblems. In this paper,
we hypothesize that the situation with continuous dynamics is analogous to that
of function calls encountered during program analysis. During inter-procedural
program analysis, it is often observed that the analysis of each function call,
given the state at the entry to the call, is quite efficient. However, the overall
inter-procedural analysis is often not scalable due to repeated analysis of the
same function with different actual parameters. Therefore, as in the case of
function calls in program analysis, we propose summarization techniques that
abstract the effect of the dynamics in each mode by a discrete transition [27]. As
a result, our technique can efficiently handle continuous dynamics. However, on
the flip side, our approach may lose precision if the relational abstraction is too
conservative. Furthermore, the computation of relational invariants implicitly
doubles the number of state variables.

Our approach is able to prove safety properties of hybrid systems using tech-
niques such as k-induction, as well as to discover potential violations through
bounded model checking. To evaluate the idea of using relational abstractions
of hybrid systems, we generate relational abstractions of some standard bench-
marks and model check these abstractions. We generate relational abstractions
using a combination of quantifier elimination tools (REDLOG, QEPCAD) to
search for templatized invariants [42, 8, 38], and polyhedral analysis of ODEs
using fixed point iteration over cones [36]. We analyze the resulting relational
abstractions using the SAL framework from SRI [34, 40]. Our preliminary ex-
periments are quite promising: our approach has the ability to prove properties
of hybrid systems that are known to be complex, while at the same performing
much more efficiently than symbolic model checkers. The data from our exper-
iments along with an extended version of this paper with proofs will be made
available online 3. We now discuss other related ideas in the literature.

3 Cf. http://www.csl.sri.com/~tiwari/relational-abstraction/

2

Transition Invariants and Variance Analysis: The idea of defining “progress”
invariant predicates over pairs of states, x, x, is well-known in the field of pro-
gram analysis. A lot of work has been done on verifying liveness properties using
ranking functions, transition invariants, and progress invariants [4, 30, 10, 18].
However, there are some important distinctions between these various forms of
relational invariants. Transition invariants [30] capture the relationship between
the current state and any previous state (at a particular program location).
Transition invariants were used to prove termination. Progress invariants cap-
ture the relationship between the current state and the immediately previous
state (at a particular program location) [18]. Progress invariants were used to
compute complexity bounds of programs. The relational abstractions presented
here have a subtle difference: they capture the relationship between the current
state and all previous states after the current mode was entered. When combined
with the entry and exit conditions of a mode, relational invariants are exactly
summaries of that mode. We use relational invariants to create abstractions of
hybrid systems that can be used, for instance, to verify safety properties.

Podelski and Wagner provide a verification procedure for (region) stability
properties of hybrid systems [31], where they derive binary reachability relations
over trajectories of a hybrid system, similar to what is being proposed here.
However, there are two key differences in our methodology: (a) Our approach
deals with the dynamics at each mode up front, deriving relational abstractions.
On the other hand, the technique of Podelski et al. transforms the entire hybrid
system, relying on safety verification built into a tool such as Phaver to derive the
relations [15]. Our goal in this paper is to make the process more efficient using
constraint-based approaches and improve hybrid system safety verification in the
first place. (b) Second, our ultimate goal is to verify safety properties efficiently
as opposed to verifying stability.

Abstractions of Hybrid Systems: Many different types of discrete abstrac-
tions have been studied for hybrid systems including predicate abstraction [2,
41] and abstractions based on invariants [28]. The use of counterexample-guided
abstraction refinement for iterative refinement has also been investigated in the
past (Cf. Alur et al. [2] and Clarke et al. [7], for example). In this paper, the
proposed abstraction yields a discrete but infinite state system.

Hybridization is a technique for converting nonlinear systems into affine sys-
tems by subdividing the invariant region into numerous subregions and approxi-
mating the dynamics as a hybrid system by means of a linear differential inclusion
in each region [23, 3, 12]. However, such a subdivision is expensive as the number
of dimensions increases and often infeasible if the invariant region is unbounded.

Reachability Analysis: Reasoning about the reachable set of states for flows
of nonlinear systems is an important primitive that is used repeatedly in the
analysis of nonlinear hybrid systems. This has been addressed using a wide
variety of techniques in the past, including algebraic techniques, interval analysis,
constraint propagation, and Bernstein polynomials [32, 26, 29, 33, 13].

3

2 Preliminaries

We present the basic definitions and properties of continuous systems defined by
Ordinary Differential Equations (ODE). Let R denote the set of real numbers.
We use a, . . . , z with subscripts to denote (column) vectors and A, . . . , Z to
denote matrices. For an m × n matrix A, the row vector Ai, for 1 ≤ i ≤ m,
denotes the ith row. We define continuous systems using vector fields.

Definition 1 (Vector Field). A vector field F over a set X ⊆ R
n is a function

F : X 7→ R
n mapping each x ∈ X with a field direction F(x).

Vector fields commonly arise from the definition of time-invariant systems.
A time-invariant system defined by the ODE dx1

dt
= f1(x), . . . ,

dxn

dt
= fn(x)

can be identified with the vector field F(x) = (f1(x), . . . , fn(x)). Therefore, a
continuous system S : 〈F, X〉 is defined by a tuple consisting of the vector field
F and a domain (also referred to as a mode invariant) X ⊆ R

n. We now define
the time trajectories of a continuous system:

Definition 2 (Time Trajectories). A time trajectory of a continuous system
S : 〈F, X〉 is a function τ : [0, T) 7→ R

n for some T > 0, such that: τ(t) ∈ X,
for all t ∈ [0, T) and dτ

dt
= F(τ(t)), ∀ t ∈ [0, T).

Note 1. To facilitate presentation, we have (deliberately) restricted our atten-
tion to time-invariant and autonomous systems. The full generalization to time
variant, non-autonomous systems will be presented in an extended version.

If the continuous system S is defined by a Lipschitz continuous vector field
F, then for any x0 ∈ X , we can guarantee the existence of a unique time trajec-
tory τ such that τ(0) = x0 [25]. Henceforth, we will assume that the systems
considered are defined by Lipschitz continuous vector fields. An affine system
S is a continuous system whose dynamics are defined by an affine vector field
dx
dt

= Ax+ b. If f(x) is continuous and differentiable over x then we write ∂xf
to denote the vector of its partial derivatives w.r.t each xi. The Lie derivative
of a function g with respect to a field F is given by LF (g) := (∂xg) · F(x),
where ‘·’ computes the dot product of two vectors.

Positive Invariant Set: A set M ⊆ X is an invariant set for the system S
iff for any x ∈ M , every time trajectory τ : [0, T) 7→ X such that τ(0) = x is
entirely contained in M ; that is, (∀ t ∈ [0, T)) τ(t) ∈M .

Let M be a closed set defined by the assertion
∧m

j=1
gj(x) ≤ 0 for some

finite m. For technical reasons, we assume that each gj(x) is continuous and
differentiable, and M is a “practical set” satisfying the constraint qualification
(Cf. Blanchini & Miani [6], page 104):

(∀ x ∈ X), (∃z) gj(x) + ∂xgj · z < 0 . (1)

Informally, the constraint qualifications ensure that
∧

j gj(x) < 0 represents the
(relative) interior of the setM and

∨

j gj(x) = 0 represents the boundary. It can
be shown that all affine functions gj and positive-semidefinite quadratic forms
(defining n-dimensional ellipsoids) satisfy these conditions.

4

R1 = 1KOhm

L = 2mH

R2 = 0.5KOhm

5V 1mF
S

VC

VL

Fig. 1. Circuit diagram for an LCR circuit with a voltage-controlled switch S.

Theorem 1. The set M :
∧m

j=1
gj(x) ≤ 0 is a positive invariant for the vector

field F if for each j ∈ [1,m] the following assertion holds true: ∀ x ∈ X : gj(x) =
0 ∧

∧

i6=j gi(x) ≤ 0 ⇒ LF (gj) < 0.

The theorem states that under appropriate conditions, a closed set M is
a positive invariant set if the vector field F lies in the tangent cone at each
point on the boundary of the set. It is a direct consequence of Nagumo’s the-
orem, a more general result that holds for non-Lipschitz continuous dynamics
and non-“practical” sets as well. The theorem above provides a basis for vari-
ous techniques for generating invariants for continuous systems using quantifier
elimination and constraint solving [32, 36, 19, 29].

Hybrid Systems: Hybrid systems combine the continuous evolution of state
with discrete, instantaneous jumps that can alter the state as well as the dy-
namics of a system [22].

Definition 3 (Hybrid System). A hybrid system H is defined by a set of
discrete modes 〈m1, . . . ,mk〉, wherein, each mode mi is defined by a continuous
system Si : 〈Fi, Xi〉. The system can change modes through a set of discrete
transitions τ1, . . . , τm. Each transition is defined by a prior mode m0, a post-
mode m1 and a transition relation ρ[x,x′] ⊆ Xm0

×Xm1
, that relates the state

x ∈ Xm0
before the transition to the state x′ ∈ Xm1

obtained as a result of
taking the transition. The initial conditions are given by the initial mode minit

with the initial state set Θ ⊆ Xinit.

A hybrid system is a switched system if each discrete transition of the system
does not modify the continuous state variables. In other words, each discrete
transition relation ρ[x,x′] can be written as ρ : γ(x) ∧ x′ = x, for guard γ(x).

Example 1 (Switched system). Figure 1 shows the circuit diagram for a voltage-
controlled switch that closes whenever the voltage across the capacitor (VC)
exceeds 4V , and opens whenever VC goes below 1V .

With the switch S open, the dynamics of the voltage across capacitor VC
and the voltage across the inductor VL are given by dVC

dt
= 5−VC −VL,

dVL

dt
=

5

−5 + VC − VL. Likewise, with the switch S closed, the dynamics of the voltage
across the inductor are given by dVC

dt
= 5 − 3VC − VL,

dVL

dt
= −5 + 3VC − VL.

In each mode, we assume the mode invariant (VC , VL) ∈ [−10, 10]× [−10, 10].

3 Relational Abstractions

We define relational abstractions for continuous systems, and present proof rules
for checking that a given relation is an abstraction of the time trajectories of a
continuous system defined by ODEs.

Let S : 〈F, X〉 be a continuous system defined by the vector field F, and
domain (invariant) X . It is assumed that S arises from a mode of a larger
hybrid system. Let R(x,y) be a relation over X ×X .

Definition 4 (Relational Abstraction Without Time). The relation R ⊆
R

2n is a (timeless) relational abstraction of a continuous system S if for all
time trajectories τ : [0, T) 7→ X of the system S, it is the case that (∀ t ∈
[0, T)) (τ(0), τ(t)) ∈ R.

Thus, for a time invariant system, a relational abstraction R captures all pairs
of states (x,y) such that it is possible to reach y from x in a finite amount of
time by evolving according to the dynamics of the system.

A relational abstraction R ⊆ X × X is said to be complete for a system S
if whenever R(x,y) holds, there exists a time trajectory τ : [0, T) 7→ X such
that τ(0) = x and τ(t) = y, for some time 0 ≤ t < T . Likewise, a relational
abstraction R is linear if it can be expressed as an assertion in the theory of
linear arithmetic over reals.

Note 2. A continuous system whose dynamics are defined by constants (such
as a mode of a multirate hybrid automaton) has a complete, linear relational
abstraction. For instance, the evolution of the ODE dx

dt
= 2, dy

dt
= −3 can be

abstracted by the relation R(x, y, x′, y′) := x′−x ≥ 0 ∧ 1

2
(x′−x) = −1

3
(y′−y).

In fact, we can show that hybrid systems with constant dynamics in each mode
are bisimilar to a purely discrete transition system through relationalization. On
the other hand, linear vector fields can fail to have complete abstractions.

We now define an “extended system” S ′ from a given system S such that
invariants of S ′ will yield relational abstractions for S.

Definition 5 (Extended System). Let S be a continuous system over x ∈ R
n

defined by vector field F and invariant region X. The extended system S ′ has state
variables (x,y) ∈ R

2n with the dynamics.

dy

dt
= F(y),

dx

dt
= 0 , (2)

invariant region given by X×X and with the initial conditions x(0) = y(0) ∈ X.

We now refine the notion of positive invariants from Section 2 to account for
the presence of initial conditions in the system.

6

Definition 6 (Initialized Positive Invariant). A set M is an initialized pos-
itive invariant for the system S with initial conditions X0 ⊆ M iff for all time
trajectories τ : [0, T) 7→ R

n of S starting from τ(0) ∈ X0 we have τ(t) ∈ M for
all t ∈ [0, T).

An initialized positive invariant is an over-approximation of all states reach-
able through a time trajectory starting from some pre-specified set of initial
states. This is, in fact, the true analog of an invariant for a program.

Note that every positive invariant setM (following the definition in Section 2)
that contains the initial set X0 is an initialized positive invariant. On the other
hand, an initialized positive invariant may not be a general positive invariant.
This is because, it may be possible for trajectories that start from some state in
the set M −X0 to exit the invariant set M .

Lemma 1. A relation R is a relational abstraction of S if and only if R is an
initialized positive invariant for S ′.

Proofs are provided in an extended version of the paper.
Therefore, if we can compute initialized positive invariants of the extended

system S ′ with initial states x(0) = y(0), we may use them to obtain relational
abstractions. In this work, we use various techniques that can compute positive
invariants M (using the definition in Section 2) of systems S that contain some
initial set of states X0.

Theorem 2. Let M be a positive invariant of the extended system S ′ containing
the initial states X0 = {(x,x) | x ∈ X}. Then M is a relational abstraction of
the system S.

Proof. We note that a positive invariant M containing the initial states X0 is
also an initialized positive invariant. I.e, for any trajectory σ starting from X0,
we know that σ(t) ∈M since σ(0) ∈M . The rest follows from Lemma 1.

The converse of the theorem above does not hold, in general. As discussed
above, a positive invariant M containing the initial set of states X0 is not nec-
essarily an initialized positive invariant.

Note 3. The extended system can be expressed, equivalently, using the (time
reversed) system instead of the system (2),

dy

dt
= 0,

dx

dt
= −F(x) (3)

with the initial conditions x(0) = y(0).
In other words, a relational abstraction R(x,y) is a positive invariant of one

of two dynamical systems: System 2 where x is frozen in time and y evolves
according to the vector field F, and System 3 where y is frozen in time and x

evolves according to the time reversed field −F.

Proof Rule for Relational Abstractions The proof rule for relational ab-
stractions can be derived from the proof rule for invariant sets. Furthermore,

7

techniques for synthesizing invariants can be directly used to synthesize rela-
tional abstractions. We now present a proof rule for checking if a relation R is a
sound abstraction. We assume that the relation R is specified as an assertion of
the form

R(x,y) : g1(x,y) ≤ 0 ∧ . . . ∧ gm(x,y) ≤ 0 ,

wherein g1, . . . , gm are continuous and differentiable functions over R2n. Further-
more, for technical reasons, we assume that the set R ∩ (X ×X) in R

2n defined
by the relation R restricted to X is a closed set and gj satisfy the constraint
qualifications in (1).

Definition 7. The following rules allow us to conclude that the relation R, as
specified above, is a relational abstraction of a continuous system S:

Initialization: ∀ x ∈ X, R(x,x) , and

Flow Preservation: We may use the rule for forward time:

∀j ∈ [1,m], ∀ x,y ∈ X,
∧

i6=j

gi(x,y) ≤ 0 ∧ gj(x,y) = 0 ⇒ (∂ygj)·F(y) < 0 ,

or the rule for time reversed dynamics:

∀j ∈ [1,m], ∀ x,y ∈ X,
∧

i6=j

gi(x,y) ≤ 0 ∧ gj(x,y) = 0 ⇒ (∂xgj)·(−F(x)) < 0 .

Example 2. We now consider relationalizations for the inductor-capacitor-resistor
(LCR) circuit in Example 1. Consider the mode when the switch is open with
dynamics given by dVC

dt
= 5− VC − VL,

dVL

dt
= −5 + VC − VL.

We wish to show that the relation R(VC0, VL0, VC , VL), represented by the
assertion below, is a relational abstraction: (VC0, VC , VL0, VL) ∈ [−10, 10]4 ∧
VC + 5VL ≤ VC0 + 50 ∧ 4VL ≤ VL0 + 30 ∧ 2VL − 3VC ≤ 2VL0 + 30.

Let us consider the inequality VC + 5VL − VC0 − 50 ≤ 0. For the initial
condition, we set VC = VC0 and VL = VL0 and verify that 5VL0 ≤ 50 holds over
the invariant region (VC0, VL0) ∈ [−10, 10]2. Likewise, the Lie derivative of the
left-hand side expression is given by 4VC − 6VL − 20. We verify the following
entailment using an SMT solver

R(VC0, VL0, VC , VL) ∧ VC + 5VL − VC0 − 50 = 0 |= 4VC − 6VL − 20 < 0 .

The remaining constraints are similarly verified.

Disjunctive Relational Abstraction Often, the relational abstraction can
be represented as the disjunction R(x,y) :

∨m

j=1
Rj(x,y) of finitely many rela-

tions R1, . . . , Rm, such that (a) each relation Rj is represented by an assertion
over x,y satisfying the flow preservation proof rule in Definition 7, and (b) the
disjunctive relation R(x,y) satisfies the initialization rule.

8

Example 3. Consider, once again, the LCR circuit in Example 1. The relation
below is a disjunctive relational abstraction for the switch open mode:

|VL| ≤ max (|VL0|, |VC0 − 5|) ∧ |VC − 5| ≤ max (|VL0|, |VC0 − 5|) .

Verifying this fact can be performed by expanding the definitions of max and
| · |. The resulting assertion is cast in the disjunctive normal form, and the flow
preservation proof rule in Definition 7 can be checked for each disjunct. The
initialization rule can be checked for the whole disjunction.

3.1 Relational Abstractions of Hybrid Systems

A relational abstraction of a hybrid system is constructed by replacing each con-
stituent continuous system by its relational abstraction and keeping the discrete
transitions unchanged. Specifically, if H is a hybrid system (Definition 3) with k
modes and n real-valued variables, then the relational abstraction of H is a state
transition system over the state space {1, . . . , k} ×R

n whose transition relation
is the union of the discrete transitions of H and the relational abstractions of
the k modes of H.

Several classes of hybrid automata, such as timed automata and linear hybrid
automata, have complete relational abstractions. Since the discrete transitions
are not abstracted, we only need to ensure that the relational abstraction of the
continuous dynamics are complete.

Timed Automata: The continuous dynamics of a timed automata with n
clocks, x1, . . . , xn, can be abstracted by the relation ∧n

i=2
(x1 − x10 = xi − xi0)∧

x1 ≥ x10. It is easy to check that this is a complete abstraction.

Multirate Automata: The continuous dynamics defined by ODEs dx1

dt
=

c1, . . . ,
dxn

dt
= cn, where c1, . . . , cn are nonzero constants, can be abstracted by

the relation ∧n
i=2

(x1−x10

c1
= xi−xi0

ci
) ∧ x1−x10

c1
≥ 0. Again, it is easy to check

that this is a complete abstraction. Note that the result for timed automata is
obtained as a special case where all ci are 1.

Rectangular Automata: In rectangular automata, the dynamics in each
mode are specified as a1 ≤ dx1

dt
≤ b1, . . . , an ≤ dxn

dt
≤ bn. Assuming 0 < ai ≤ bi

for all i, these dynamics can be abstracted by the relation

0 ≤ max

(

x1 − x10
b1

, . . . ,
xn − xn0

bn

)

≤ min

(

x1 − x10
a1

, . . . ,
xn − xn0

an

)

Again, it is easy to check that this is a complete abstraction.

Linear Hybrid Automata: In linear hybrid automata, the dynamics in
each mode are specified as a linear constraint φ(ẋ) over the dotted variables ẋ.
Without loss of generality, we can restrict φ to be of the form A1ẋ ≤ b1 ∧ A2ẋ ≥
b2, where A1, A2 are n×n rational matrices and b1, b2 are n×1 vectors consisting
of positive rationals. These dynamics can be abstracted by the relation

0 ≤ max(A1(x− x0)./b1) ≤ min(A2(x− x0)./b2)

9

Invariant
Generator

k-induction
BMC (SAL)

Hybrid
System

Discrete
System

Counterexample
or Proof

Fig. 2. Framework for implementing a safety verification engine using relationalization.

where ./ is componentwise division. This is again a complete abstraction. Note
that the result for rectangular automata is obtained as a special case where
A1, A2 are identity matrices.

Linear Systems with Rational Eigenvalues: First consider the linear
system dx

dt
= Dx, where D is a diagonal matrix with rational entries λ1, . . . , λn.

For simplicity assume λi 6= 0 for all i. Since they are rational, the λi’s can be
written as integer multiples of some base rational λ, that is, λ1 = c1λ, . . . , λn =
cnλ for some rational λ and integers c1, . . . , cn. A complete relational abstraction
of the linear system is given by

(∃r > 0)

n
∧

i=1

[xi = rcixi0]

If A is not diagonal, but diagonalizable with all rational eigenvalues, then a
relational abstraction can be obtained in the same way after doing a change of
variables transformation. If A is nilpotent, then again the linear system can be
shown to have a complete relational abstraction.

4 Implementation

Figure 2 shows the overall verification framework. It consists of two parts: (a)
an invariant generator for generating the relational abstraction of the input hy-
brid system, and (b) a verifier for analyzing the relational abstraction using
techniques such as k-induction and bounded model checking (BMC). Note that
other verification techniques/tools are equally applicable here. Our framework
abstracts each mode up front. It is possible, in practice, to implement the ab-
straction on-the-fly, whenever a previously unseen mode is entered.

We now discuss the implementation of relational abstraction, restricting our
attention here to techniques that have been employed in our experiments. We pri-
marily apply template-based methods for generating relational abstractions [9,
19]. Template-based techniques formulate an unknown parameterized form for
the required invariant and cast the problem of generating the invariant as an
∃∀ formula. These ∃∀ formulas can be solved directly using quantifier elimina-
tion techniques over the theory of reals [42, 8], or they can be first converted
into ∃ formulas through dualization. The ∃ formulas, which contain nonlinear
constraints over the unknown parameters, can be solved using either fixed point
iteration over cones [36], or using bit-vector solvers [19], or by simulating the
system numerically [20]. In our experiments, we use a specialized quantifier elim-
ination technique [38] and the tool TimePass, which implements a fixed point

10

iteration with widening over polyhedral cones for affine ODEs [36]. We consider
three types of abstractions affine, eigen, and box.

Affine abstractions Affine abstractions employ the template: a·x+b·x0 ≥ a0.
In practice, the template: a(x − x0) ≥ a0 suffices after taking the initiation
into account. Affine relational abstractions are computationally inexpensive to
generate, but they are also of relatively poor quality.

Eigen abstractions For linear systems, such as dx/dt = Ax, whenever A
has real eigenvalues, useful relational abstractions can be generated using the
eigenvectors of AT corresponding to those real eigenvalues [39]. Here, AT denotes
the transpose of matrix A. Specifically, if c is such that ATc = λc, then by simple
algebraic manipulation, we obtain d

dt
(c1x1 + . . .+ cnxn) = λ(c1x1 + . . .+ cnxn)

where c := [c1; . . . ; cn] and x := [x1; . . . ;xn]. Let p denote the linear expression
c1x1 + . . . + cnxn and let p0 denote the linear expression c1x10 + . . . + cnxn0.
Here, xi0 denotes the old value of xi. If λ < 0, then we know that the value of p
approaches zero monotonically. Consequently, we get the relational abstraction
(p0 < 0 ⇒ p0 ≤ p < 0) ∧ (p0 > 0 ⇒ p0 ≥ p > 0). Similarly, we can write the
relational invariants for the case when λ > 0 and λ = 0.

Box abstractions Box relational abstractions are Boolean combinations of
affine relational invariants of the form

max (a1|x1|, . . . , an|xn|) ≤ max (a1|x10|, . . . , an|xn0|)

where ai’s are unknown nonnegative real numbers. Discovering appropriate val-
ues for ais does not require expensive quantifier elimination. We can find box
relational invariants in O(n3) time. Box invariants do not always exist: sufficient
(and necessary) conditions for their existence are known [1]. Example 3 shows a
box invariant for the switch open mode.

5 Experimental Evaluation

We evaluate our approach over the navigation benchmarks [14], to experimen-
tally evaluate the usefulness of relational abstractions for verifying hybrid sys-
tems. The navigation benchmarks model a vehicle moving in a 2-dimensional
rectangular space [0,m− 1]× [0, n− 1]. This space is partitioned in m× n cells.
Let x, y denote the position of the vehicle and vx, vy denote its velocity. Then
the dynamics of the vehicle in any particular cell are given by the ODEs:

dx
dt

= vx
dvx
dt

= a11(vx − b) + a12(vy − c)
dy

dt
= vy

dvy
dt

= a21(vx − b) + a22(vy − c)

where the matrix A := [a11, a12; a21, a22] and the direction (b, c) are parameters
that can potentially vary (for each of the cells)4.

Every benchmark in the suite is specified by fixing the matrix A, the number
of cells m × n, the direction (b, c) in each cell, and initial intervals for each

4 The matrix A is Hurwitz: the dynamics for (vx, vy) asymptotically converge to (b, c).

11

Benchmark Affine Invs Affine+Eigen Invs Affine+Eigen+Box Invs

depth status time(s) depth status time(s) depth status time(s)

nav01 4 F 0.63 4 F 0.88 4 F 1.91
nav01 5 P 0.75 5 P 0.91 5 P 1.36

nav02 4 F 0.64 4 F 0.87 4 F 1.8
nav02 5 P 0.68 5 P 1.04 5 P 3.33

nav03 4 F 0.60 4 F 0.91 4 F 1.72
nav03 5 P 0.67 5 P 1.05 5 P 2.7

nav04 3 CE 0.49 8 F 3.21 8 F 34.883
nav04 4 P 0.75+0.99 4 P 0.98+2.21

nav05 2 CE 0.47 8 F 3.85 8 F 37.31
nav05 8 P 2.15+2.50 8 P 5.38+11.05

nav06 4 CE 0.61 8 F 18.01 8 F 494.5
nav06* 4 CE 1.03 8 P 21.80+7.42 8 P 40.22+35.08

nav07 5 CE 0.66 - - - 5 F 69.9
nav07 - - - 6 P 6.25

nav08 4 CE 0.52 - - - 6 CE 0.95

nav09 4 CE 0.57 4 CE 1.45 4 CE 19.87

nav10 3 CE 0.44 3 CE 0.99 3 CE 0.95

Table 1. Comparison of various abstractions over the NAV benchmarks. All experi-
ments were performed on an Intel Xeon E5630 2.53GHz single-core processor (x86 64
arch) with 4GB RAM running Ubuntu Linux 2.6.32-26. Legend — depth: k-induction
depth, time: time taken by verifier, status: P: Proved Property, CE: k-induction
base case fails and counterexample is produced, F: inductive step fails, no proofs or
counterexample. Note: Relational eigeninvariants are inapplicable for nav07, nav08
(indicated by -). k-induction timings reported as t1 + t2 indicate that an auxiliary
lemma was used. t1 is the time to prove the property, and t2 to discharge the lemma.

of the four state variables x, y, vx, vy. Our experiments focus on proving the
unreachability of a distinct cell marked B for each benchmark instance [14].

In our experiments, we verify the safety property for the navigation bench-
marks using k-induction over the relational abstraction. We use the SAL infinite
bounded model checker, with the k-induction flag turned on (sal-inf-bmc -i),
which uses the SMT solver Yices in the back end. Table 1 reports the results. For
each benchmark, we report the depth used for performing k-induction (under
“depth”), the output of k-induction (under “status”), and the time it took (un-
der “time”). There are three possible outputs: (a) the base case of k-induction
fails and a counterexample is found (denoted by “CE”), (b) the base case is
proved, but the induction step fails; i.e., no counterexample is found, but no
proof is found either (denoted by “F”), (c) the base case and the induction step
are successfully proved (denoted by “P”). Since we perform k-induction on an
abstraction, the counterexamples may be spurious, but the proofs are not. As
Table 1 indicates, relational abstractions are sufficient to establish safety of the
benchmarks nav01–nav05, nav06*, and nav07. The system nav06* is the same
as nav06 but with a slightly smaller set of initial states. However, the proof fails
on nav06 and nav08–nav10. There are two reasons for failure: (a) poor quality
of abstraction, which is reflected in entries “CE” in Table 1, and (b) inability

12

to find suitable k-inductive lemmas. This happens in the case of nav06, where
the proof fails without yielding a counterexample. As discussed in Section 4, we
employed three kinds of relational abstractions for each mode: affine, eigen, and
box. Table 1 also shows performance of each of these techniques.

Affine abstractions In Table 1, Columns (2)–(4) report results on affine
relational abstractions. We note that affine abstractions are sufficient to prove
safety of benchmarks nav01–nav03, but they fail on all other benchmarks.

Eigen abstractions The dynamics in each mode of the benchmarks nav01–
nav06 and nav10 have negative real eigenvalues. In Table 1, Columns (5)–(7)
present results using a relational abstraction obtained by combining affine and
eigen abstractions. For nav04–nav06, the combination eliminates the spurious
counterexamples. However, no such benefit is seen on nav08–nav10 benchmarks.
The dynamics in benchmarks nav07–nav08 do not have any real eigenvalues.

Box abstractions The dynamics of all modes of all benchmarks in Table 1
satisfy all the conditions for the existence of box invariants, which enables us
to generate box relational invariants for each of them. Columns (8)–(10) report
results using a relational abstraction obtained by combining affine, eigen, and
box relational invariants. In the case of nav07, where there are no eigen invari-
ants, addition of box invariants eliminated the counterexamples from the model
and even enabled verification of safety using k-induction with depth 6. However,
no such benefit is seen for benchmarks nav08–nav10. Also, when eigen invari-
ants exist, then adding box invariants does not seem to improve the quality of
abstraction. Note that the use of box invariants increases the time taken to per-
form k-induction: this is expected since box invariants have a complex Boolean
structure, which increases the search space of the SMT solver.

Comparison with Other Tools: Comparing our timings with those reported
in the literature for the very same benchmarks, especially previous work by one
of the authors [35], we note that our techniques are at least an order of magnitude
faster on the larger benchmarks (10s of seconds vs. 100s−1000s of seconds using
template-based flowpipes [35]). A detailed comparison will be made available in
our extended version.

Disjunctive and conjunctive relational invariants One plausible reason
for the failure to prove nav08–nav10 benchmarks is that we do not consider
invariants of richer Boolean structure, such as 2-disjunctive invariants of the
form p(x0) ≥ 0 ⇒ p(x,x0) ≥ 0. Even though eigen invariants have this form,
there may be other invariants of this form that are not related to the eigenvectors
of the A-matrix. We also do not consider conjunctive invariants of the form
p1 ≥ 0 ∧ p2 ≥ 0. Note that p1 ≥ 0 and p2 ≥ 0 need not separately be inductive,
but their conjunction could be inductive. For this reason, we often fail to find
them by just considering templates for p1 ≥ 0 and p2 ≥ 0 separately.

Overcoming limitations of k-induction Even if the relational abstractions
are strong enough to rule out all unsafe behaviors, we may still fail to prove
the system safe using k-induction. This will happen if the safety property is
not k-inductive for any k. This is possibly the case for benchmarks nav04-nav06.

13

Type of Relational Invariant Time (no state invariant) Time (with state invariant)

Affine Inequality 60ms 6740ms

Affine Equality + Eigen 70ms 340ms

Table 2. Time (in milliseconds) to generate all affine equality, inequality and eigen
relational invariants for all modes of all the benchmarks.

However, we are able to successfully prove safety of nav04 and nav05 by using an
auxiliary lemma. The auxiliary lemma was itself verified by k-induction again.
For nav06, we are unable to find any suitable auxiliary lemma at this time.

Another plausible cause for the failure of k-induction is the introduction of
spurious loops in the relational abstraction, where no such loops exist in the
concrete system. Analysis of the counterexamples to the induction step in nav06
(generated by sal-inf-bmc -i -ice) strongly indicates this possibility.

One way to eliminate spurious loops in the abstract is based on assuming that
the concrete system stays in a mode for some small, but fixed, amount of time.
Under the assumption that the concrete system stayed in a mode for at least
0.1 second, we strengthened the affine invariants of nav06, allowing us to prove
safety of nav06 (for a slightly smaller set of initial states than what is specified
in the nav06 benchmarks). These results are reported in row nav06* in Table 1.
We conjecture that this trick will eliminate all the spurious counterexamples in
the other navigation benchmarks.

Quantifier elimination for generating relational invariants The new
redlog/qepcad combination [38] is quite effective in generating all the affine and
eigen invariants used in our experiments. Table 2 provides the time taken by all
runs of the quantifier elimination process to generate these invariants. We report
times for two cases depending on whether we used a template of the form ψ[x0] ⇒
R(x0,x), with a state invariant antecedent guarding the relation. The times are
negligible since the benchmarks are 4-dimensional systems (they all involve only
four real-valued variables) with relatively simple (linear) dynamics in each mode.
As a final remark, note that quantifier elimination does not return specific values
for the parameters, but constraints on the unknown parameters. We choose
values by solving a satisfiability problem. In our examples, the constraints after
elimination were simple enough to perform this step manually. The redlog files
that were used to generate the relational invariants and SAL models of the
relational abstraction are publicly available5.

6 Conclusions

We have presented an approach for verifying hybrid systems based on relational
abstractions. Relational abstractions can be constructed compositionally by ab-
stracting each mode separately. Our initial results are quite encouraging. The
technique successfully solves some of the standard benchmark examples an or-
der of magnitude faster than symbolic model checkers. The abstractions can be
coarse, and k-induction itself can be challenging to apply on hybrid systems in

5 http://www.csl.sri.com/~tiwari/relational-abstraction/

14

practice. Our future work will focus on improving the speed and precision of
relational abstraction generation to enable fast proofs for complex systems. We
also wish to apply our techniques to nonlinear hybrid systems in order to derive
linear arithmetic abstractions.

References

1. A. Abate, A. Tiwari, and S. Sastry. Box invariance in biologically-inspired dynam-
ical systems. Automatica, 45(7):1601–1610, July 2009.

2. R. Alur, T. Dang, and F. Ivančić. Counter-example guided predicate abstraction
of hybrid systems. In TACAS, volume 2619 of LNCS, pages 208–223. Springer,
2003.

3. E. Asarin, T. Dang, and A. Girard. Hybridization methods for the analysis of
nonlinear systems. Acta Informatica, 43:451—476, 2007.

4. J. Berdine, A. Chawdhary, B. Cook, D. Distefano, and P. W. O’Hearn. Variance
analyses from invariance analyses. In POPL, pages 211–224. ACM, 2007.

5. M. Berz and K. Makino. Performance of Taylor model methods for validated
integration of ODEs. LNCS, 3732:65–74, 2005.

6. F. Blanchini and S. Miani. Set-Theoretic Methods in Control. Springer, 2008.
7. E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided

abstraction refinement for symbolic model checking. J. ACM, 50(5):752–794, 2003.
8. G. E. Collins and H. Hong. Partial cylindrical algebraic decomposition for quan-

tifier elimination. Journal of Symbolic Computation, 12(3):299–328, 1991.
9. M. Colón, S. Sankaranarayanan, and H. Sipma. Linear invariant generation using

non-linear constraint solving. In CAV, volume 2725 of LNCS, pages 420–433.
Springer, July 2003.

10. M. Colón and H. Sipma. Synthesis of linear ranking functions. In TACAS, volume
2031 of LNCS, pages 67–81. Springer, 2001.

11. P. Cousot and R. Cousot. Abstract Interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In ACM
Principles of Programming Languages, pages 238–252, 1977.

12. T. Dang, O. Maler, and R. Testylier. Accurate hybridization of nonlinear systems.
In HSCC ’10, pages 11–20. ACM, 2010.

13. T. Dang and D. Salinas. Image computation for polynomial dynamical systems
using the Bernstein expansion. In CAV, volume 5643 of LNCS, pages 219–232.
Springer, 2009.

14. A. Fehnker and F. Ivanĉić. Benchmarks for hybrid systems verification. In HSCC,
volume 2993 of LNCS, pages 326–341. Springer, 2004.

15. G. Frehse. PHAVer: Algorithmic Verification of Hybrid Systems Past HyTech.
STTT, 10(3), June 2008.

16. A. Girard. Reachability of uncertain linear systems using zonotopes. In HSCC,
volume 3414 of LNCS, pages 291–305. Springer, 2005.

17. C. L. Guernic and A. Girard. Reachability analysis of linear systems using support
functions. Nonlinear Analysis: Hybrid Systems, 4(2):250 – 262, 2010.

18. S. Gulwani, S. Jain, and E. Koskinen. Control-flow refinement and progress invari-
ants for bound analysis. In PLDI, 2009.

19. S. Gulwani and A. Tiwari. Constraint-based approach for hybrid systems. In CAV,
volume 5123 of LNCS, pages 190–203, 2008.

15

20. A. Gupta, R. Majumdar, and A. Rybalchenko. From tests to proofs. In TACAS,
volume 5505 of Lecture Notes in Computer Science, pages 262–276. Springer, 2009.

21. N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time systems
using linear relation analysis. FMSD, 11(2):157–185, 1997.

22. T. A. Henzinger. The theory of hybrid automata. In LICS’96, pages 278–292.
IEEE, 1996.

23. T. A. Henzinger, P.-H. Ho, and H. Wong-Toi. Algorithmic analysis of nonlinear
hybrid systems. IEEE Transactions on Automatic Control, 43:540–554, 1998.

24. A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques for reachability analysis.
In HSCC, volume 1790 of LNCS, pages 202–214. Springer, 2000.

25. J. D. Meiss. Differential Dynamical Systems. SIAM publishers, 2007.
26. V. Mysore, C. Piazza, and B. Mishra. Algorithmic algebraic model checking II: De-

cidability of semi-algebraic model checking and its applications to systems biology.
In ATVA, volume 3707 of LNCS, pages 217–233. Springer, 2005.

27. F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program Analysis. Springer,
1999.

28. M. Oishi, I. Mitchell, A. M. Bayen, and C. J. Tomlin. Invariance-preserving ab-
stractions of hybrid systems: Application to user interface design. IEEE Trans. on
Control Systems Technology, 16(2), Mar 2008.

29. A. Platzer and E. Clarke. Computing differential invariants of hybrid systems as
fixedpoints. Formal Methods in Systems Design, 35(1):98–120, 2009.

30. A. Podelski and A. Rybalchenko. Transition invariants. In LICS, pages 32–41.
IEEE, 2004.

31. A. Podelski and S. Wagner. Model checking of hybrid systems: From reachability
towards stability. In HSCC, volume 3927 of LNCS, pages 507–521. Springer, 2006.

32. S. Prajna and A. Jadbabaie. Safety verification using barrier certificates. In HSCC,
volume 2993 of LNCS, pages 477–492. Springer, 2004.

33. S. Ratschan and Z. She. Safety verification of hybrid systems by constraint prop-
agation based abstraction refinement. In HSCC, volume 3414 of LNCS, pages
573–589. Springer, 2005.

34. J. Rushby, P. Lincoln, S. Owre, N. Shankar, and A. Tiwari. Symbolic analysis
laboratory (SAL). Cf. http://www.csl.sri.com/projects/sal/.

35. S. Sankaranarayanan, T. Dang, and F. Ivančić. Symbolic model checking of hybrid
systems using template polyhedra. In TACAS, volume 4963 of LNCS, pages 188–
202. Springer, 2008.

36. S. Sankaranarayanan, H. B. Sipma, and Z. Manna. Fixed point iteration for com-
puting the time-elapse operator. In HSCC, LNCS. Springer, 2006.

37. M. Sheeran, S. Singh, and G. St̊almarck. Checking safety properties using induction
and a sat-solver. In FMCAD, volume 1954 of LNCS, pages 108–125. Springer, 2000.

38. T. Sturm and A. Tiwari. Verification and synthesis using real quantifer elimination,
2011. Submitted.

39. A. Tiwari. Approximate reachability for linear systems. In HSCC, volume 2623 of
LNCS, pages 514–525. Springer, 2003.

40. A. Tiwari. HybridSAL: A tool for abstracting HybridSAL specifications to SAL
specifications, 2007.

41. A. Tiwari. Abstractions for hybrid systems. Formal Methods in Systems Design,
32:57–83, 2008.

42. V. Weispfenning. Quantifier elimination for real algebra—the quadratic case and
beyond. In Applied Algebra and Error-Correcting Codes (AAECC), pages 85–101,
1997.

16

