

An Algorithm for Learning Switched Linear Dynamics from Data.

Guillaume Berger* Monal Narasimhamurthy* Kandai Watanabe

University of Colorado Boulder, USA.

Morteza Lahijanian

Sriram Sankaranarayanan

Problem Formulation

Switched System Identification

Inputs: Full-state observations of a system (with noise):

$$(\mathbf{x}(t), \mathbf{x}(t+1)), t = 0, \dots, N-1,$$

Number of modes m, Error tolerances $\epsilon, \tau > 0$,

Output: Find $m \ d \times d$ matrices A_1, \ldots, A_m s.t.

$$(\forall \ t) \ (\exists \ j) \ ||\mathbf{x}(t+1) - A_j\mathbf{x}(t)||_{\infty} \leq \qquad \begin{array}{c|c} \epsilon ||\mathbf{x}(t)|| & + & \tau \\ \hline \uparrow & \uparrow & \uparrow \\ \hline \text{Relative Error} & \text{Absolute Error} \end{array}$$

Applications

- . Cyber-Physical Systems, Robotics, and Control.
- 2. Machine Learning: k-linear regression problem fit $k \geq 2$ "straight lines" to data.

Theorem (Lauer and Bloch [4, Theorem 5.1]). The problem above is NP-hard.

Mixed Integer LP Formulation (MILP): Exponential time in number of data points N.

Contributions

- Reformulation of problem with a gap.
- 2. More efficient algorithm:
- Linear in number of data points N,
- Exponential in number of modes m,
- ullet Exponential in the dimensionality of state space d.
- 3. Empirical evaluation and comparison against related techniques including MILP.

Reformulation with a Gap

Original Problem

There are two possible outcomes:

Yes: Successfully found m matrices satisfying error tolerances ϵ, τ .

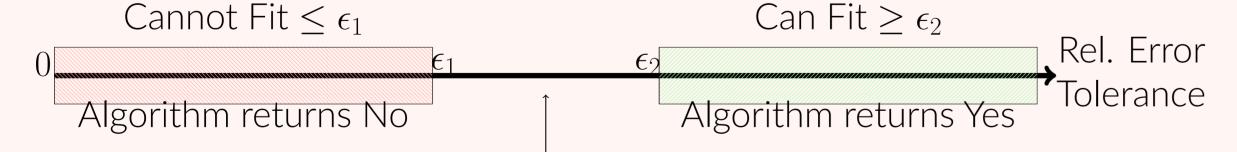
No: No such matrices can fit the given data.

Idea # 1: Reformulate problem with a gap.

Input two relative error tolerances $\epsilon_1 < \epsilon_2$.

Yes: Successfully found m matrices satisfying error tolerances ϵ_2, τ .

No: No such matrices can fit data for error tolerances ϵ_1, τ .



Algorithm may return Yes or No

Main Result

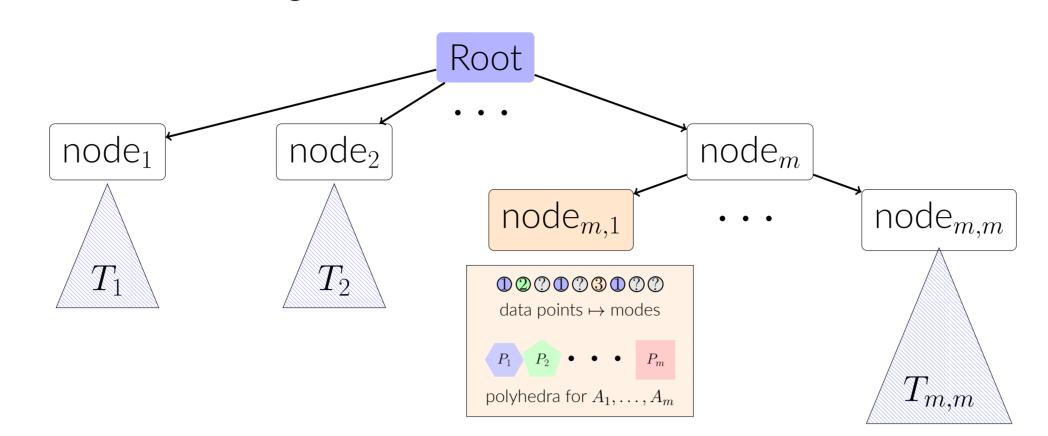
Algorithm with time complexity

Lin. over # data
$$O\big(\,m^{\left[C\;m\;d^3\;\left|\log(d\gamma/(\epsilon_2-\epsilon_1))\right|\right]}\times\,N\,\,\times\,\operatorname{poly}(m,d)\big)$$
 Exp. m , # dim., $\frac{1}{\epsilon_2-\epsilon_1}$ Solving LPs

- Combination of simple ideas.
- 2. Easy to implement and works well in practice.

Overall Algorithm

Organize constraints using a tree data structure.



Each node carries the following information.

- Data points that have been assigned to modes.
- Unassigned data points.
- Polyhedra P_1, \ldots, P_m representing constraints for A_1, \ldots, A_m resp.

Initial Tree

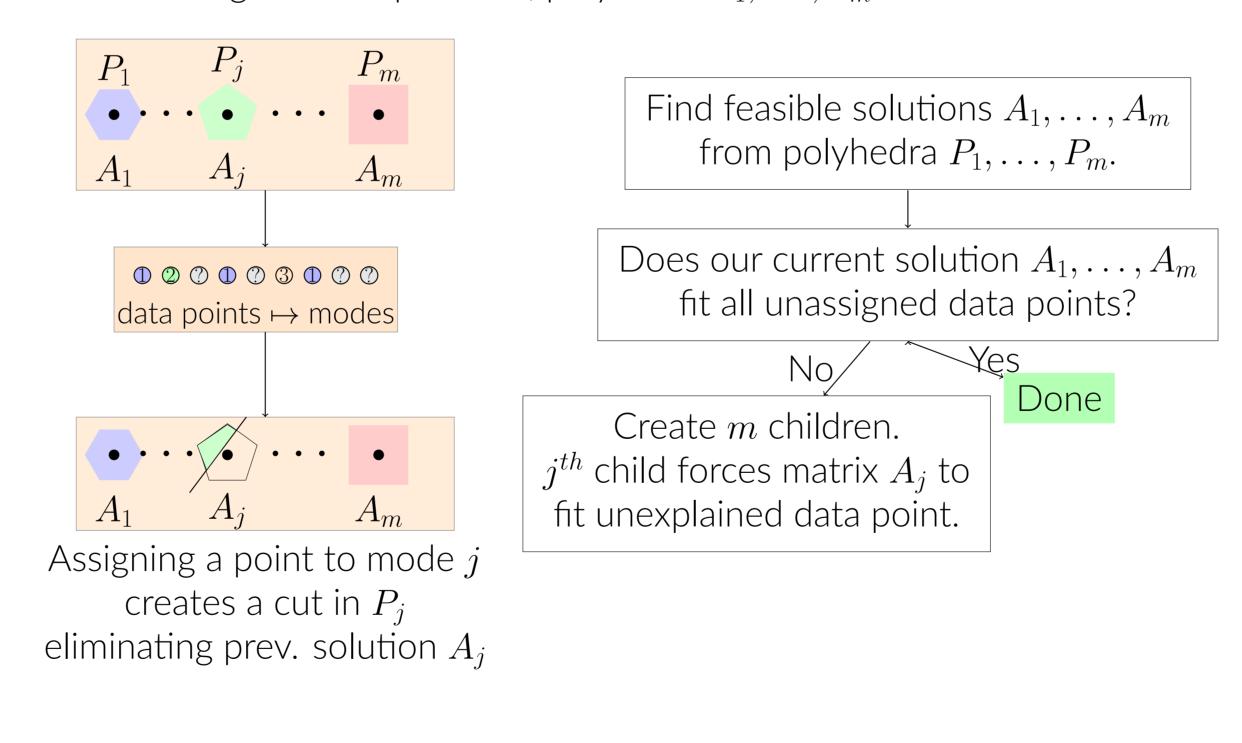
- Single root node with all data points unassigned.
- Polyhedra P_1, \ldots, P_m are initialized to compact sets.

Key Steps of the Algorithm:

- . Choose a previously unexplored leaf.
- 2. Expand the leaf (see below):
- Discover matrices A_1, \ldots, A_m or
- Add *m* new children.

Exploring a Tree Leaf

Leaf with unassigned data points U, polyhedra P_1, \ldots, P_m .



Time Complexity

Idea # 2: Choose maximum volume ellipsoid (MVE) center of polyhedra. \longrightarrow Volume shrinks by at least $\alpha < 1$ [1, § 4.3].

Idea # 3: If a leaf has solutions, then its volume \geq a fixed lower bound.

 \longrightarrow The gap formulation $(\epsilon_2 - \epsilon_1 > 0)$ is essential for this.

Ideas #1 + #2 + #3: Upper bound on the maximum depth of the tree. → Bound on time complexity of the algorithm.

Implementation

Implemented in the Python programming language.

- Gurobi LP solver (free academic license).
- Use Chebyshev center instead of MVE center.

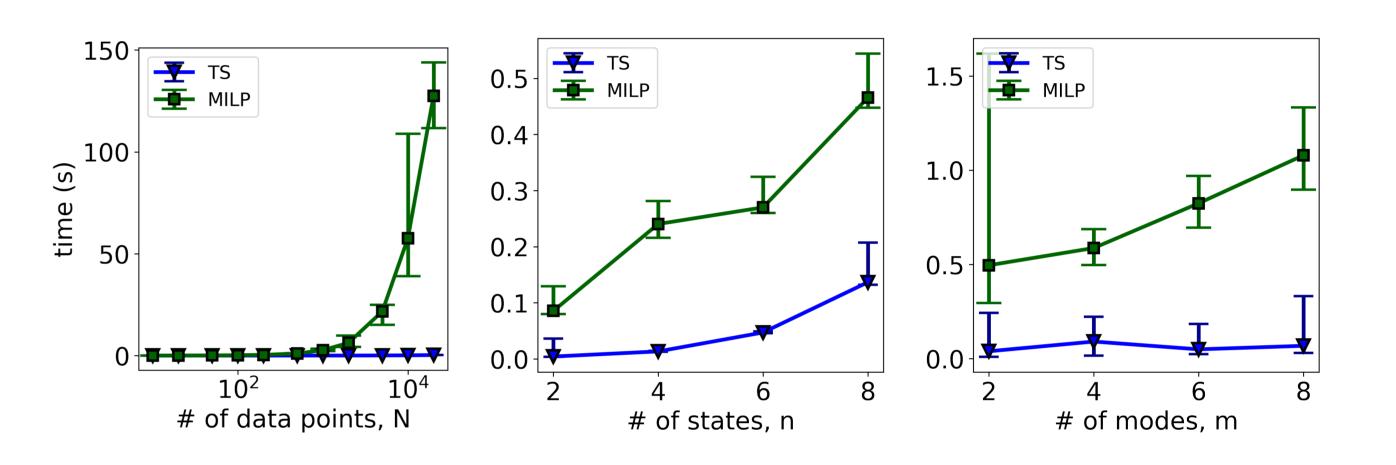
Comparison against two methods:

MILP Solver: Comparison with MILP.

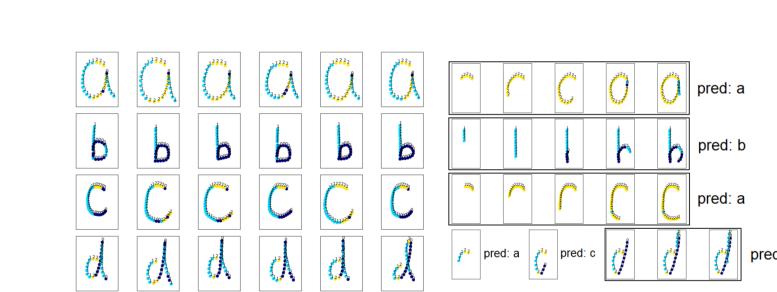
- Implemented using Gurobi: state-of-the-art solver [2].
- Worst-case exponential in the number of data points

Clustering-Based: Fast method but inexact [3].

Microbenchmark Comparisons

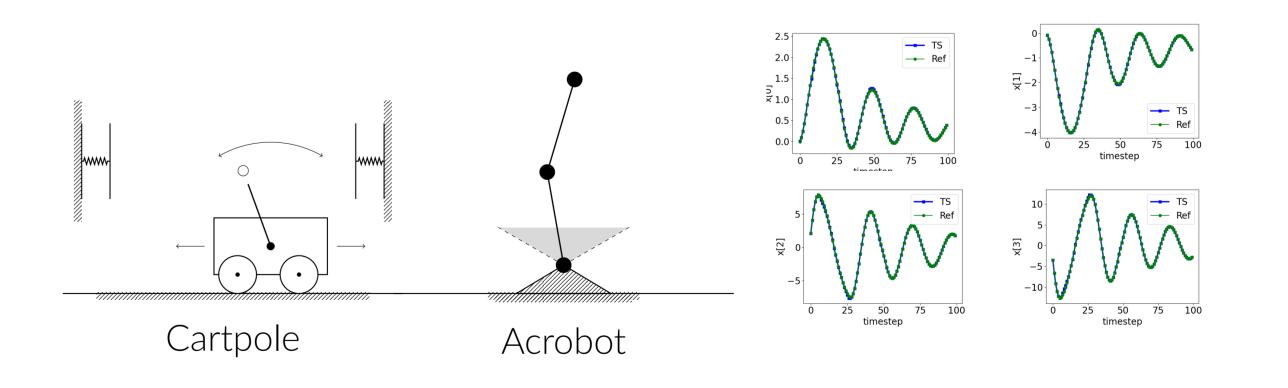


Handwritten Character Modeling



- Handwritten alphabet on a tablet.
- Combine our approach with automata learning (EDSM).
- Successfully learn model to predict written character.

Mechanical Systems with Contact Forces



References

- [1] Stephen Boyd and Lieven Vandenberghe. Localization and cutting-plane methods. From Stanford EE 364b lecture notes, 2007.
- [2] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022.
- Estimating the probability of success of a simple algorithm for switched linear regression. Nonlinear Analysis: Hybrid Systems, 8:31–47, 2013.
- [4] Fabien Lauer and Gérard Bloch. Hybrid system identification: theory and algorithms for learning switching models. Springer, 2019.