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Abstract— In this paper, we focus on finding positive invari-
ants and Lyapunov functions to establish reachability and stabil-
ity properties, respectively, of polynomial ordinary differential
equations (ODEs). In general, the search for such functions is
a hard problem. As a result, numerous techniques have been
developed to search for polynomial differential variants that
yield positive invariants and polynomial Lyapunov functions that
prove stability, for systems defined by polynomial differential
equations. However, the systematic search for non-polynomial
functions is considered a much harder problem, and has
received much less attention.

In this paper, we combine ideas from computer algebra with
the Sum-Of-Squares (SOS) relaxation for polynomial positive
semi-definiteness to find non polynomial differential variants
and Lyapunov functions for polynomial ODEs. Using the well-
known concept of Darboux polynomials, we show how Darboux
polynomials can, in many instances, naturally lead to specific
forms of Lyapunov functions that involve rational function,
logarithmic and exponential terms. We demonstrate the value of
our approach by deriving non-polynomial Lyapunov functions
for numerical examples drawn from the literature.

I. INTRODUCTION

Positive invariants and Lyapunov functions are important
tools for analyzing the reachability and stability of control
systems modeled as Ordinary Differential Equations (ODEs).
In this paper, we focus on techniques for automatically
discovering non-polynomial functions in the form of differ-
ential variants to establish positive invariants, and Lyapunov
functions to establish asymptotic stability of polynomial
differential equations.

Our approach, in this paper, has been inspired by the
study of integrability properties of polynomial dynamical
systems [1] and related techniques used in formal integra-
tion to automatically derive first integrals of differential
equations [2]. Starting with the well known concept of a
Darboux polynomial, we show how the existence of Darboux
polynomials can, in turn, lead to the existence of rational and
logarithmic functions whose derivatives are positive definite.
Our results lead to heuristic search procedures that extend
well-known techniques for finding polynomial Lyapunov
functions using sum-of-squares (SOS) reduction, to natu-
rally discover rational function and sometimes transcendental
functions with positive definite derivatives. Such functions
are called differential variants, and are useful in finding
positive invariants. We present techniques to find Lyapunov
functions given such differential variants. To summarize the
main contributions of this paper:

• Our results in Section III tie the existence of rational
function differential variants (of the form p(x)

q(x) for
polynomials p, q ) to that of Darboux polynomials
under some assumptions about the structure of their
differential remainder (Theorem 2). We also show a
class reduction theorem that ties the existence of differ-
ential variants over the algebraic extensions to rational
functions back to rational function differential variants
(Theorem 3).

• We observe that the search for rational function differ-
ential variants can be automated by searching for a set
of Darboux polynomials and setting up a search as an
SOS programming problem (Section III-B).

• We investigate transcendental extensions to find dif-
ferential variants involving logarithmic and exponential
functions (Section IV).

• Finally, we extend our techniques for differential vari-
ants to also find Lyapunov functions (Section V).

We illustrate our technique by showing its ability to find
rational function and logarithmic Lyapunov functions on
some systems where such functions are known to exist in
the related work (Section VI).

A. Related Work

The problem of automatically discovering Lyapunov func-
tions has been well studied. For linear systems, it is possible
to synthesize Lyapunov functions by solving Linear Matrix
Inequalities (LMIs) [3]. However, the discovery of Lyapunov
functions for non-linear systems has proved to be much
harder in practice. The use of LMIs to find Lyapunov func-
tions for non-linear systems has been studied by Tibken [4].
However, it has been observed that the synthesis of rational
function invariants will involve bilinear or polynomial matrix
inequalities (BMIs and PMIs) rather than LMIs. While
techniques for solving BMIs have been well studied, solving
them is computationally more expensive than LMIs [5].
This is why some authors have proposed other methods
for determining a region of attraction than using Lyapunov
functions, see e.g. [6].

The problem of automating Lyapunov function synthesis
for non-linear systems has been studied by many. Notable
contributions include Zubov’s method which uses a partial
differential equation to find a maximal region of attraction
and an associated Lyapunov function [7]. A related approach
is proposed by Vannelli and Vidyasagar discovering maximal



region of attraction through rational Lyapunov functions [8].
Our approach to rational functions differs in many ways.
We focus on rational functions whose Lie derivatives are a
positive definite polynomial, whereas their work focuses on
functions whose derivatives are a positive definite quadratic
form plus a higher order rational function. Furthermore,
we relate the existence of rational functions with Darboux
polynomials, and rely on sum of squares optimization [9].
Vannelli and Vidyasagar, present an iterative linear algebra
method based on repeated equation solving to discover the
rational function.

Sum-Of-Squares (SOS) has proved to be an important tool
for investigating nonlinear systems [9], [10]. The approach
reduces polynomial positivity to a semi-definite program
(SDP), using numerical solvers to find feasible solutions for
the SDP. SOS was extended by Papachristadoulou and Prajna
to non-polynomial systems by adding auxiliary variables to
encode transcendental functions such as sin(z), cos(z) and
exp z, where z is a polynomial over the state variables [11].

Differential variants refer to functions f whose derivatives
are strictly positive, thus proving positive invariance of the
set {~x|f(~x) ≥ 0}. They underlie the study of invariants to
prove reachability properties. The automatic generation of
such functions has been studied by many including Tiwari
et al. [12] and Platzer et al. [13]. Differential variants can be
seen as a simplification of barrier functions studied by Prajna
and Jadbabaie, who use sum of squares programming to
automatically compute them for differential equations [14].

II. PRELIMINARIES

In this section, we discuss some preliminary concepts
including differential variants, Lyapunov functions, Darboux
polynomials and some existing approaches to determine
Darboux polynomials. Let R[x1, . . . , xn] denote the set of
polynomials over variables x1, . . . , xn and coefficients drawn
from the reals. Likewise, let

R(x1, . . . , xn) denote the field of rational functions over
x1, . . . , xn. We recall that a rational function has the form
f = p

q where p, q ∈ R[x1, . . . , xn] are polynomials and q 6≡
0. Furthermore, by writing f = p

q , we assume that p, q have
no factors in common.

Throughout, this paper, we will investigate ODEs of the
form

d~x

dt
= f(~x) (1)

where f(~x) ∈ R[~x] is a polynomial.
Definition 1: The Lie derivative of a differentiable func-

tion g : Rn → R along vector field f : Rn → Rn is:

Lf (g)(x) =

〈 f1(x)
. . .
fn(x)

 ,

 dg
dx1

. . .
dg
dxn

〉

where 〈., .〉 is the standard inner product on Rn.

A. Differential Variants and Lyapunov Functions
The safety verification problem for a system seeks to prove

that the system starting from a set ~x ∈ X0 cannot reach an
unsafe set U . Differential variants represent an approach to
establish such reachability properties [13].

Definition 2 (Differential Variant): A differential variant
for an ODE d~x

dt = f(x) over a domain X is a differentiable
function g(~x) such that for all ~x ∈ X, Lf (g) > 0.

If the domain X is not explicitly stated for a differential
variant, we assume it is X = Rn, the entire state space. The
following theorem shows how differential variants are used
to solve the safety verification problem:

Theorem 1: Let g(~x) be a differential variant for an ODE
d~x
dt = f(~x) over a state space X , such that

1) ∀ ~x ∈ X0, g(~x) ≥ 0,
2) ∀ ~x ∈ U, g(~x) < 0

We conclude that the set U is unreachable from X0. In
other words, for each time trajectory ~x(t) such that ~x(0) ∈
X0, we have ~x(t) 6∈ U for all t ≥ 0.

Just as differential variants prove unreachability proper-
ties, Lyapunov functions represent a standard approach for
proving stability of ODEs. Let d~x

dt = f(x) be an ODE. A
system is Lyapunov stable over an open region U around
the equilibrium ~x∗, if for every neighbourhood N ⊆ U of
~x∗ there is a (non-empty) neighbourhood M ⊂ N such that
(∀ ~x(0) ∈ M) (∀ t ≥ 0) ~x(t) ∈ N . A system is asymp-
totically stable if it is Lyapunov stable and all trajectories
starting from U approach ~x∗ as t→∞. Lyapunov functions
are useful in proving that a system is stable in a region around
the equilibrium. Without loss of generality, we assume that
~x∗ = ~0. The definitions below are based on the terminology
used in the standard text by Meiss [15].

Definition 3: A continuous and differentiable function
V (~x) is a weak Lyapunov function over a region U ⊆ X
iff the following conditions hold:

1) V (~x) is positive definite over U , i.e, V (~x) > 0 for all
~x ∈ U \ {~0} and V (~0) = 0.

2) Lf (V ) ≤ 0 for all ~x ∈ U .
Additionally, V is a strong Lyapunov function if (−Lf (V ))
is positive definite.
Weak Lyapunov functions are used to prove that a system
is Lyapunov stable in a region U , whereas a strong Lya-
punov function proves asymptotic stability. The approaches
presented in this paper can be used to search for weak as
well as strong Lyapunov functions.

Note 1: Throughout this paper, we will focus on ap-
proaches to compute differential variants and Lyapunov
functions. The commonality between both definitions is the
requirement that the Lie derivative be strictly positive in the
former case, and negative semidefinite in the latter. We will
first focus on the important problem of discovering functions
whose derivatives are positive. The generation of Lyapunov
functions is considered in Section V.

B. Darboux polynomials
Darboux polynomials are instrumental in our search for

good candidates for differential variants and Lyapunov func-



tions, for polynomial ODEs.
Definition 4: A polynomial p ∈ R[~x] is called a Darboux

polynomial (eigenpolynomial, or a polynomial second inte-
gral) iff

Lf (p) = cp

where c ∈ R[~x] is a polynomial called the cofactor. When
c ≡ 0, p is also known as a first integral, otherwise it is
called a proper Darboux polynomial.

If p1, p2 are Darboux polynomials with cofactors c1, c2,
respectively, then p1p2 is also a Darboux polynomial with
cofactor c1 + c2. Likewise, if p1, p2 are Darboux polyno-
mials for the same co-factor c then p1 + p2 is a Darboux
polynomial. In general, however, the sum of two Darboux
polynomials can fail to be a Darboux polynomial.

Darboux polynomials have been widely studied as a basis
of algorithmic procedures for integrating ODEs [1], and de-
riving first integrals of ODEs [16]. Jouanolou [17] constructs
a polynomial vector field for which no Darboux polynomial
exist; this work has been extended later by Ollagnier and
Nowicki [18]. It is also well-known that there is no apriori
bound on the degree of the Darboux polynomials in terms
of the degree of the RHS of the ODEs.

Example 1: Consider, first, the polynomial system due to
Hahn [7]: {

ẋ = −x+ 2x2y
ẏ = −y

The polynomials x, y, xy − 1 and their products are all
examples of Darboux polynomials.

Consider the example below suggested by Parillo, as
an example of a polynomial ODE without any polynomial
Lyapunov functions [19]:{

ẋ = −x+ xy
ẏ = −y

Note that x, y and their products are Darboux polynomials.

C. Finding Darboux Polynomials

The algorithmic determination of Darboux polynomials
has received some attention in the past. Darboux polynomials
allow us to find rational and even algebraic first integrals, in
some cases. For 2D systems, they can be used to infer general
elementary first integrals1, the corresponding algorithm is
known as the Prelle-Singer procedure [16]. More recently
[20], efficient procedures have been described for determin-
ing rational first integrals, for planar (i.e. 2D) systems. These
procedures are linked with Theorem 2.

There exist two main implementations used in the Prelle-
Singer procedure to discover Darboux polynomials [21]:
PSODE1 and PSODE2 in the REDUCE computer alge-
bra system. PSODE1 relies entirely on a Gröbner basis
computation in the “undetermined coefficients” method for
determining Darboux polynomials, whereas PSODE2 starts
with a form of multivariate division. This method was later

1I.e. functions g, towers of logarithmic and exponential extensions to
rational fractions [2], such that Lf (g) = 0, hence are invariant over all
solutions of the ODE (1).

improved in [22], with less coefficients (and thus equations)
to be considered. These methods require running time that
is exponential in the size of the ODE, in the worst case. A
recent approach based on the “ecstatic curve” was proposed
by Chèze [23] reduces the problem of finding Darboux
polynomials to factoring a large polynomial that is expressed
as a determinant of polynomials. This approach has been
shown to be polynomial time provided the coefficients of
the ODE and the successive Lie derivatives belong to the
field Z that admits efficient factorization.

Since the determination of Darboux polynomials is at
the heart of the techniques suggested in this paper, we
have directly implemented the ecstatic curve approach by
Cheze using the computer algebra primitives available in
Mathematica, and our own approach for finding Darboux
polynomials that solves a class of separable bilinear equa-
tions over the coefficients of the Darboux polynomials and
the co-factors. This method has been employed successfully
on all our numerical examples to find Darboux polynomials.
Since the actual derivation of the polynomials is orthogonal
to the techniques described here, we will relegate a detailed
discussion of the techniques employed in our implementation
for generating Darboux polynomials to an extended version
of this paper.

III. RATIONAL FUNCTIONS AND THEIR ALGEBRAIC
EXTENSIONS

In this section, for a given domain D, we wish to find a
rational function differential variant g ∈ R(~x), such that

∀x ∈ D,Lf (g)(x) = τ(x)

where τ a positive function on D. We will call τ the
differential remainder of g.

Let g = p
q where p, q ∈ R[~x]. It follows that Lf (g) =

qLf (p)−pLf (q)
q2 . Therefore, finding a differential variant g

requires us to enforce that α : qLf (p)− pLf (q) is positive.
We will use sum-of-squares programming to achieve this
by expressing α = c0 + τ for a positive semidefinite (psd)
polynomial τ and c0 > 0.

Similarly, finding a Lyapunov function of the form p
q

requires us to enforce, without loss of generality, that p
is positive definite, q is a strictly positive function, and
qLf (p) − pLf (q) is negative semi-definite. Normally, sum-
of-squares (SOS) relaxation applies for encoding that a
given parametric polynomial form p(~c, ~x) with unknown
parameters is SOS. However, the reader will notice that
enforcing the positive semi-definiteness of qLf (p)− pLf (q)
reduces to solving bilinear matrix inequalities (BMIs) rather
than LMIs. Furthermore, it is well known that solving BMIs
is computationally harder than solving LMIs. Therefore, in
this section, we relate the existence of a restricted class
of rational function differential variants to that of Darboux
polynomials.

We first note the following result:
Lemma 1: Let g = p

q be a rational function such that (a)
q is a Darboux polynomial with co-factor c, and (b) αq is a
positive polynomial where α = Lf (p)− cp.



It follows that g is a rational differential variant.
Proof: Note that Lf (g) = qα

q2 is positive.
Note 2: As a side condition, we note that using a rational

function as a differential variant or a Lyapunov function is
possible only over a domain D where the function is well
defined. Often, we seek rational functions p

c+q where c > 0
is a constant, and p, q are homogeneous psd polynomials.

Conversely, we show that if r = p
q is a rational differential

variant such that Lf (r) is a polynomial, then q must be
a Darboux polynomial and the conditions in Lemma 1
automatically hold.

Theorem 2: Let r = p
q be a rational function that is

a differential variant, where p, q are relatively prime. We
assume that Lf (r) is a polynomial. It follows that
• q is a Darboux polynomial with cofactor c, i.e, Lf (q) =
cq

• and αq is positive, where α = Lf (p)− cp.
Proof: Suppose r = p

q is a differential variant, with p
and q relatively prime. Given that f is a polynomial vector
field, Lf (r) is a positive rational function γ = α

q for some

polynomial α. We have Lf (r) =
Lf (p)q−pLf (q)

q2 = γ. Hence,

Lf (p)q − pLf (q) = γq2

= αq

Since α is a polynomial, this implies that q divides pLf (q).
Therefore, since p and q are relatively prime, q divides
Lf (q). Thus, q is a Darboux polynomial. Let c be its cofactor,
we then have Lf (p)− cp = α.

Finally, asking for γ to be positive means that αq is itself
positive.

A. Algebraic Extensions to Rational Variants

We prove in this section that if we have a differential vari-
ant which is algebraic on rational functions with a rational
differential remainder, then we know there exists a rational
differential variant. The notion of algebraic extension to

rational function encompasses functions such as
√

p
q ,
(
p
q

) 1
3

that are expressible as algebraic equations involving rational
functions. The main result is that if such differential variants
can be found that have a rational differential remainder, then
we can also find rational differential variants.

The following theorem is based on well known class
reduction theorems for first integrals [1].

Theorem 3: Let c be a non-trivial algebraic function over
R(x1, . . . , xn). If c is a differential variant for ODE (1),
with a rational differential remainder, then there exists a non
trivial rational function ĉ ∈ R(x1, . . . , xn), which is also a
differential variant for ODE (1).

Proof: Let c be an algebraic function over
R(x1, . . . , xn) which is a differential variant for the poly-
nomial vector field f , so that Lf (c) = τ with τ rational and
positive. The fact that c is algebraic means that there exists
a polynomial p such that p(c) is identically zero:

p(c) : q0 + q1c+ . . .+ qs−1c
s−1 + cs = 0 . (2)

Here, qi, i = 0, . . . , s − 1 are rational functions over
R(x1, . . . , xn). Furthermore, without loss of generality, we
choose p to be a polynomial of minimal degree, and let the
coefficient of its leading term cs be identical to 1. In other
words, no other non-zero polynomial q̂ of degree strictly less
than s can satisfy q̂(c) = 0.

Applying Lie derivative to both sides of Equation 2, f
that:

Lf (q0) + Lf (q1)c+ . . .+ Lf (qs−1)cs−1

+τ
(
q1 + 2q2c+ . . .+ (s− 1)qs−1c

s−2 + scs−1
)

= 0

I.e. regrouping terms:

p̂(c) :

 Lf (q0) + τq1) + (Lf (q1) + 2τq2)c
+ . . .+

(Lf (qs−1) + sτ)cs−1

 = 0 (3)

p̂ has a lower degree than p and p̂(c) = 0. This directly
contradicts the fact that p is the minimal polynomial for c,
unless the coefficients of p̂ vanish:

Lf (q0) + τq1 = 0
Lf (q1) + 2τq2 = 0
. . .
Lf (qs−1) + sτ = 0

The last equation shows that −qs−1 is a rational function
such that Lf (−qs−1) = sτ is a positive rational function.
This proves, in case τ is different from the zero function,
that we have a non trivial rational function −qs−1 as soon
as we have an algebraic differential variant.

For the case τ = 0 and qs−1 is not constant, we still have
a non-trivial first integral (so, a differential variant).

Now the last case is τ = 0 and qs−1 is a constant. One of
the qi, i = 0, . . . , s− 2 is non trivial at least. Then we have
Lf (qi) = 0 hence qi is a non-trivial rational first integral
and therefore a differential variant.

B. Algorithmic sketch

Following Lemma 1 and Theorem 2, we find rational
differential variants, we first start by finding a set of Darboux
polynomials q1, . . . , qk of degree up to D. Each qi is the
starting point for finding a rational differential variant. Note
that our approach for generating these polynomials start with
an initial set of irreducible polynomials that cannot be written
as the product of two Darboux polynomials, and generates
new polynomials by multiplying the irreducible Darboux
polynomials together.

For each Darboux polynomial qi with co-factor ci, we
wish to find a polynomial pi such that Lf (pi) − cipi =
αi and αiqi is a positive polynomial. We achieve this by
starting with a parametric polynomial form for 1 + pi, i.e,
pi =

∑
i∈I bix

i, where i is a multi index, xi stands for the
corresponding monomial and bi is an unknown parameter.
We then compute (Lf (p)− cp)q as a polynomial, which has
as coefficients for each monomial xi some linear function
of the bi. The conditions for which αq = (Lf (p) − cp)q
is a positive polynomial, are determined using the Sum of



Squares relaxation [24]. If the resulting problem is infeasible,
we consider the next Darboux polynomial in our set.

Example 2: Consider again Hahn’s example (Ex. 1). We
note that q = x is a Darboux polynomial with cofactor c =
2xy−1. We are looking for a polynomial p such that Lf (p)−
(2xy − 1)p = α and αx is a psd polynomial.

Starting from a generic polynomial of maximal total
degree 2: p = (b0 +byy+by2y

2)+(bx+bxyy)x+bx2x2. We
note that Lf (p)−(2xy−1)p = (b0−by2y2)+((2b0−bxy)y−
2byy

2 + 2by2y
3)x+ (−bx2 + 4bxy+ 4bxyy

2)x2 + (6bx2y)x3.
A simple solution for αx to be SOS is given by p = −y.

We then note that αq = 2y2x2 is indeed a psd polynomial.
Therefore, we conclude that x

y is a differential variant.
Looking at all the Darboux polynomials we found for

Example 1 in turn, we obtain the following rational functions
differential variants:
• q = x2: p = x2 hence r = 1,
• q = x: p = −y hence r = − yx ,

• q = xy: p = bx2x2 + by2y
2, hence r =

bx2x
2+by2y

2

xy ,
• q = −1 + xy: p = x2, hence r = x2

xy−1 ,
• q = y2: p = xy, hence r = x

y ,
• q = y: p = x, hence again, r = x

y ,
• q = 1: p = −y2, hence r = −y2.
Note that our approach finds some non trivial rational

function differential variants including x
y and x2

xy−1 . We
discuss the derivation of Lyapunov functions using these
variants in Section V.

IV. TRANSCENDENTAL FUNCTIONS

We now look at results that enable us to generate restricted
classes of differential variants and Lyapunov functions that
involve logarithmic and exponential terms. From the theory
of differential fields and “integration in finite terms” (as used
in e.g. computed algebra, see [2]), we know that “elementary
functions” are obtained by successive elementary extensions
of the differential field of rational functions, which may
provide for interesting solutions.

A. Logarithmic extensions

Consider the following ODE modeling predator-prey dy-
namics (see [16])

dx
dt = ax− bxy
dy
dt = −cy + dxy

Here, a, b, c, d > 0 are parameters. There is no explicit
solution to this ODE in “finite terms”. However, using a log
extension to rational functions, we obtain the first integral:
F (x, y) = dx + by − c log(x) − a log(y). This suggests
extending rational functions using logarithmic terms.

We wish search for differential variants V of the form:

V = ln(r1) + p2

where r1 is a rational function and p2 is a polynomial. We
further restrict our search for the case where the differential
remainder is a polynomial. Trying to solve more general
cases requires again having to solve expensive polynomial

matrix inequalities (PMIs). Let r1 = p1
q1

where p1, q1 are
relatively prime.

Theorem 4: V = log
(
p1
q1

)
+ p2 is a differential variant

with a polynomial differential remainder if and only if:

• p1 is a Darboux polynomial (with cofactor β)
• q1 is a Darboux polynomial (with cofactor α)
• Lf (p2) = α− β+ τ , where τ is a positive polynomial.

Proof: Writing r1 = p1
q1

, the Lie derivative of V along
vector field f is:

Lf (V ) =
Lf (p1)
p1
− Lf (q1)

q1
+ Lf (p2)

= β − α+ α− β + τ
= τ

which is a positive polynomial.
Conversely, let Lf (V ) = p, be a positive polynomial.

Therefore, we have:

Lf (p1)

p1
− Lf (q1)

q1
+ Lf (p2) = p

As p1 and q1 are relatively prime, and p and p2 are
polynomials, it follows that p1 | Lf (p1) and q1 | Lf (q1).
I.e, p1, q1 are Darboux polynomial. Finally, the differential
remainder p is identified with the positive polynomial τ in
the statement of the theorem.

B. Algorithmic sketch

Once again, we assume that we have found Darboux
polynomials q1, . . . , qN . We examine two relatively prime
Darboux polynomials q1, q2 with co-factors c1, c2, respec-
tively, and attempt to find a polynomial p such that Lf (p)−
c1 + c2 is a positive polynomial. This is performed by fixing
a parametric polynomial for p with unknown coefficients and
using SOS programming to discover if a solution exists. If so,
the solution yields a logarithmic differential variant involving
log( q1q2 ). Note that the domain of existence of this differential
variant is given by q1 > 0 ∧ q2 > 0.

Example 3: Consider once again the system from Exam-
ple 1. The non trivial Darboux polynomials of degree one
are x and y, with co-factors β = y − 1 and α = −1,
respectively. Hence we consider differential variants of the
form V = log

(
x
y

)
+ p2. Applying Theorem 4, we obtain

the condition for p2 as

Lf (p2) + (y − 1)− 1 = τ is a positive polynomial.

Setting p2 = αxx+αyy, for unknown parameters αx, αy ,
we compute:

Lf (p2) = −αyy + αx(y − 1)x

Therefore, τ = Lf (p2) + y = (1− αy)y + αx(y − 1)x. We
find that αy = 1, αx = 0, yields τ = 0. Therefore, we have
discovered a differential variant: V (x, y) = log(xy ) + y for
this system. This is defined whenever x > 0, y > 0.



C. Exponential extensions

The case of exponential extensions is, in general,
more involved than logarithmic extensions of
Section IV-A. The idea is to find rational fraction
r1 ∈ R(x1, . . . , xn, z1, . . . , zm) involving extra auxiliary
variables z1, . . . , zm and polynomials p1, . . . , pm ∈
R[x1, . . . , xn] such that r1(x, ep1(x), . . . , epm(x)) is a
differential variant. To do so, we will simply fix the set
of polynomial terms p1, . . . , pm a priori. A common
choice is to find monomials up to a given degree. We
will then extend our original system of ODEs by adding
extra auxiliary variables z1, . . . , zm, wherein zi represents
exp(pi(~x)). Therefore, we set dzi

dt = Lf (pi)zi. Since
p1, . . . , pm are polynomials, the extended system over
x1, . . . , xn, z1, . . . , zm is a polynomial ODE over which the
techniques for finding rational and logarithmic invariants
can be applied after searching for Darboux polynomials.

Lemma 2: Let p ∈ R[x1, . . . , xn] and r1 ∈
R(x1, . . . , xn, z). The function r1(x, ep(x)) is a differential
variant of the polynomial ODE (1) if and only if r1 is a
rational differential variant of the following auxiliary ODE:
(x ∈ Rn):

ẋ = f(x)
ż = Lf (p)u

V. DETERMINING LYAPUNOV FUNCTIONS

Recall that Lyapunov functions are C1 functions V : D →
R over a region of stability D ⊆ Rn, such that Lf (V ) ≤ 0
and V is positive definite over D. Without loss of generality,
we assume that ~0 ∈ D is the sole equilibrium, whose stability
is to be established.

In particular, global Lyapunov functions V are such that
−V are differential variants in the sense of Definition 2, that
we helped determine in Sections III-B in the rational case
and IV-B in the logarithmic case.

Local Lyapunov functions are also such that −V are
“locally” differential variants, that can also be determined as
in Sections III-B and IV-B. For a given D described by a set
of polynomial inequality constraints, SOS programming is
used in conjunction with Putinar’s positivstellensatz to prove
that a given polynomial is positive semidefinite over D.

The key challenge therefore lies in reusing the techniques
described thus far, which have focused on deriving differen-
tial variants to finding Lyapunov function. Specifically, we
wish to enforce that the function V is positive definite while
at the same time enforcing the negative semi-definiteness of
its Lie derivative.

A. Combining Rational Differential Variants

We describe a trick, that given k rational differen-
tial variants r1, . . . , rk ∈ R(x1, . . . , xn), combines them
to yield a Lyapunov function. We choose a polynomial
P (z1, . . . , zk) and assume that a polynomial combination
V (~x) = P (r1(~x), . . . , rk(~x)) yields the required Lyapunov
function over the given domain D containing the equilib-
rium point. Since P is unknown, we parameterize P in

the standard way and compute constraints on the unknown
parameter. The requirements over P are as follows:

1) P (r1(~0), . . . , rk(~0)) = 0.
2) Forall ~x ∈ D \ {~0}, we require P (r1, . . . , rk) > 0.
3) Finally, we require P (z1, . . . , zk) is non-increasing

over D. I.e, for all 1 ≤ j ≤ k, we require ∂ P (z1,...,zk)
∂ zj

is negative semi-definite.
Since each ri = pi

qi
is assumed to be well defined over D,

we assume without loss of generality that qi > 0 over D.
Let P = P (~c, z1, . . . , zk) be the parametric form for the

polynomial P . Condition 1 yields affine constraints over ~c.
Next, we can use SOS programming to enforce condition 2.
Here, we can replace ri with the polynomial piΠj 6=iqj . Note
that P is often taken to be an affine form in our example, and
therefore this does not cause a large blowup in the degree of
the resulting polynomial. Finally, condition 3 is also encoded
using SOS programming. As a result, we obtain an LMI that
can be solved to obtain coefficients for the polynomial form
P . Using P , we obtain a Lyapunov function V (~x).

Example 4 (Hahn): Returning to Example 2, we recall the
differential variants g1 = −y2, g2 = x

y and g3 = x2

xy−1
discovered over the domain xy < 1. We find that the polyno-
mial P (z1, z2, z3) = −z1

2 + −z32 . Setting, V = P (g1, g2, g3),
yields the function V (x, y) = y2

2 + x2

2(1−xy) , which is indeed
a Lyapunov function over the domain D = {(x, y) ∈ R2 |
xy < 1}. In previous work by Zubov, Davison, Vannelli and
Vidyasagar [25], this function was also originally found by
Zubov’s method [7].

B. Logarithmic Lyapunov functions

Similarly as in Section V-A, we have to ensure that the
differential variants F = log(r1)+p2, that we determined in
Section IV-B are indeed Lyapunov function. We will assume
that the function r1 is strictly positive over the domain D.

A pragmatic method is to generate F = log(r1) +p2 with
L(F ) positive semi-definite, and check if V = −F can be a
Lyapunov function. The sufficient test simply ensures that (a)
r1(~x) = 1 if and only if ~x = 0, (b) r1(~x) < 1 over D \ {~0},
and (c) p2(~x) is negative definite over D. It is easy to show
that if all these conditions are satisfied, then V = −F is
indeed a Lyapunov function.

VI. NUMERICAL EXAMPLES

Thus far, we have illustrated our approach to derive non-
polynomial Lyapunov functions and differential variants for
two examples proposed by Hahn and Parillo (Cf. Example 1).
We demonstrate our ideas on some further numerical exam-
ples. The numerical examples shown below involved our im-
plementations for finding Darboux polynomials in MATLAB
and Mathematica. We used SOSTOOLS and obtained rather
interesting but complex rational and logarithmic differential
invariants. Given the Darboux polynomials, it used less than
1s of execution time for all those examples. The calculations
are performed here by hand or using computer algebra
software Mathematica to demonstrate simpler functions that
are easier to check. In theory, these can be generated by SOS-
TOOLS with an appropriate set of constraints and objective



functions. Our method will be implemented as a monolithic,
stand alone toolbox in MATLAB or Mathematica in the near
future.

A. A two prey one predator model

In [26], the following two prey one predator Lotka-Volterra
system is studied:

ẋ1 = x1(a1 − b1y)

ẋ2 = x2(a2 − b2y)

ẏ = y(−c+ d1x1 + d2x2)

x1, x2 and y represent the biomass of populations,
hence are non-negative. The domain of interest is D =
{(x1, x2, y) | x1, x2, y ≥ 0}. We set the parameter values
to a1 = b1 = 1, a2 = 1, b2 = 2 and c = d1, d2 = 1.

a) Darboux Polynomials: Darboux polynomials in-
clude x1, x2 and y with respective cofactors 0, 1−y, 1−2y
and −1 + x1 + x2. Higher degree Darboux polynomials are
obtained as products of these Darboux polynomials. As a
consequence, x1y is Darboux with cofactor −x1 + x2 − y.

b) Logarithmic Variants: We use now the algorithm of
Section IV-B to determine polynomials p1, p2 and q1 such
that V = log

(
p1
q1

)
+ p2 is a differential variant. Note that

we require p1, q1 to be Darboux polynomials.
We select p1 = x1y (with cofactor β = −x1 + x2 − y)

and q1 = 1 (with cofactor α = 0). We search for p2 = α0 +
αx1

x1 + αx2
x2 + αyy, as an unknown, generic polynomial

of degree one.
We now have to determine the coefficients of p2 so that

τ = β − α + Lf (p2) is a psd polynomial over D. Setting
up this condition and solving yields the polynomial p2 =
−x1− x2

2 − y. The resulting polynomial τ is then x2

2 which
is positive on D.

As a result, we discover the differential variant

V = log(x1y)− x1 −
x2
2
− y .

We compare our result to the differential variant V1 noted
by [26], for the more general case a1

b1
> a2

b2
:

V1(x, y) =
d1x1
b1

+
d2x2
b2

+ y − c

b1
lnx1 −

a1
b1

ln y

c) Rational Variants: Looking for rational differential
variants using algorithm III-B, we choose the Darboux
polynomial q = x21, with cofactor c = 2(1− y).

We search for a numerator p of degree 1 parameterized
by the template: p = α0 + αx1

x1 + αx2
x2 + αyy. We wish

to find a p such that q(Lf (p) − cp) is a psd polynomial
over the domain D = {(x1, x2, y) | x1, x2, y ≥ 0}. Solving,
we obtain αx2

= −1, and α0 = αx1
= 0. This yields the

polynomial p = −x2. Therefore, our approach results in a
differential variant p

q = −x2

x2
1

.
In fact, our approach rather simply discovers an instance

of the Lyapunov function stated in [26], V2(x, y) = x2
b1

x1
b2

for
the more general case.

B. The model of May-Leonard: a 3-species competitive
Lotka-Volterra system

We now focus on an example of an ODE involving pa-
rameters. In [27], the authors consider the following system:

ẋ1 = x1(1− x1 − αx2 − βx3)

ẋ2 = x2(1− βx1 − x2 − αx3)

ẋ3 = x3(1− αx1 − βx2 − x3)

where α, β are non negative.
For this system, which is more general than the one of

Section VI-A, we treat the two parameters α and β as state
variables, letting α̇ = 0 and β̇ = 0. We now have to consider
polynomials on x1, x2, x3 and α, β.

d) Darboux Polynomials: α, β, x1, x2 and x3 are
trivially the Darboux polynomials of total degree less than or
equal to one, with respective cofactors 0, 0, 1− x1−αx2−
βx3, 1− βx1 − x2 − αx3 and 1− αx1 − βx2 − x3.

When α + β = 2, we discover the Darboux polynomial
x1 + x2 + x3 with cofactor 1− x1 − x2 − x3.

e) Rational Variants: We first look for rational differ-
ential variants, using the algorithm of Section III-B, when
α+β = 2. We use the Darboux polynomial q = (x1 +x2 +
x3)3 with cofactor c = 3(1− x1 − x2 − x3). Our goal is to
search for a polynomial p such that q(p− cLf (p)︸ ︷︷ ︸

α

) is a psd

polynomial. We parameterize p as a degree 3 polynomial,
which is too large to be shown here.

Our search yields the polynomial p = x1x2x3 and the
function V (x1, x2, x3) = x1x2x3

(x1+x2+x3)3
. In fact, we find that

Lf (V ) ≡ 0, and therefore V is a first integral of this Lotka-
Volterra system, when α+ β = 2.

When α + β 6= 2, the authors of [27] find that a
small modification (by a constant factor) of the rational
function above, V (x1, x2, x3) = (α+β−2) x1x2x3

(x1+x2+x3)3
is a

Lyapunov function. Our method fails to find this Lyapunov
function in for this case (although we find a first integral
when α+β = 2). This is because α+β 6= 2, (x1+x2+x3)3

is not Darboux. Stated differently, the differential remainder
of V is of the form α

(x1+x2+x3)3
(but of a more general

form α
(x1+x2+x3)4

, see the restriction in Theorem 2). This is
a limitation of our approach.

f) Logarithmic Variants: We now search for logarith-
mic differential variants, using the algorithm of Section IV-B,
for the case α+ β = 2.

We use the Darboux polynomial q1 = x1x2x3 with
cofactor c1 = 3(1 − x1 − x2 − x3), the algorithm will
have to choose among the Darboux polynomials for p1.
We choose p1 = 1, with cofactor c2 = 0. Now we are
looking for p2 such that Lf (p2) + c2 − c1 = τ , psd
polynomial. We parameterize p2 as an affine expression and
discover the polynomial 3(x1 + x2 + x3). Therefore, we
find a logarithmic Lyapunov function [27]: V (x1, x2, x3) =
3(x1 + x2 + x3)− log(x1x2x3), which is only minimum on
D = {(x1, x2, y) | x1, x2, y ≥ 0} when x1, x2 and y are all
zero, proving the stability of equilibrium point (0, 0, 0).



TABLE I
COMPUTATION TIMES FOR FINDING DARBOUX POLYNOMIALS. THE

COLUMN FOUND/KNOWN CONTRASTS THE NUMBER FOUND

AUTOMATICALLY AGAINST THOSE FOUND BY HAND CALCULATIONS.

Example Time Found/Known
Hahn (Ex. 1) 15s 2/3
Parillo (Ex. 1) 19s 2/2
Lotka-Volterra (Sect. VI-A) 98s 3/3
May-Leonard (Sect. VI-B) 2351s 5/5
May-Leonard, α+ β = 2 451s 5/6

Our method discovers another previously unknown log-
arithmic Lyapunov function for this example. We choose
the Darboux polynomials p1 = x1 + x2 + x3 with cofactor
1 − x1 − x2 − x3 and q1 = 1 with cofactor 0. Looking for
total degree one polynomials p2, we find a simpler Lyapunov
function V1(x1, x2, x3) = x1 +x2 +x3− log(x1 +x2 +x3).

C. Computation Times

The total time required can be decomposed into the time
for finding Darboux polynomials and the time required for
SOS programming. The latter component was always under
a second for most examples. Table I reports the time taken
for finding Darboux polynomials for the various benchmarks
presented in this section. In each case, we search for Darboux
polynomials of degree less than 3 and with cofactor of degree
less than 3, we get the following results:

VII. CONCLUSION

To conclude, we note that Darboux polynomials are useful
tools for the discovery of non-polynomial (rational, loga-
rithmic and transcendental) differential variants and Lya-
punov functions. Our future work will focus on finding non-
polynomial Lyapunov functions that are formal power series,
or use piecewise polynomials. Extensions to hybrid dynam-
ical systems combining discrete and continuous dynamics
will constitute an important future direction.
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