
To appear in 2nd ACM International Workshop on Wireless Mobile Multimedia (WOWMOM) 1999, in conjunction with Mobicom 99

1

Factoring a Mobile Client’s Effective Processing Speed
Into the Image Transcoding Decision

Richard Han
IBM T.J. Watson Research Center

rhan@watson.ibm.com

ABSTRACT

An image transcoding proxy decides whether to transcode an
image fetched from the Web based either on the criterion of
reducing the overall response time (store-and-forward proxies), or
the criterion of avoiding buffer overflow (streamed proxies). In
this paper, we introduce a new parameter, namely a mobile
client’s effective processing speed, into the analytical formulation
of both transcoding decisions, and study the practical importance
of this parameter when transcoding is applied for standard PDA
clients. CPU-intensive operations like image decompression,
colorspace conversion and scaling can together add excessive
delay to the perceived response time when performed on a mobile
client that has severely limited processing capability. Under
certain conditions, a transcoding proxy that sends GIF or JPEG
images can incur greater delay due to decompression on a PDA
client than a better informed transcoding proxy that chooses
instead to send bit-mapped equivalents that incur little to no
client-side decoding delay. We designed three experiments that
partitioned image processing functions between a proxy and a
standard PDA in order to assess the importance of a client’s CPU
limitations on the image transcoding decision. First, images were
fetched by a standard Web browser that decompressed GIF’s on
the PDA. This browser also enforced scaling on every image to
fit within the PDA’s small screen. Second, we added a
transcoding proxy that pre-scaled images, thereby bypassing the
browser’s scaling function but still requiring the browser to
decompress the scaled GIF’s. Third, we migrated both scaling
and decompression off of the PDA on to the proxy. The proxy
pre-scaled as before, and also transcoded GIF’s to grayscale
bitmaps that required no client-side decompression. We measured
response times from each of these three experiments and
quantified how much improvement in response time can be
achieved when a proxy assists a CPU-limited PDA by performing
some or all CPU-intensive image processing tasks on the
transcoding proxy.

Keywords

Transcoding, proxy, partitioning, mobile, PDA, CPU, image
processing.

1. INTRODUCTION
Due to slow response times, wireless Web access via Personal
Digital Assistants (PDA’s) can be a frustrating experience for the
end user. One proposal for improving the response time of
wireless Web browsing involves placing a proxy between the Web
server and Web browser in order to aggressively compress or
transcode images so that download times may be reduced
[1][2][3]. In previous work, an analytical framework was
presented describing under what conditions a proxy should
transcode each image [1]. Many factors affected the image
transcoding decision, including the current bandwidth on both the
server-proxy and proxy-client links, as well as the tolerable delay
and desired severity of compression induced by transcoding. Two
types of proxies were identified: store-and-forward proxies wait to
receive an entire image before transcoding and wait to send until
the entire image has completed transcoding; streamed proxies
begin transcoding as soon as part of the image has been received
at the proxy and begin sending as soon as part of the image has
been transcoded. For store-and-forward proxies, the criterion for
whether to transcode was based on whether the overall response
time was reduced. For streamed proxies, the criterion for whether
to transcode was based on whether buffer overflow could be
avoided at both the entering and exiting buffers to the proxy.

One criterion omitted from the analytical frameworks developed
previously for both store-and-forward and streamed proxies was
the effective processing speed of the mobile client. Some mobile
clients, such as laptops, may have sufficient processing speed to
perform with reasonable delay the tasks of image decompression,
HTML parsing, and layout required by Web browsing. Other
mobile clients, such as handheld PDA’s, can have raw processing
speeds an order of magnitude or more slower than laptops, due to
power, cost, and other considerations. In addition, software
inefficiencies in the browsing application written for the PDA,
such as inefficient image processing operations or excessive
memory copying, can introduce substantial delay -- on the order
of minutes as measured in this paper -- in the overall response. A
proxy that is aware of the “effective” processing speed of the
PDA, including software inefficiencies and hardware speed, can
better decide what CPU-intensive image processing operations
should be performed on the proxy instead of the mobile client, so
that the overall response time is reduced in comparison to a proxy
which ignores effective decoding times on the CPU-limited
handheld.

In this paper, the effect of client processing speed on the image
transcoding decision is studied both analytically and practically.
In Section 2, we update the analytical formulation concerning
whether to transcode or not for store-and-forward proxies. In
Section 3, we revise the streamed proxy’s formulation. In Section

To appear in 2nd ACM International Workshop on Wireless Mobile Multimedia (WOWMOM) 1999, in conjunction with Mobicom 99

2

4, we analyze the practical effect of CPU limitations combined
with browser inefficiencies on the image transcoding decision.
Image processing functions are partitioned between a proxy and a
mobile PDA client and response times are measured for various
cases to determine whether migrating some or all CPU-intensive

image processing operations on to the proxy from the PDA
achieves a reduction in response time.

2. STORE-AND-FORWARD IMAGE
TRANSCODING
We first analyze the impact on the overall download time of
inserting a store-and-forward transcoding proxy between the Web
server and the Web client. First, consider the model outlined in
Figure 1 of standard Web image retrieval in the absence of a
proxy. Let To denote the download time of sending a Web object
of size S (bits) from the Web server to the Web client in the
absence of transcoding We conceptually divide the network into
two segments based on the proposed insertion point of the proxy.
Define the bandwidth or overall bit transmission rate from the
Web server to the proposed proxy insertion point as Bsp, and
similarly define the bandwidth from the proposed insertion point
to the Web client as Bpc. For the purposes of the following
discussion we assume that caching is not supported at the proxy.

The download time To from Web server to Web client in the
absence of transcoding consists of the sum of three terms. First,
Dprop is the propagation latency from the server to the client, i.e.
the time required for the first bit of the image to propagate from
the server to the client. Second, a Web image incurs a
transmission delay equal to the spread in time between arrival of
its first and last bits. Let min(Bpc,Bsp) denote the bottleneck
bandwidth between the client and the server. In the absence of a
proxy, the first and last bits of an image will be spread in time by

S
min(Bpc,Bsp) . This spread corresponds to the effective transmission
time of the image over the concatenated server-to-proxy-to-client
connection.

A third and new component that we introduce into the analytical
framework is the time Dc(S) required to decode and display an
image on the mobile client. This factor models the Web client,
e.g. a Web-enabled PDA, as a black box, and measures only the
cumulative delay, or equivalently the “effective” processing speed
of the mobile client. Both the raw CPU speed as well as measured
software inefficiencies in the Web browsing application and
operation system are accounted for by Dc(S). As we shall see, this
factor can introduce substantial latency and can therefore affect

the image transcoding decision. Consequently, the overall image
download time in the absence of a transcoding proxy can be
expressed as:

 T0 = Dprop + S
min(Bpc,Bsp) + Dc(S) (1)

Next, a store-and-forward transcoding proxy is inserted between
the Web server and Web client, as shown in Figure 2. Let Tp
denote the download time of sending the same Web image from
the server through a store-and-forward transcoding proxy and then
onward to the Web client. Tp consists of the sum of five terms.
First, the server-to-client propagation latency Dprop experienced by
the image is the same as defined earlier, given the same network
transmission path. Second, the image download time from the

server to the proxy is given by
S

Bsp . Third, the proxy introduces a
delay of Dp(S), which is the time required to transcode the image.
Fourth, the image download time from proxy to client is given by
Sp(S)
Bpc . Finally, we introduce a new component influencing the

download time, namely the decoding and display time Dc(Sp(S)) of
the transcoded image on the mobile client. This factor is similar
to Dc(S), except that Dc(Sp(S)) measures the latency incurred by
decoding and displaying the transcoded image rather than original
image. Consequently, the overall image download time through a
store-and-forward transcoding proxy can be expressed as:

 Tp = Dprop + Dp(S) + S
Bsp

+ Sp(S)
Bpc

+ Dc(Sp(S)) (2)

Transcoding will reduce response time only if Tp < To. That is,

Dp(S) + S
Bsp

+ Sp(S)
Bpc

+ Dc(Sp(S)) < S
min(Bpc,Bsp) + Dc(S) , or

Dp(S) + S
Bsp

+ Sp(S)
Bpc

+ [Dc(Sp(S)) − Dc(S)] < S
min(Bpc,Bsp) (3)

The above inequality precisely characterizes when transcoding
will reduce response time, and therefore is the key expression
used by the transcoding proxy to determine whether each
incoming image should be transcoded, how much compression is
needed, and, indirectly, to what compression format an image
should be transcoded. Except for S, the size of the original image
which can be determined from the content-length header of HTTP
response message, the rest of the parameters in the above
inequality need to be predicted when the image arrives at the
proxy and before initiating transcoding. In particular, prior work
has shown the complexity of predicting Dp(S) and Sp(S) [1].

Web
client

Image size
S

Bandwidth
Bsp

Proposed Insertion
Point of Proxy into

Network

Bandwidth
Bpc

Web
server

Decoding Delay
Dc(S))

 Figure 1: Model of standard Web image retrieval in the
absence of a transcoding proxy.

Image
Transcoding

Proxy

Web
client

Image size
S

Bandwidth
Bsp

Image size
Sp(S)

Bandwidth
Bpc

Transcoding
Delay Dp(S)

Web
server

Decodin g Delay
Dc(Sp(S))

Figure 2: Model of store-and-forward image transcoding
proxy.

To appear in 2nd ACM International Workshop on Wireless Mobile Multimedia (WOWMOM) 1999, in conjunction with Mobicom 99

3

Let us next consider several special cases arising from Inequality

3. First, suppose Bpc > Bsp, i.e. the Internet backbone’s server-
proxy connection is the bottleneck. In this case, Inequality 3
reduces to

 Dp(S) +
Sp(S)
Bpc

+ Dc(Sp(S)) < Dc(S) (4)

If the effective processing speed of the mobile client is slow
enough, i.e. the right hand side Dc(S) of Inequality 4 is large
enough, than there is sufficient margin for transcoding to be of
some use; there is sufficient freedom to adjust the left-hand side
parameters Dp(S), Sp(S), and Dc(Sp(S)). However, as mobile
clients become faster due to inevitable software and hardware
improvements, Dc(Sp(S)) converges toward Dc(S) and it becomes
difficult to adjust the left-hand side parameters without degrading
the image beyond what is permissible.

Second, consider the more typical case when the proxy-client

access link is the bottleneck, i.e. Bpc < Bsp. In this case, store-
and-forward proxy-based transcoding is useful only if

Dp(S) +
Sp(S)
Bpc

+ Dc(Sp(S)) < Dc(S) + S
Bpc

− S
Bsp (5)

Finally, let us consider the third case in which transcoding is
placed at the server, and no proxy is present between the server
and client. For example, a Web site may chose to place a
transcoding proxy directly in front of its Web server, rather than at
some intermediate node in the network. This situation is neatly

summarized by setting Bsp = �. Consequently, the image
transcoding decision’s inequality reduces to the following:

 Dp(S) + Sp(S)
Bpc

+ Dc(Sp(S)) <Dc(S) + S
Bpc (6)

3. STREAMED IMAGE TRANSCODING
A streamed transcoding proxy can output a partial image even
before the entire image has been read into the transcoder. This
gives streamed transcoding an advantage in terms of response
time over store-and-forward transcoding since the transcoding

delay Dp(S) is virtually nonexistent, or at least very small. We
defer our discussion of delay to first focus on the problem of
avoiding buffer overflow with streamed proxies.

If we model the input as a stream of bits, then the transcoder takes
a small group of G input bits (from a total image of size S) and
transcodes them to a small group Gp of output bits (eventually
producing a total transcoded image of size Sp(S)), where G < S,

and Gp < Sp(S). As shown in Figure 3, the streamed proxy system
is modeled as having three buffers of relevance: a proxy input
buffer, a proxy output buffer, and a mobile client input buffer -
the latter buffer introducing a new factor not included in prior
work.
To avoid overflowing the RAM input buffer between the arriving
bits and the proxy, each input group must be processed before the
next input group arrives, i.e. groups must be transcoded/emptied
out of the input buffer at a rate faster than they enter.
Equivalently, the group transcoding delay must be less than the

interarrival times between groups, namely
Dp(S)
S/G < G

Bsp , or

 Dp(S) < S
Bsp (7)

To avoid overflowing the buffer between the proxy and the proxy-
client transmission link, the transcoded output image group size
Gp must be transmitted over the proxy-client link at a rate faster
than output groups are produced by the transcoder. Equivalently,
the time to transmit each output group must be less than the
interarrival time between output groups. Assuming that
Inequality 7 is satisfied, then the interarrival time between output
groups is the same as the interarrival time between input groups.

Therefore, to avoid buffer overflow, we require
Gp

Bpc
< G

Bsp , or

í >

Bsp

Bpc (8)
where í = group image compression ratio G/Gp, which we assume
to be on average equivalent to the overall image compression
ratio.

In this paper, we introduce a new factor affecting the analysis of
streamed transcoding, namely the impact of a mobile client’s
limited processing speed on the image transcoding decision. At
the client, avoiding buffer overflow requires that the mobile
decode and display transcoded image groups faster than
transcoded groups arrive at the client. Equivalently, the time to
decode and display a proxy group Gp should be less than the time
to generate a proxy group Gp. Assuming Inequality 8 holds, the
interarrival times of proxy groups is the same ultimately as the
interarrival times of groups at the input to the proxy. Therefore,
Dc(Sp(S))
Sp(S)/Gp

< G
Bsp , or rearranging terms,

 Dc(Sp(S)) < í ù Sp(S)
Bsp , or

Dc(Sp(S)) < S
Bsp (9)

If the mobile client is especially slow, then Inequality 9 tells us
that even if the streamed transcoding proxy satisfies its buffer
overflow requirements, the downstream mobile client will not be
able to process the input groups fast enough to avoid buffer
overflow. In this case, no transcoding should be performed.

Streamed
Transcoding

Proxy

Web
client

Gp bits/group
from output
image Sp(S)

Bandwidth
Bpc

buffers

G input
bits/group

from image S

Bandwidth
Bsp

Web
server

 Figure 3: System model of a streamed image transcoding
proxy and mobile client.

To appear in 2nd ACM International Workshop on Wireless Mobile Multimedia (WOWMOM) 1999, in conjunction with Mobicom 99

4

In summary, the streamed image transcoder should only perform
transcoding from a buffer overflow standpoint when Inequalities
7, 8, and 9 are satisfied.

If the server-proxy link is the bottleneck, i.e. Bsp < Bpc, then

Inequality 8 reduces to í > N, where N is a number less than 1.
Normally, the compression ratio is always greater than 1, so
Inequality 7 will always be satisfied. Hence, only Inequalities 7
and 9 must be satisfied in order for transcoding to not be
disadvantageous. In fact, when the server-proxy link is the
bottleneck, Inequality 8 could be interpreted as providing an
upper bound on the ratio of expansion allowed for a transcoded

image, namely
1
í <

Bpc

Bsp . Expansion of an image may
occasionally be necessary when format conversion is mandatory,
e.g. the mobile client only supports one image decoding format.
The above inequality allows us to determine when such format
conversion will increase the chances of buffer overflow, and when
format conversion will not cause buffer overflow. For example, if
Bsp = 1 bps, Bpc = 2 bps, and G = 1 bit, then Inequality 8 says that
the output group Gp can expand to a maximum of 2 bits.

If the proxy-client link is the bottleneck, i.e. Bsp > Bpc, then
Inequality 8 says that the image compression ratio í must be
greater than the ratio of server-proxy to proxy-client bandwidths
in order for transcoding to be worthwhile. In addition,
Inequalities 7 and 9 must still be satisfied.

Note that Inequalities 7, 8 and 9 are tight bounds that assume that
the buffer must never be allowed to overflow. Looser constraints
may be derived given that images are of finite-length, rather than
the continuous stream assumed in the analysis. More relaxed
constraints would permit more time for transcoding and/or allow
less aggressive compression.

Returning to the topic of delay, our analysis of buffer overflow
provides the intuition on how to measure latency for the streamed
proxy. Assuming that Inequalities 7, 8, and 9 are enforced, then
the input arrival rate of image groups is preserved at each buffer
throughout the path, so that the spread between the first and last

image bits is always
S

Bsp . Next, we can examine the delay
introduced for the first image bit. The first bit accumulates the
same propagation delay Dprop as in the previous section. In
addition, there is a small component of transcoding delay DG
introduced by the streamed proxy due to processing of the first
group of G bits in the stream. Finally, the mobile client also
introduces a small delay DGp while processing the first group of
Gp bits that it receives in the stream. The overall download time
T’

p for a user in the streaming case will be given by

 Tp
� =Dprop + S

Bsp
+DG+DGp (10)

Streamed transcoding will reduce response time when T’

p<T0,
namely

S

Bsp
+ DG + DGp < S

m in(Bpc,Bsp) + Dc(S) (11)

Since the quantities DG and DGp are typically very small, then we
can approximate Inequality 11 with the following inequality:

S

Bsp
< S

min(Bpc,Bsp) + Dc(S) (12)

When the server-proxy backbone link is the bottleneck, i.e.
Bsp < Bpc, then Inequality 12 is always satisfied and streamed
transcoding is always beneficial in terms of reducing delay. When

the proxy-client access link is the bottleneck, i.e. Bpc < Bsp, then
Inequality 12 is again always satisfied.

In summary, when Inequalities 7, 8, and 9 are enforced, then
Inequality 12 is always satisfied and streamed transcoding always
reduces the response time.

4. PRACTICAL MEASUREMENTS
To understand whether proxy-based transcoding can reduce the
overall response time for images delivered to mobile clients with
limited effective processing speed, we conducted three
experiments that partitioned the image processing functions
between a PDA client and a transcoding proxy. The concept of
partitioning of an application’s functionality between a mobile
device and the wired network has been mentioned in the literature
[4]. Figure 4 summarizes the three cases we considered for
partitioning of a browser’s image processing functionality. For
our first case, we measured the overall response time for fetching
a single image from a Web server for display on a commercially
available PDA client (a Palm IIIx with Palm OS v3.1) running a
commercially available Web browser (HandWeb 2.0.2). No
transcoding proxy was involved in this standard scenario of Web
browsing. The browser performed scaling, image decompression,
and rendering (colorspace conversion to the PDA’s frame buffer
format). For the second experiment, we migrated the scaling
function alone to a transcoding proxy. The proxy pre-scaled
images to fit within the dimensions of the PDA’s screen so that

the browser no longer had to scale on the PDA and could
therefore focus exclusively on the tasks of image decompression
and rendering. For the third case, we migrated both scaling and
image decompression to the transcoding proxy. The proxy
transcoded each image to its equivalent uncompressed bitmapped

Image
Transcoding

Proxy

PDA
Web

browser

Web
server

Case
I.

--- Scaling,
Decompression, &

Rendering

II. Scaling Decompression &
Rendering

III. Scaling &
Decompression

Rendering

Figure 4: Partitioning of image processing functions
between a client PDA’s Web browser and a transcoding
proxy can be used to reduce image download delays. In
our study, Case III resulted in the fastest download times.

To appear in 2nd ACM International Workshop on Wireless Mobile Multimedia (WOWMOM) 1999, in conjunction with Mobicom 99

5

format. This latter format precisely matched the PDA’s screen
depth, so that the image could be written directly to the frame
buffer and no decoding was necessary on the client. Transmitting
bitmaps to the PDA effectively migrated the task of
decompression off the PDA to the proxy. Since the commercial
browser was unable to view the transcoded bitmapped format, we
developed our own image viewer/browser for this PDA capable of
displaying the raw bitmaps sent from the proxy.

In our experiments, the PDA was connected to the Internet via a
serial cable rate-limited to 19.2 kbps.1 For the 19.2 kbps trials, a
Windows RAS server served as the gateway to the Internet. The
Windows RAS server ran on an unloaded 200 MHz Pentium Pro
Intellistation Z Pro running Windows NT 4.0 on 64 MB RAM.
Our commercial PDA contained a 16 MHz 2.7 MIPS processor
and a 160x160 screen at 2 bits/pixel grayscale depth. The
browser response time for each image was obtained by directing
the browser to fetch the specific image URL, and then by
measuring manually the roundtrip latency. The commercial
browser was only able to decode GIF images, and not JPEG
images. In those experiments that required transcoding, the
transcoding proxy ran on an unloaded 200 MHz Pentium Pro
Intellistation Z Pro, running Windows NT 4.0 on 128 MB RAM.
The proxy’s machine was connected to the Windows RAS
server’s host by a 16 Mbps intranet LAN. Table 1 lists the images
used in our trials as well as their individual characteristics. A
scaling factor of s=0.x represents a reduction of x% in both the
horizontal and vertical dimensions. Each image’s scaling value
was chosen so that image would just fit within the PDA’s
160x160 screen.

Table 1. Test images and their properties.

Image Com-
pressed

size
(KB)

Area
X x Y

Scaling
to fit within

160x160
screen

Progressi
-vity

Calvin.gif 19.0 600x197 s=0.25
(150x50)

interlaced

News1.gif 4.38 155x145 s=0.9
(140x131)

interlaced

Map.gif 6.97 473x378 s=0.3
(142x114)

non-
interlaced

Enya.gif 97.5 357x450 s=0.3
(108x135)

non-
interlaced

Index.gif 29.3 510x270 s=0.3
(153x81)

non-
interlaced

In Table 2, we present manually timed measurements of the
overall response time for fetching a single image from a Web
server for display on a PDA client running a Web browser. The
measurements are representative numbers taken from multiple
trials for each image; precise averages were not calculated. For
this particular browser, our initial observation was that each
image took three to five minutes to fully decode and display (see

1
Image response times were also measured over a 56 kbps

handheld modem and a Ricochet wireless LAN modem.
Preliminary results suggest similar behavior in terms of delay, but
the measurements were not yet complete at the time of this
paper’s writing.

Case I column in Table 2). Each image was slowly rendered onto
the screen, such that the user could observe each pixel row being
drawn (for non-interlaced GIF’s) at a glacial pace in raster scan
fashion, left to right, top to bottom. In addition, the commercial
browser enforced scaling of each image to fit within the
dimensions of the screen; we could not find a way to disable
scaling.

Our next objective was to determine the source of the excessive
latency. Communications factors (e.g. a bandwidth bottleneck, or
TCP flow control that might throttle the throughput due to small
PDA receive buffers, or excessive packet loss causing TCP
retransmissions, etc.) were considered, but ultimately our
investigation led to CPU limitations (e.g. image processing, or
inefficiently written browser, etc.) as the source of the latency.
Our prior experience with image processing libraries suggested
that image decompression was highly compute-intensive, and
moreover that poorly written algorithms (decompression and/or
scaling) can introduce significant delay. To test the hypothesis
that image processing and/or browser-related inefficiencies were
the primary causes of the delay, we decided first on the partial
step of migrating the scaling function alone to the proxy. Each
GIF image would be pre-scaled to fit within the screen’s
dimensions, so that the PDA’s browser could at least avoid having
to perform scaling on each image. The browser would still be left
to perform decompression and rendering.

Table 2. Measured response times for Web images using a
commercial browser on a commercial PDA (with and without
pre-scaling by a transcoding proxy).

Image Predicted
download

time of
original
GIF @

19.2 kbps

Response
time @

19.2 kbps
(via

proxy, No
transcod-

ing)

Case I.
Response
time @

19.2 kbps
(no

proxy)

Case II.
Response
time @

19.2 kbps
(via proxy,
proxy pre-

scales
GIF’s)

Calvin.gif 7.92 sec 3 min

3 min 8 sec
(s=0.25)

News1.gif 1.83 sec 40 sec 40 sec 18 sec
(s=0.9)

Map.gif 2.90 sec 3 min
20 sec

3 min
20 sec

15 sec
(s=0.3)

Enya.gif 40.6 sec 5 min
15 sec

5 min
10 sec

18 sec
(s=0.3)

Index.gif 12.2 sec 3 min
10 sec

3 min
10 sec

15 sec
(s=0.3)

The measured response times resulting from migration of the
scaling function to the proxy are shown in the Case II column of
Table 2. These measurements indicate a dramatic reduction in
delay, from three to five minutes down to ten to fifteen seconds.
Pre-scaling reduced delay in several ways. First, pre-scaling of all
GIF’s by the transcoding proxy bypassed the commercial
browser’s internal scaling algorithm. Prior experience suggested
to us that a scaling algorithm that is not optimized for speed, e.g.
each scaled pixel is interpolated from neighboring pixels, can add
significant delay. Second, pre-scaling resulted in the browser’s

To appear in 2nd ACM International Workshop on Wireless Mobile Multimedia (WOWMOM) 1999, in conjunction with Mobicom 99

6

decompression algorithm having to process less image data on the
PDA. A scaling factor of s=0.3 implies that the decompression
algorithm only needs to process 9% or about 1/11 of the amount
of data that originally had to be decoded. For each of the images,
the factor by which the pre-scaling reduced the amount of data
corresponded roughly with the factor by which the measured
response times were reduced, e.g. scaling of s=0.3 for map.gif
reduced the data by a factor of eleven, while the measured
response time was reduced by a similar factor of about thirteen
from 3 min 20 sec down to about 15 sec. Consequently, the delay
savings due to pre-scaling on the browser appears to be more a
result of reducing the amount of data that must be decompressed
and processed by the browser, rather than a result of avoiding the
scaling function on the PDA’s browser. However, more study is
needed to fully verify this conclusion.

The dramatic reduction in delay brought about by the migration of
scaling to the transcoding proxy suggests that even a partial
partitioning of browsing functions towards the proxy can bring
large benefits to a mobile client, without requiring any
modifications to the mobile client’s software. If the application
name and version, the OS name and version, and the processor
name and speed can be communicated to the transcoding proxy,
then the proxy will be in a position to understand the liabilities of
the mobile client’s complete system. This full knowledge can be
used to select the appropriate transcoding functions and
appropriate format for each transcoded image so that the overall
response time can be minimized. While it is true that users can
always install a newer faster browser for their PDA, buy a PDA
with a better OS, or find PDA’s with ever faster processors, the
proxy will always retain the capability to adapt to whatever
collective software/hardware limitations are posed by the mobile
client’s system, a feature that is especially useful for legacy
mobile systems.

Table 3: Measured response times for Web images transcoded
by a proxy to 2-bit grayscale (with and without scaling) and
displayed by a custom image browser.

Image Size in
KB of
2 bpp

bitmap

Predicted
download
time of 2

bpp bitmap
@ 19.2 kbps

Response
time @

19.2 kbps
& no

scaling

Case III.
Response
time @

19.2 kbps
w/ scaling

to fit
screen

Calvin.gif 29.5 12.3 sec 20 sec ~3 sec
(s=0.25)

News1.gif 5.62 2.34 sec ~5 sec ~5 sec
(s=0.9)

Map.gif 44.7 18.6 sec 30 sec ~4 sec
(s=0.3)

Enya.gif 40.2 16.7 sec 25 sec ~5 sec
(s=0.3)

Index.gif 34.4 14.3 sec 20 sec ~4 sec
(s=0.3)

In our third experiment, both scaling and decompression were
transferred to the proxy from the PDA, and a custom browser was
built for the PDA. The transcoding proxy converted GIF and
JPEG images into 2-bit grayscale images by first transforming

input images into a colorspace representation that included a
luminance component (e.g. YIQ, or YUV). The two most
significant bit planes of the luminance component were then used
to create the 2-bit grayscale bitmap sent to the PDA. More
advanced dithering algorithms were not applied in this study. All
scaling operations for fitting images to the PDA’s screen were
performed on the proxy, rather than on the PDA. Each 2-bit
grayscale bitmap received by our custom browser was then written
directly to the PDA’s 2-bit deep frame buffer, without requiring
any additional decoding, scaling or colorspace conversion on the
PDA. Our custom browser permitted images to be displayed even
if clipped by the limited screen dimensions, providing a way to
scroll/pan images in all directions. Images were not displayed
until the full bitmap was received. Rendering of images was
whole and instantaneous, unlike the slow row-by-row rendering
observed for the commercial browser. Timing was stopped as
soon as the image appeared on screen, though some of the image
may not have been visible due to clipping by the PDA’s screen.

Table 3 summarizes the response times measured for fetching
Web images that were pre-scaled and/or transcoded by a proxy to
2-bit grayscale and then displayed by our custom image browser
on the commercial PDA. When the proxy performed only
transcoding of images to 2-bit grayscale, response times were on
the order of 20 seconds. When the proxy performed both
transcoding to 2-bit grayscale as well as pre-scaling, then the
response times were further reduced to four to five seconds (Case
III of Table 3). These values represent a reference target

While our previous example of pre-scaling in Case II
demonstrated that delay could be significantly reduced without
requiring any modifications to the PDA’s commercial browser,
the Case III measurements indicate that response times can be
further reduced by permitting modifications to the PDA’s browser
to incorporate low-complexity decoding techniques. One way for
the commercial browser to achieve delays of four to five seconds
would be to add support for grayscale bitmaps and patch any other
software inefficiencies within the browser. Adding support for
other image decoding formats, such as vector quantization, that
achieve an intermediate degree of compression yet retain low-
complexity decoders may lead to even lower delays, depending on
the tradeoff between lower download times due to increased
compression and higher decompression times.

Optimizing the existing browser decoders without adding any new
formats is another avenue to improved performance. Our next
step is to see how much delay performance can be enhanced by
implementing optimized GIF and JPEG decoding on the PDA. As
part of this effort, we need to better understand the complexity of
GIF and JPEG decoding. These studies should also be able to
determine how much savings in delay can be achieved by
partitioning some of the GIF and JPEG decoding to execute at the
proxy.

Preliminary analysis suggests that GIF decoding times should not
contribute more than ten seconds in latency. GIF decompression
is based on decoding a dictionary of encoded words [5]. Previous
measurements of GIF->JPEG transcoding, which includes GIF
decoding, on a 200 MHz system have shown collective latencies
of no more than a few hundred milliseconds [1]. Extrapolating
down to our 16 MHz PDA, which is about an order of a

To appear in 2nd ACM International Workshop on Wireless Mobile Multimedia (WOWMOM) 1999, in conjunction with Mobicom 99

7

magnitude slower, yields an estimate of GIF decoding delays of
ten seconds or less. Since a variety of factors could invalidate this
extrapolation, the estimate is recognized as risky. Another rough
estimate of GIF decoding times can be obtained from Table 2
(Case II, GIF decoding on a commercial browser). If the Case II
delays are entirely attributed to GIF decoding, rather than to other
browser inefficiencies, then GIF decoding should take no more
than about ten to twenty seconds. on this PDA This roughly
confirms our earlier extrapolated values. More analysis of the
computational costs (add, multiply/shift, memory copy) of GIF
decoding is needed in order to predict GIF decompression times
on other PDA architectures. Fast hardware GIF decoding has
been studied in the literature [6]. Additional GIF transcoding
techniques have also been analyzed [7].

As a cautionary note, for certain GIF’s, no amount of optimized
GIF decoding can reduce the overall response time below that
incurred by transcoding to the equivalent 2-bit grayscale bitmap
of the GIF. For the image enya.gif, the download time alone of
the unscaled compressed GIF (40.6 sec from Table 2) exceeds the
overall response time (download delay plus transcoding time) for
the equivalent unscaled 2-bit grayscale bitmap (25 sec from Table
3). In this case, no degree of optimization can make GIF
decoding, whether optimized or not, can achieve faster delivery
than transcoding to the bitmap format. Transcoding to a raw
bitmapped representation can improve the response time for
certain images, regardless of the CPU speed of the PDA.

Preliminary analysis suggests that JPEG decoding times should
not contribute latency on the order of minutes. Previous
measurements of JPEG->JPEG transcoding on a 200 MHz again
show latencies on the order of several hundred milliseconds [1].
Extrapolating down to our slower PDA again yields a risky
estimate of JPEG decompression time of roughly ten seconds or
less. In the case of JPEG, it also possible to partition JPEG
decompression into smaller discrete components: inverse DCT,
inverse quantization, and inverse Huffman+RLC decoding [8][9].
JPEG is consequently a candidate for partitioning some of its
image processing complexity off of the client device on to the
proxy in order to improve delay performance. More analysis of
JPEG is necessary to predict JPEG decoding delay and partitioned
performance on other PDA architectures. Low-complexity
proposals for JPEG decoding have been analyzed in the literature
[8][10].

The general trend we observed for our experimental setup in
comparing Tables 2 and 3 was that the response time kept
improving as more functionality was migrated off the PDA client
and onto the transcoding proxy. If a browser supports multiple
image decoding formats of varying complexity, then a transcoding
proxy is in a position to choose the lowest-complexity output
format supported by the browser that minimizes delay. In
particular, the proxy will need to calculate the overall download
delay from Equation 2 for each output format, make sure that this
delay satisfies the transcoding Inequality 3, and then pick the
minimum-delay output format. The choice of output format and
degree of pre-scaling will influence the factors Dc(Sp(S)) and
Sp(S).
.

5. CONCLUSION
The analytical framework for determining whether a proxy should
transcode a given image was made more complete by
incorporating the additional factor of a mobile client’s effective
processing speed. For store-and-forward image transcoding
proxies, transcoding is only invoked when response time is
reduced. The inequality that evaluated the transcoding was
modified to consider whether the client was slow or fast. For
streamed image transcoding proxies, the buffer overflow
conditions governing when transcoding should be invoked were
modified to include the client’s effective processing speed. When
all buffer overflow conditions were met, it was shown that
streamed transcoding always reduced the overall response time.
To understand the influence of the client’s processing ability on
the transcoding decision, we devised three experiments that
partitioned image processing functionality between a transcoding
proxy and a standard PDA client, and then measured the image
fetch delays over a modem link. When no transcoding was
performed, and the PDA client was forced to perform scaling,
decompression, and rendering, we found response times to be on
the order of minutes. When the transcoding proxy pre-scaled
images, thereby freeing the browser to perform only GIF
decompression and rendering, the delay was reduced to multiple
tens of seconds. When the proxy pre-scaled and transcoded
images to raw bitmaps, thereby migrating scaling and
decompression tasks from the PDA’s browser to the proxy,
response times were reduced to less than ten seconds. These
experiments demonstrate that a proxy that understands the CPU
limitations of a PDA can dramatically reduce the response times
experienced by an image by migrating some or all CPU-intensive
tasks from a slow PDA client to a transcoding proxy.

6. ACKNOWLEDGMENTS
I wish to thank Jim Rubas of IBM T.J. Watson for his initial
observation on the lengthy delay of PDA browsing, as well as his
work on incorporating scaling into the transcoding proxy. I wish
to thank Todd Mummert for his development of an HTTP-
compliant image viewer for the PDA.

7. REFERENCES
[1] R. Han, P. Bhagwat, R. LaMaire, T. Mummert, V. Perret, J.

Rubas, “Dynamic Adaptation In an Image Transcoding
Proxy For Mobile Web Browsing,” IEEE Personal
Communications, vol. 5, no. 6, Dec. 1998, pp. 8-17.

[2] A. Fox, S. Gribble, Y. Chawathe, E. Brewer, “Adapting to
Network and Client Variation Using Infrastructural Proxies:
Lessons and Perspectives”, IEEE Personal Communications,
vol. 5, no. 4, Aug. 1998, pp. 10-19.

[3] J. Smith; R. Mohan; C. Li, “Content-based Transcoding of
Images in the Internet,” Proceedings of the International
Conference on Image Processing (ICIP), 1998.

[4] T. Watson, “Application Design for Wireless Computing,”
Workshop on Mobile Computing Systems and Applications,
Dec. 1994, pp. 91-94.

[5] M. Nelson, J. Gailly, The Data Compression Book, Second
Edition, M&T Books, 1996.

To appear in 2nd ACM International Workshop on Wireless Mobile Multimedia (WOWMOM) 1999, in conjunction with Mobicom 99

8

[6] C. Su, C. Yen, J. Yo, “Hardware Efficient Updating
Techniques for LZW CODEC Design,” IEEE International
Symposium on Circuits and Systems (ISCAS), June 1997, pp.
2797-2800.

[7] N. Memon, R. Rodila, “Transcoding GIF Images to JPEG-
LS,” IEEE Transactions on Consumer Electronics, vol. 43,
no. 3, Aug. 1997, pp. 423-429.

[8] W. Pennebaker, J. Mitchell, JPEG Still Image Data
Compression Standard, Chapman & Hall, 1993.

[9] S. Chandra, C. Ellis, “JPEG Compression Metric as a Quality
Aware Image Transcoding”, USITS 1999.

[10] K. Lengwehasatit, A. Ortega, “DCT Computation Based on
Variable Complexity Fast Approximations,” Proceedings of
ICIP, 1998.

