Int. J. Security and Networks, Vol. 1, Nos. 3/4, 2006 167

Limiting DoS attacks during multihop data delivery
in wireless sensor networks

Jing Deng,* Richard Han and Shivakant Mishra

Department of Computer Science,
University of Colorado, Boulder, CO, USA
E-mail: jing@cs.colorado.edu

E-mail: rhan@cs.colorado.edu

E-mail: mishras@cs.colorado.edu
*Corresponding author

Abstract: Denial of Service (DoS) attacks can be easily launched in Wireless Sensor Networks
(WSNs). Due to their resource constraints, namely limited energy, memory and bandwidth,
WSNs are especially vulnerable to DoS attacks. This paper addresses a particular class of DoS
attacks that overwhelm resources along a multihop data delivery path. Since WSNs are typically
tree-structured, then a DoS attack on a path will be especially effective in denying routing service
to an entire branch of sensor nodes, not just the nodes along the path. This paper proposes a
solution using one-way hash chains to protect end-to-end multihop communications in WSNs
against such Path-based DoS (PDoS) attacks. The proposed solution is lightweight, tolerates
bursty packet losses and can easily be implemented in modern WSNs. This paper reports on
performance measured from a prototype implementation.
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1 Introduction

Wireless Sensor Networks (WSNs) offer the promise of
exciting new technological developments. Applications
of WSNs are wide-ranging, including environmental
monitoring, smart spaces, military deployments, medical
systems and robotic exploration.

Copyright © 2006 Inderscience Enterprises Ltd.

Large sensor networks are often organised hierarchically
via a tree structure to conserve energy and network
bandwidth. The tree consists of leaf sensor nodes, aggregator
nodes and a base station, as given in Figure 1. Leaf
sensor nodes send their sensed data to an aggregator node.
Aggregator nodes process and summarise the data from
member nodes and send the aggregated result to a base
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station. Communication between sensor nodes and their
aggregator and between an aggregator and the base station
occurs in general via a multihop, end-to-end communication
path.

Figure 1 A PDoS attack in end-to-end communication
in WSNs

Due to their inherent limitations, WSNs are especially
sensitive to Denial of Service (DoS) attacks (Wood and
Stankovic, 2002). In contrast to resource-rich networks such
as the internet, a WSN is less stable, more resource limited,
subject to open wireless communication and prone to the
physical risks of in situ deployment. These factors increase
the susceptibility of WSNs to DoS attacks.

While an adversary may resort to a localised signal
jamming attack, a more effective form of DoS attack against
a WSN is to overwhelm nodes that are many hops away
by flooding packets, which will quickly exhaust the limited
energy, communication bandwidth, memory and CPU of
resource-limited sensor nodes. INSENS proposed One way
Hash Chains (OHCs) to limit the ability of an attacker to flood
to the entire sensor network (Deng et al., 2005). During set
up of the routing tables, OHCs limit broadcast flooding of
control packets. After routing tables have been securely set
up, data packets are confined to securely specified routes and
thus cannot flood the entire WSN. However, after the data
begins flowing, INSENS does not address how to limit an
adversary from flooding replayed or spurious data along any
routing path, which will overload all nodes along the path
towards a base station.

Other forms of Distributed Denial-of-Service (DDoS)
attacks are also possible, analogous to DDoS attacks in the
internet (Luetal., 2005). Such attacks would typically require
cooperation among multiple enemy agents. This cooperation
can be extended to allow wormholes to be formed (Hu et al.,
2003) between two agents in different parts of the network.
Such sophisticated attacks require substantial cooperation
and thus pose a significant investment of effort by the attacker.

Our observation and the focus of this paper, is that a
much simpler yet highly effective class of DoS attacks against
WSNs can be launched by a single adversary flooding packets
along a multihop data delivery path. Such an attack, which
we term a Path-based DoS (PDoS) attack, exploits the
tree-structured routing of WSNs to cause broad DoS for
modest effort. Figure 1 shows the nodes that would be

affected by a PDoS attack. Suppose an adversary floods bogus
packets along a path towards the base station. Firstly, nodes
along the path will quickly become exhausted. Secondly, all
nodes on the branch containing the attacked path will also
be unable to communicate with the base station, due to the
tree-structured topology of a WSN. For example, each of
the aggregator clouds shown will be unable to reach the base
station. Thus, an adversary launching a PDoS attack in a
WSN can disable a much wider region than simply a single
path. This problem was important enough to be addressed
in several other papers (Ye et al., 2004; Zho et al., 2004),
though it was not given an explicit name. We will discuss
these solutions in more detail in the related work section.

To defend against a PDoS attack, an intermediate node
must be able to detect spurious packets or replayed packets
and then reject them. One way to detect spurious packets
is to have the source node establish a separate shared key
with other sensor nodes in the communication path. The
sender node then uses each key to separately generate
authentication/integrity information for each packet to satisfy
each node along the path. However, the highly restricted
packet size in WSNs (e.g. 29 bytes for data in TinyOS packet)
makes it difficult to include such a large amount of verification
information in a sender’s packet, for example, an 8-byte
Message Authentication code (MAC) (Perrig et al., 2002) for
each node in the path. In addition, this imposes an onerous
burden on the sender, who must know a priori each node in
the path in order to send the relevant verification information.
Alternatively, a sender could use a single ‘path’ key that is
shared with each node along the path, thus requiring only
one MAC for each packet. This approach is vulnerable to
compromise any of the sensor nodes along a path, because
the attacker will then have the path key and be able to
flood legitimate packets along the path in a PDoS attack.
One way to detect replay of duplicate packets is to have
each intermediate node store a history of all packets they
have forwarded. However, both memory and computation
limitations of a sensor node make this solution infeasible.

Another possible PDoS defence is to limit the number
of packets an intermediate node can forward per second,
namely rate control. However, given the asymmetric nature
of WSNs, nodes at different locations need to forward
different numbers of packets per second. For example, nodes
near a base station will typically need to forward more
packets per second than the nodes far from the base station.
Furthermore, different types of sensor nodes have different
packet sending rate requirements, for example, aggregator
nodes reporting different types of events, nodes undergoing
dynamic reprogramming, etc. In addition, when a routing
path changes, the rate control setting for some nodes need to
be updated. Security, efficiency and scalability issues suggest
that a rate control solution is non-trivial.

In this paper, we propose a general lightweight secure
mechanism to defend against PDoS attacks on intermediate
nodes in a multihop end-to-end data path in WSNs. This
mechanism configures a one-way hash chain in each node
along a path, enabling each intermediate node to detect a
PDoS attack and prevent the propagation of spurious or
replayed packets. In this mechanism, every packet sent by
an end point includes a new one-way hash chain number.
An intermediate node forwards a packet only if the included
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OHC number is verified to be new. This OHC-based solution
is more resilient to compromise than the approach of sharing a
single path key since an adversary who obtains the current and
earlier OHCs cannot generate a legitimate next OHC number
and therefore cannot flood the path with bogus packets or
replayed packets. This OHC-based solution also requires
minimal storage. Our approach has the advantage that it is
general, that is, the solution applies to any multihop data
communication path used for unicast or reliable end-to-end
data delivery.

This paper makes four contributions. Firstly, this Section
identified an important DoS attack that is relatively easy
to launch and can severely impact both computation and
communication in a WSN. Secondly, it proposes an efficient
and lightweight mechanism based on OHCs to defend a
sensor network against PDoS attacks. While OHCs have
been used to solve security problems in the internet (Perrig
et al., 2000), wireless ad hoc networks (Hu et al., 2002)
and WSNs (Deng et al., 2003, 2005; Perrig et al., 2002;
Zhu et al., 2003), our unique approach is to apply OHCs
to protect unicast paths from easily launched DoS attacks.
Thirdly, Sections 3.2 describe novel and robust mechanisms
to maintain OHCs given high WSN packet loss rates (Zhou
and Govindan, 2003), irregular spatial wireless ranges (Zhou
etal., 2004 ), and frequently time varying transmission ranges
(Woo et al., 2003). These mechanisms include bootstrapping
an OHC in intermediate nodes, refreshing an OHC after a
loss of a burst of packets and adapting to path changes.
Finally, in Section 5.2.2, the proposed OHC solution has
been implemented and quantitatively evaluated on modern
sensor nodes in terms of its storage and generation costs,
demonstrating the feasibility of our solution.

2 Related work

DoS attacks in WSNs are a critical security issue. Different
types of DoS attacks in different layers of a sensor network
protocol stack are discussed in Wood and Stankovic (2002),
and some countermeasures to defend against them are
proposed. Security problems of different sensor network
routing protocols are analysed and mechanisms to enhance
the security of sensor network routing are proposed in Karlof
and Wagner (2003).

Perrig et al. proposed the u TESLA protocol to securely
broadcast messages in a WSN (Perrig et al., 2002). This
protocol uses an OHC number as the key to generate a MAC
of a broadcast message. A different OHC number is allocated
for each time slot and this number is used to generate MACs
for the packets sent in that time slot. To tolerate packet losses,
UTESLA has been extended by introducing multi-level
one-way hash chains Liu and Ning (2003). A higher-level
OHC is used to bootstrap low-level OHCs. We adopt the idea
of using a higher-level OHC to maintain low-level OHCs in
our solution to tolerate a sequence of packet losses. However,
we use a different mechanism to maintain low-level OHCs
and our OHC maintenance scheme does not require time
synchronisation.

Hu et al. (2002) proposed a secure on-demand routing
protocol for ad hoc networks, in which an OHC is used to
thwart malicious routing request floods. When an initiator
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node broadcasts a ROUTE REQUEST message, it attaches
an OHC number on the message. Other nodes can check
the authenticity of the packet by verifying the OHC number.
OHCs were used in INSENS to limit broadcast floods
for control routing updates in WSNs (Deng et al., 2005).
In contrast, our approach employs OHCs to defend against
DoS attacks on unicast messages that follow a path. Problems
unique to unicast messages must be addressed, for example,
maintaining OHCs when many packets are lost and how to
generate and store OHCs in a highly resource-constrained
sensor node.

Recently, en-route filtering schemes have been proposed
for intermediate nodes to filter false data generated by
malicious aggregator nodes as well as intruders engaged
in what we have termed PDoS attacks (Ye et al., 2004;
Zhu et al., 2004). The basic idea is that the intermediate
nodes share some keys with the member nodes in a sensor
node group or cluster. Member nodes generate MACs
for the reported data using the shared keys. Intermediate
nodes can verify the MACs before forwarding packets.
In the SEF scheme proposed by Ye et al., the Bloom
filter is used to reduce the size of MACs and ensure
their security. The intermediate nodes and member nodes
use randomly predistributed keys to generate and verify
MACs. In this scheme, it is highly likely that the false
data will be dropped by one of the intermediate nodes
and would not reach the base station. However, there
are several problems with the SEF scheme. Firstly, SEF
uses a probabilistic approach. It cannot guarantee that
every spurious packet will be filtered out on the path.
In addition, statistically, a spurious packet will be forwarded
for a certain number of nodes before it is filtered out.
Secondly, the message overhead of SEF is still large. The
size of the Bloom filter is 14 bytes long, which is about half
of data payload of a TinyOS packet.

In the interleaved key scheme proposed by Zhu
et al. (2004), member nodes and intermediate nodes set
up interleaved keys using randomly predistributed keys.
These interleaved keys and hop-by-hop authentication ensure
that the base station will detect any false packets when no
more than a certain number (¢) of nodes are compromised.
The problem of the interleaved key scheme is that there is
no efficient mechanism to authenticate two nodes to each
other through multiple hops. In addition, the communication
overhead of the pairwise key establishment for multihop
nodes is large and the process is slow.

In contrast to SEF and interleaved keys, our PDoS
solution filters out bogus packets immediately, wherever they
are injected. Unlike (Ye et al., 2004), our mechanism is
deterministic and guarantees that, that the bogus packets will
be filtered out with only a small message overhead. Unlike
(Ye et al., 2004; Zhu et al., 2004), our mechanism is easy to
bootstrap, is lightweight and flexible in the face of routing
path changes and is extensible enough to protect general
forms of unicast communication against PDoS attacks, for
example, reliable end-to-end communication between a base
station and a sensor node.

Some fault tolerance routing mechanisms can make it
harder on the attacker to deny service to the WSN. For
instance, in Mint routing (Woo et al., 2003), a node has
multiple parent nodes and it selects one parent node to
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forward its data based on the connectivity quality between
itself and the parent node. So if the one parent node is
overwhelmed by a PDoS attack, the node can select another
parent node to send its data. However, the PDoS attack
can still be launched against Mint routing; the only added
requirement is that the attacker possess more energy, that is, it
will simply take longer for the attacker to exhaust the network.
The nodes on the attacked path will still be overwhelmed by a
PDoS attack. Even worse, nodes along alternative paths will
also eventually be overwhelmed.

3 A lightweight defence against path-based
DoS attacks

3.1 Assumptions

We assume a standard WSN system model in which sensor
nodes forward data via a tree-structure routing topology to a
base station. The sensor nodes and base station are stationary
after deployment. Data packets are forwarded along an end-
to-end multihop data communication path between a sensor
node S and a base station B, namely S — n; — n
— ... —> n, — B, wheren, ... n, are the intermediate
nodes. The path between S and B has already been securely
set up by a protocol such as INSENS (Deng et al., 2005). Our
goal above and beyond the secure routing, which protects
the control packets used to set up routing, is to prevent
PDOS attacks of flooded data packets along these established
paths. The paths may change over time for a variety of
reasons. Section 5.2 addresses how our solution adapts to path
changes caused by fluctuating radio ranges. The underlying
secure routing scheme is assumed to be able to adjust to
topology changes caused by node failure and/or duty cycle
sleeping. S and B share a secret key that they use to protect
the confidentiality, integrity and authenticity of the data
exchanged.

An adversary can eavesdrop upon, modify or block any
packets transmitted along the path from S to B. She can
also inject any number of spurious packets along this path.
If the adversary compromises an intermediate node ny, she
can determine all keys stored in n;, and control every packet
passed through n;. To launch a PDoS attack, an adversary can
inject bogus packets, compromise an intermediate node or
compromise a source node S. In general, DoS attacks would
be easy to defend against if we knew where the adversary
launched an attack. When an adversary launches a DoS attack
from a fixed sender S, a base station can use its shared key
with S or the OHC to identify misbehaviour from a malicious
S, and inform intermediate nodes not to forward any more
packets for S. However, replay PDoS attacks can be initiated
from anywhere along a path. As a result, in this paper, we
focus on intermediate nodes or outside sources capable of
launching PDoS attacks.

Our goal here is to address only PDoS-style attacks.
Verifying whether the content of an aggregation result is
correct is beyond the scope of this paper and has been
addressed elsewhere (Przydatek et al., 2003). We also do
not focus on localised jamming or blocking attacks that an
adversary may launch (Deng et al., 2003; Wood et al., 2003)
or more exotic attacks to routing schemes, such as the rushing
attack or wormhole attack Karlof and Wagner (2003).

3.2 Basic scheme using one-way hash chains

A one-way hash chain is employed as an efficient and simple
solution on resource-constrained sensor nodes for mitigating
DOS attacks along paths. A one-way hash chain (Lamport,
1979) is a sequence of numbers generated by a one-way
function F that has the property, that for a given x it is
easy to compute y = F(x). However, given F and y, it
is computationally infeasible to determine x, such that x =
F~'(y). An OHC is a sequence of numbers K,,, K,_i,.. .,
Ko, suchthatVi : 0 <i <n, K; = F(K;+1). To generate
an OHC, we first select a random number K,, as the seed
and successively apply function F on K, to generate other
numbers in the sequence.

To defend against a PDoS attack, each source node
S (mostly S is an aggregator node) maintains a unique
one-way hash chain HS : < HS,, HS,,_, ..., HS|, HSy >.
When S sends a packet to the base station through multiple
hops, it includes an OHC sequence number from HS in
the packet: it attaches HS; in the first packet, HS, in the
second packet, and so on. To validate an OHC number, each
intermediate nodeny, . .., n,, maintains a verifier Vg for node
S. Initially, Vy is set to HSy. When S sends its ith packet, it
includes HS; with the packet. When an intermediate node 7y
receives this packet, it verifies if Vg = F(HS;). If so, n;
validates the packet, forwards it to the next intermediate node
and sets Vg to HS;. In general, n; can choose to apply the
verification test iteratively up to a fixed number w times,
checking at each step whether Vg = F(F...(F(HS;))). If the
packet is not validated after the verification process has been
performed w times, n; simply drops the packet. Figure 2
demonstrates this mechanism. The reason for performing
the verification process more than once is to tolerate packet
losses. In particular, by performing the verification process
w times, up to a sequence of w packet losses can be tolerated,
where the value of w depends on the average packet loss rate
of the network.

Figure 2 Defending against PDoS attacks with a one-way
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This OHC-based scheme brings several advantages. Firstly,
it constrains PDoS attacks from an adversary, since an
adversary cannot generate the next valid OHC number, while
replayed old OHC numbers will be dropped immediately.
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Secondly, the memory and computational costs of OHC
execution are quite lightweight, as we will show. Thirdly,
this scheme tolerates packet losses. Finally, our approach
does not require tight time synchronisation, unlike SEF
(Ye et al., 2004) or interleaved keys (Zhu et al., 2004).
A source node can send its message at any time without
needing to be tightly synchronised with any intermediate
node.

One possible attack in this scheme is that a malicious node
can listen to and block all packets sent from the source node
and in addition, collect all the OHC numbers included in
these packets. These accumulated numbers can be used to
generate a flash flood against subsequent intermediate nodes
by sending a burst of spurious packets in a very short period of
time. Since the subsequent intermediate nodes have not seen
these OHC numbers, they will validate the corresponding
packets and forward them. However, such an attack is limited
in two aspects. Firstly, the adversary will have to wait for a
relatively long period of time to collect a large number of valid
OHC numbers that it is blocking. Secondly, the adversary can
send only as many packets as the number of OHC numbers
it has collected, that is, such an attack can be sustained for
only a short period of time.

If the packets sent by a source node arrive out of order,
for example, a source node sends packet p; first and p,
secondly and somehow an intermediate node n; gets p;
before getting p, then n; will drop p; since n; will think
that p; has an old OHC number. Although out-of-order
arrival is common in internet routing, since packets from the
same source to the same destination may be routed through
different paths, we argue that this is not a large problem in
sensor networks because standard routing paths between a
source node and destination node are typically unique. In
addition, each node will forward packets based on a First In,
First Out (FIFO) policy. We will discuss the effect of changes
in the routing topology later.

4 Bootstrapping the initial one-way hash
chain number

Our solution requires that every intermediate node be
configured with the initial OHC number (Vg = HS;) before
communication can begin. One advantage of this OHC
scheme is that we only need to protect authenticity, not
confidentiality, of the initial OHC number. To bootstrap the
initial OHC number, the base station can apply either a
public key scheme (Malan et al., 2004) or a uTESLA secure
broadcast mechanism (Perrig et al., 2002).

As mentioned in Section 3.2, the path between the base
station B and the sensor node S is assumed to have been
already setup as: B — n,;, —> ny,—y —> -+ —> n; — S.
In our public key scheme, the base station posses a private
key PK; and every node has the corresponding public key
PK,. To bootstrap HSy, the base station sends a message
containing HSy and a signature of HSy signed with PK; to
the nodes n; to n,, and S in the path. When a node n,, receives
this message, it can use PK,, to verify the authenticity of
HSy and forwards the message to the next node n;_; if the
verification is a success. Malan et al. (2004) implemented an
elliptic curve public key scheme on Berkeley motes. Their
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experiment showed that the encryption/decryption process
costs 3040 s. Compared to the pyTESLA option described
below, the public key approach is slow. As aresult, we employ
public keys only during bootstrapping and not during per
packet verification. Public key bootstrapping of OHCs has
the advantage over UTESLA that loose time synchronisation
is not required.

To apply the hTESLA protocol, all nodes in the network
are loosely time synchronised. When base station B
bootstraps a one-way hash chain, B generates a packet
containing HS, the ID of the destination node S and a MAC
for the packet using key K;, where K; is the number in the
key chain number corresponding to time slot ;. The packet
format is:

bsp : B|S|HSo|MAC, (B|S|HSy)

In the time slot #;, B sends bsp to n,,. n, records HSy and
forwards the packet to n,,_; n,,— records HSy and forwards
the packet to n,,_»; and so on, until the packet reaches S.
To authenticate HS, B releases the key K; in time slot #; .
On receiving this key, an intermediate node can verify the
integrity and source authentication of HSy.

Notice that the bsp message does not flood to the whole
network, which saves data bandwidth and would not bring
any attacks against the network even if the nodes on the
other side of the network do not receive K; at t;.,4. Since
the messages that are MACed by K; are supposed to be sent
out at time slot 7, an adversary cannot launch any attacks with
K; when he gets K; at t;,4 (Perrig et al., 2002).

5 One-way hash chain maintenance

5.1 Refreshing a broken OHC

An intermediate node performs the verification process up to
w times. This allows the node to tolerate a sequence of up to
w packet losses. However, if a sequence of more than w
packets are lost, an intermediate node will be unable to
recover, that is it would not be able to validate any later
packets and will simply drop them. We call this problem
a broken OHC problem. An adversary can exploit this
limitation by jamming the communication medium around
an intermediate node for a sufficient time period that will
result in more than w packet losses. In this way, an adversary
can block the communication between a source node S and a
base station B by only launching jamming attacks for a short
time.

Simply increasing the value of w can help intermediate
nodes tolerate more packet losses, but cannot defend against
an adversary’s jamming attack. To address the broken OHC
problem, we periodically bootstrap a new OHC number
(the OHC number most recently sent by the source node)
in the intermediate nodes. This way, even if a sequence of
more than w packets are lost, intermediate nodes can set
up a new value for Vg using this periodic bootstrapping
mechanism and validate subsequent packets. As a result, if
an adversary wants to attack this enhanced scheme and block
communication between S and B, she is forced to repeatedly
launch jamming attacks by either jamming all packets or by
periodically jamming bootstrap messages. She cannot block
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all future communication by simply jamming for a short
duration.

There are two problems in bootstrapping a new OHC
number that we need to address. Firstly, how can intermediate
nodes authenticate the new OHC number? Secondly, if an
adversary intercepts the new OHC number, how do we stop
the adversary from flooding spurious packets to upstream
intermediate nodes that have not received the new OHC
number? For example, suppose the last OHC number that
an intermediate node n; received is HS; and the most recent
OHC number that S has sent out is HS;, where j —i > w.
Suppose HS;,; is being bootstrapped using the periodic
bootstrapping mechanism. If an adversary intercepts HS;,
she can generate j + 1 — i spurious packets containing valid
OHC numbers (HS; 1, ..., HS;;1) and send them in a flash
flood to ny. n; will validate these OHC number and forward
the corresponding spurious packets to the next node.

To address the first problem, a second one-way hash chain
is introduced, called the control one-way hash chain (denoted
by OHC(), to authenticate the newly bootstrapped OHC
number. OHC is only used for periodically bootstrapping a
new one-way hash chain number for data transmission. In this
section, the OHC used for data communication is denoted
by OHCp, to differentiate it from OHC.. To address the
second problem, the new OHCp number is bootstrapped first
in nodes closer to the base station, that is, the new OHCp
number is bootstrapped in node 7, before node n;, where
k > j.This way, if node n;, is compromised, it cannot use the
new OHC number to generate spurious packets and forward
them to nodes ny41, ng+2, etc. This is because nodes nyy 1,
Ni+2, ... would have already received the new OHC number,
and so drop the spurious packets.

Our solution to refresh a broken one-way hash chain
combines these two mechanisms as follows. The source node
S and base station B share a second one-way hash chain
OHC¢ :< C,,, Cpiy, ..., Cy >. All intermediate nodes are
bootstrapped with the initial number of OHCc, that is, Cj,
using the mechanism described in Section 3.2. As given in
Figure 3, a roundtrip exchange is employed consisting of two
messages, a RQST S_B and an RACK B_S, to bootstrap
a new OHCp number HS, in the intermediate nodes.
The first message (S_B) sent by S to B contains a hash value
of HS, (MACc,,,(HS,)), index of HS, in OHCp (u), the
next new OHC¢ number (C;) and an encrypted form of HS,,
(Ek gy (HS,)). The hash value is computed using C;, 1, which
is the next new OHC¢ number after C;, and encryption is
done using a secret key Kpg shared between S and B. C; is
included to loosely authenticate the source of the message.
The format of an S_B message is as follows:

RQSTS_B : S|B|Ek,,(HS,)|u|C;IMACc,_, (HS,)

i1
When an intermediate node receives this message, it
authenticates the source by verifying C; as the next OHC¢
number, given that C;_; or earlier was received in a previous
B_S message. If authenticated, this node saves the MAC
verification for HS,, and forwards the message to the next
node. When B receives this message, it first authenticates
the source. If authenticated, it decrypts Eg, (HS,) and
obtains the new OHCp number HS,. At this point, B
knows that every intermediate node have already received the
MACed HS,,.

Figure 3 Refreshing a broken OHC number
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The next stage in Figure 3(b) consists of B releasing the
plaintext of HS,, to each node along the path via an RACK.
B sends a message (B_S) to S that has the following format:

RACKB_S : B|S|Ci.i|HS,

When an intermediate node receives this message, it first
authenticates the source by verifying that C; is the next new
OHC number in OHCc. It then computes MACc,,, (HS,)
using C;4; and HS,, included in this message and compares
it with the hashed value of HS, received earlier in message
S_B. If there is a match, the intermediate node assigns HS,
to Vg and forwards the message to the next node. When S
receives B_S message, it knows that every intermediate node
has received HS,, so it can use HS,;; for the next packet.

This refresh mechanism is resilient to a variety of attacks.
Firstly, the use of the control hash chain C; prevents
nodes from flooding forged RQST and RACK messages to
intermediate nodes. Secondly, the sequence of disclosure
means that a node ny learns HS, before n; if k > j, thatis, if
ny is closer to B. However, n; cannot use this knowledge
to launch a PDoS attack on n; since traffic goes from
n; to ng.

5.2 Resilience to path changes

Due to irregularity of radio coverage (Zhou et al., 2004)
and frequent changes in the data transmission range
(Woo et al., 2003), the end-to-end routing paths in WSNs can
change during an end-to-end communication. For example,
by monitoring routing information broadcast by its neighbour
nodes, a node n; may detect that it cannot reach ny |, but that
it can reach n;, via another node a;. When a routing path
changes, new nodes joining the path will need to securely
receive the OHC number and initialise their verifier V.
One approach to deal with a path change is to employ the
bootstrap protocol every time the path changes. However,
this method is costly. In addition, it exposes the protocol to
new DOS attacks: an adversary can simply jam one node on
the path, causing the path to change. This forces the base
station to rebootstrap a new OHC for all nodes on the path.
An adversary can repeatedly jam along the path, forcing the
base station to repeatedly reboostrap. To defend against this
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DOS attack, we propose two mechanisms that both reduce
the frequency of bootstrapping.

5.2.1 OHC proactive bootstrapping

The high redundancy of WSNs enables most sensor nodes
to find another node near the failed node, for example, the
failed node’s neighbour or even nodes two to three hops
away, to repair a path (Woo et al., 2003). If nodes near the
path can be bootstrapped and refreshed with the OHC, then
re-bootstrapping the OHC can be postponed and need not
occur every time the path is changed. When base station B
and nodes along the designated path n; to n,, bootstrap the
initial OHC number, their neighbour nodes can receive these
messages and receive the authenticated initial OHC number.
Similarly, these nodes can also receive the refreshed OHC
number. These nodes can be chosen for a new path and will
be able to authenticate OHC numbers from the source node
without rebootstrapping.

We can extend this scheme by proactively bootstrapping
OHC numbers to nodes that are several hops away from node
ny to n,, B and S. When these nodes’ neighbour nodes
receive the bsp broadcast, they will rebroadcast the message
bsp|K to their neighbour nodes, where K is a propagation
factor. Its value should be one or two. When a node receives
this message, it reduces K by one. If the result is larger than
one, that node will continue to rebroadcast the message with
new K. In this way, the bsp message is flooded to
neighbourhoods of the nodes on the path from B to S in a
limited way, namely within K 4 1 hops. Using the same
method, the second message of W'TESLA and messages
for refreshing OHC number are also flooded to these
expanded neighbourhoods. These nodes can join the new path
and defend against PDoS attacks without rebootstrapping.
This mechanism requires neighbourhood nodes to consume
additional memory to save OHC values. Since these would
not be used very often, they can be stored on more plentiful
flash memory or EEPROM.

To successfully launch a DOS attack against proactive
bootstrapping, an adversary has to destroy many more nodes
and has to continually move from one place to another place
and destroy nodes. This significantly increases the cost of
the attack. The public key and/or y'TESLA provide further
protection against saving the wrong initial OHC number.

5.2.2 Lazy OHC bootstrapping

One observation is that modest changes in the path do not
require immediate bootstrapping. When only one new node
is added in the path, the OHC need not be bootstrapped in
the new node(s) immediately. This is because the extent of a
PDoS attack will be limited to only the new node(s). Other
nodes that have Vy already set up can still verify packets and
hence are still resilient to stopping PDoS attacks.

As given in Figure 4(a), when new nodes (a;, a, and
as) that have just joined the path are sparsely distributed,
an adversary can flood only some of these nodes (a; and a5),
but cannot flood the other nodes (e.g. n4) that are separated by
old nodes. However, if several new nodes form a long path, as
shown in Figure 4(b), a PDoS attack can cause more damage.
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To avoid the situation where a long path of new nodes exists,
the bootstrapping process can be performed periodically, or
when the base station finds that the number of new nodes in
the path exceeds some threshold or when the length of a path
formed by the new nodes exceeds some threshold.

Figure 4 Routing path repair. Nodes n1, na, . .., ng are old
nodes that already have an OHC number, and nodes a,

as, ..., as are new nodes in the path that don’t have an
OHC number
)
(a) Adversary m; can launch PDoS along path a, to n; and m; can launch PDoS attach
along path a; to ng. m, cannot launch PDoS attack to a, since b, will drop its packets.
B — =) @\
© ) e

(b) Adversary m, can launch PDoS attack along a long path from a; to ns.

6 Evaluation

To evaluate the feasibility of our mechanism in current WSN
platforms, we need to measure the resource consumption
for generating, storing and verifying one-way hash chains
in resource constrained sensor nodes. To do this, we
implemented an OHC generation and verification algorithm
on Berkeley MICA2 motes. Furthermore, to evaluate the
practicality of our mechanism, it is important to understand
its performance overhead, which is the extra delay introduced
in communication. To do this, we simulated our solution in
a multihop network. The overhead of bootstrapping is one
message passed from base station B to node S in the public
key approach, and two messages passed from B to S in the
UTESLA approach. The OHC refresh also consists of two
messages passed.

6.1 One-way hash chain verification

The Berkeley MICA2 mote has a 7.3 MHz processor with
128 KB flash memory, 4.0 KB RAM, and a Chipcon CC1000
radio at 19.2 Kbps. We adopt the method of generating OHCs
by a block cipher encryption algorithm (Deng et al., 2003).
To measure the resource requirements of the OHC
verification function, we adopted the implementation of
skipjack in TinySEC (Karlof et al., 2004).

We measured the time for one OHC verification operation
to be 1.49 MS. Considering the slow speed of wireless
links (19.2 kbps), this verification time of 1.49 ms is quite
reasonable. This shows that the proposed mechanism for
preventing PDoS attacks is a viable mechanism that can easily
be supported by current sensor nodes such as motes.

If 8 byte OHC numbers are used, an intermediate node
needs to store only 16 bytes for each transmission link. For
nodes that are on many paths, we store the OHC numbers
in flash memory, which has 128 KB, and cache frequently
used OHCs in SRAM, of size 4 KB. According to Dai and
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Han (2004), reading/writing a page costs only < 250 us/14
ms. We think that 14 ms is short enough for a node to
write data to flash during its non-I/O cycle. If a node has
to receive/send a packet every tens of milliseconds, it will
exhaust its battery in a few days.

Since a single OHC number is included in each packet,
without counting setup overhead, the message overhead is
8 bytes per packet. This is less that the 14-byte per packet
overhead of the SEF protocol (Ye et al., 2004). As suggested
in (Karlof et al., 2004), we can use 4 bytes of MAC for end-
to-end security. So the total security overhead is 12 bytes.
Notice that end-to-end security overhead may still be required
for SEF, since the Bloom filter only provides probabilistic
security protection. node.

6.2 One-way hash chain generation on a
source node

The method of generating and storing a long OHC in a
sensor node is not straight forward. Naive algorithms require
either too much memory to store every OHC number or
too much time to compute the next OHC number. None
of these algorithms are practical on resource-constrained
sensor nodes. Recently, some efficient OHC generation
algorithms for resource-constrained platforms have been
proposed (Coppersmith and Jakobsson, 2002; Jakobsson,
2002; Sella, 2003). After a comparison of their performance,
we implemented the fractal graph traversal algorithm
(Coppersmith and Jakobsson, 2002) on Berkeley motes. This
algorithm stores only some of the intermediate numbers,
called pebbles, of an OHC and uses them to compute
other numbers. If the size of an OHC is n (there are total
n numbers in this OHC), the algorithm performs
approximately %log2 n one-way function operations to
compute the next OHC number and requires a little more
than log, n units of memory to save pebbles.

Another important factor is the length of an OHC that
is needed for a source node. The typical length is between
2" and 2%2. If the length of an OHC is 22> and a node
uses one OHC number per second, it will take more than a
month to exhaust all numbers from this chain. Figure 5 shows
the storage requirements for storing pebbles for different
lengths of an OHC. This includes a skipjack-based one-way
function and OHC generation based on (Coppersmith and
Jakobsson, 2002). We see that a node needs about 930 bytes to
maintain an OHC of length 2?2, This includes 256 bytes
lookup table for skipjack, which can be shared with other
applications.

Figure 6 shows the average time and maximum time
required to generate one OHC number. The average time
was measured as the total time for computing a complete
OHC with the fractal traversal algorithm, and then averaged
for generating a single number. As analysed in Jakobsson
(2002), the maximum time for generating an OHC number
is approximately equal to § x 0.5 x log, n, where n is the
size of the OHC and § is the time for performing a one-way
function. Here we chose § as 1.49 ms. When the size of the
OHC is 2%2, the implementation shows that a Berkeley mote
MICA?2 requires about 10.3 ms on average to generate an
OHC and about 16.5 ms in the worst case. Considering that

it takes about 40-50 ms to send a 36-byte packet on motes,
we believe that this computing time for generating an OHC
number is practical.

Figure 5 Memory consumption in one-way hash
chain generation
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Figure 6 Time consumption in one-way hash
chain generation

| L ; : ]
°r I X ]
T
14 | x7 _
X)(
12 ¢ _
—_ L X _
g 10 ) )
s ghx * |
g 8
= 6 L |
4 I -
°l Max Time ---x---
Test Average Time X
[ L I . | |
2A11 2M9 2A20 oAD1 P

Size of One-way Hash Chain

6.3 Simulation of additional overhead

In our solution, every data packet contains a OHC
number, which is 8 bytes of overhead compared
with the no anti-PDOS attack solution. In addition,
the resetup of OHCs with the WTESLA protocol and
refreshing broken OHCs also costs extra overhead.
We simulated the total data overhead. We simulated
OHC set up for from every 10 messages to every
10° messages, and we simulated refreshing the OHC for
every 10 messages to every 4 x 10° messages. Figure 7
illustrates that when we perform OHC setup and refreshment
very frequently, for exmple, for every 10 messages, the total
data overhead is about 14 bytes per packet, which is the same
as the SEF algorithm. However, if we perform these
operations infrequently, for example, set up OHC every
10,000 messages and refresh OHC every 160 messages,
the amortised overhead of our scheme will reduce to about
8 bytes per packet.
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Figure 7 Average extra bytes of overhead per packet for OHC
bootstrapping and refresh
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6.4 Simulation of multihop data transmission
delay overhead

Using the OHC generation and verification times, we
simulated the data transmission overhead of our scheme.
In this experiment, a sensor node sends data to a base
station via a path whose length varies from 1 to 10 hops.
Data transmission time of each hop is randomly set between
30 and 40 ms. We simulated this experiment without our
scheme and with our scheme. When our scheme was used,
we experimented with different packet loss rates ranging
from 0 to 0.3 at each hop. Our scheme adds overhead in
data transmission by performing OHC generation at the
source node and OHC verification at the intermediate nodes.
We chose % x log,2?? x 1.5 = 16.5ms as the overhead
of OHC generation, which is almost the maximum time
to generate a OHC number in a 2?> long OHC. The time
needed for verification depends on the packet loss rate.
In the presence of packet loss, intermediate nodes need to
apply the one-way function F several times to validate a
received packet. We manually introduce packet loss rates on
each hop, ranging from O to 0.3. Note that the total end-
to-end packet loss rate is adversely affected by multihop
transmission. For example, if each hop has a loss rate of
0.3, then with 97% possibility a packet would not reach the
base station via a 10-hop path. If each hop has a loss rate of
0.05, a packet only has a probability of 0.7 to reach the base
station via a 7-hop path.

Figure 8 illustrates the overhead of our scheme for various
packet loss rates. We see that when the packet loss rate is 0,
our scheme requires an additional 16 ms in a 1-hop path and
about 30 ms in a 10-hop path. If the packet loss rate is 0.05
and there are 7 hops from the source to the base station, our
scheme adds only about 22 ms overhead (16 ms for OHC
generation and 6 ms for OHC verification). We believe that
this overhead is quite reasonable for current WSNs.

7 Discussion

Our OHC-based mechanism is applicable not just to unicast
paths, but also can be extended to counteract PDoS attacks
against a reliable end-to-end connection and multipath
routing in WSNs. A reliable protocol would be useful for
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sending commands or even dynamic code updates to a sensor
node from a base station. A typical reliable ARQ protocol
will send and/or retransmit data and acknowledgements.
Such a protocol is highly susceptible to a PDoS attack,
since replaying data and/or duplicate acks is considered
a legitimate part of the protocol. PDoS attacks can be
inhibited if the two end points share two OHCs, one for
(re)transmitting data packets in one direction and the other
for (re)transmitting ack/nack packets in the reverse direction.
Every packet sent by one end point contains a unique OHC
number. Even if a packet is retransmitted, the retransmitted
version of the packet has a new distinct OHC number.
This allows an intermediate node to distinguish between a
packet retransmitted by the source and a retransmitted packet
replayed by an adversary, because the adversary cannot attach
a valid OHC number in the replayed packet.

Figure 8 Delay overhead of OHC verification
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Multipath routing (Deng et al., 2003; Ganesen et al.,
2002; Karloff et al., 2002; Ye et al., 2005) improves the
robustness and reliability of data communications in WSNs.
Bootstrapping proceeds as before, except along multiple
paths. If the multiple paths are disjoint, maintenance of
OHC is similar to single path routing. An intermediate node
forwards a packet only once. In addition, different paths can
use different OHCs. But in interleaved multiple paths, an
intermediate node may receive the same packet from different
nodes and may forward them more than once. In this case,
every node only forwards a packet containing the same OHC
number a limited number of times equal to the number of
paths, thereby forestalling a PDoS attack.

8 Conclusion

In WSNs, an adversary can launch with little effort a PDoS
attack that will have a severe widespread effect on the
WSN, disabling nodes on all branches downstream of
the path, due to the tree-structured topology of WSNs.
In this paper, we have proposed a lightweight and
efficient mechanism using one-way hash chains that allows
intermediate nodes to defend against PDoS attacks by
detecting replayed and spurious packets. We have proposed
a novel and robust set of mechanisms to bootstrap and
maintain one-way hash chains given packet loss and topology
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changes. Our implementations show that our scheme is
feasible in current sensor network platforms and incurs
modest overhead.
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